Association Between Low-Carbohydrate Diet Scores and Incidence of Hypertension Among the Middle-Aged Japanese Population: The Toon Health Study
Abstract
1. Introduction
2. Materials and Methods
- Study Participants:
- Measurement of blood pressure levels and definition of hypertension:
- Dietary assessment and LCD score calculation:
- The other measurements:
- Statistical analysis:
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LCD | Low-Carbohydrate Diet |
FFQ | Food Frequency Questionnaire |
LDL | Low-Density Lipoprotein |
HDL | High-Density Lipoprotein |
OR | Odds Ratio |
CI | Confidence Interval |
References
- Doumas, M.; Tziomalos, K.; Athyros, V. EDITORIAL-Blood Pressure as a Risk Factor of Global Disease Burden and its Association with Lifetime Risks of Different Manifestations of Cardiovascular Disease. Open Hypertens. J. 2014, 6, 31–37. [Google Scholar] [CrossRef]
- Wang, C.; Yuan, Y.; Zheng, M.; Pan, A.; Wang, M.; Zhao, M.; Li, Y.; Yao, S.; Chen, S.; Wu, S.; et al. Association of Age of Onset of Hypertension With Cardiovascular Diseases and Mortality. J. Am. Coll. Cardiol. 2020, 75, 2921–2930. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
- World Health Organization. Global Report on Hypertension: The Race Against a Silent Killer; World Health Organization: Geneva, Switzerland, 2023; p. 9. [Google Scholar]
- Gaziano, T.A.; Bitton, A.; Anand, S.; Weinstein, M.C. The Global Cost of Nonoptimal Blood Pressure. J. Hypertens 2009, 27, 1472–1477. [Google Scholar] [CrossRef]
- Singh, R.B.; Nabavizadeh, F.; Fedacko, J.; Pella, D.; Pella, N.; Jakabcin, P.; Fatima, G.; Horuichi, R.; Takahashi, T.; Mojto, V.; et al. Dietary Approaches to Stop Hypertension via Indo-Mediterranean Foods, May Be Superior to DASH Diet Intervention. Nutrients 2022, 15, 46. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X. Study on Hypertension and Risk of Hypertension and Cardiovascular Disease. J. Clin. Nurs. Res. 2022, 6, 79–83. [Google Scholar] [CrossRef]
- Hisamatsu, T.; Miura, K. Epidemiology and control of hypertension in Japan: A comparison with Western countries. J. Hum. Hypertens. 2024, 38, 469–476. [Google Scholar] [CrossRef]
- Halton, T.L.; Willett, W.C.; Liu, S.; Manson, J.E.; Albert, C.M.; Rexrode, K.; Hu, F.B. Low-carbohydrate-diet score and the risk of coronary heart disease in women. N. Engl. J. Med. 2006, 355, 1991–2002. [Google Scholar] [CrossRef]
- Rafieipour, A.; Zeinalabedini, M.; Shekari, S.; Azaryan, F.; Salimi, Z.; Hassanpour Ardekanizadeh, N.; Mahmoudi, Z.; Kohansal, A.; Shamsi-Goushki, A.; Gholamalizadeh, M.; et al. The association between hypertension and different types of dietary carbohydrates. Cardiovasc. Endocrinol. Metab. 2024, 13, e00317. [Google Scholar] [CrossRef]
- Soh, S.M.; Chung, S.J.; Yoon, J. Dietary and Health Characteristics of Korean Adults According to the Level of Energy Intake from Carbohydrate: Analysis of the 7th (2016–2017) Korea National Health and Nutrition Examination Survey Data. Nutrients 2020, 12, 429. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2013–2020; World Health Organization: Geneva, Switzerland, 2013; p. 94. [Google Scholar]
- Roerecke, M.; Kaczorowski, J.; Tobe, S.W.; Gmel, G.; Hasan, O.S.M.; Rehm, J. The effect of a reduction in alcohol consumption on blood pressure: A systematic review and meta-analysis. Lancet Public Health 2017, 2, e108–e120. [Google Scholar] [CrossRef]
- Sugimoto, M.; Tabata, H.; Kaga, H.; Someya, Y.; Kakehi, S.; Abudurezake, A.; Naito, H.; Ito, N.; Shi, H.; Otsuka, H.; et al. Association of ALDH2 Genotypes and Alcohol Intake with Dietary Patterns: The Bunkyo Health Study. Nutrients 2022, 14, 4830. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.H.T.; Buyken, A.E.; Brand-Miller, J.C.; Louie, J.C.Y. Is there a soft drink vs. alcohol seesaw? A cross-sectional analysis of dietary data in the Australian Health Survey 2011–12. Eur. J. Nutr. 2020, 59, 2357–2367. [Google Scholar] [CrossRef]
- Liangpunsakul, S. Relationship between alcohol intake and dietary pattern: Findings from NHANES III. World J. Gastroenterol. 2010, 16, 4055–4060. [Google Scholar] [CrossRef] [PubMed]
- Kesse, E.; Clavel-Chapelon, F.; Slimani, N.; Van Liere, M. Do eating habits differ according to alcohol consumption? Results of a study of the French cohort of the European Prospective Investigation into Cancer and Nutrition (E3N-EPIC). Am. J. Clin. Nutr. 2001, 74, 322–327. [Google Scholar] [CrossRef]
- Takahashi, K.; Yoshimura, Y.; Kaimoto, T.; Kunii, D.; Komatsu, T.; Yamamoto, S. Validation of a Food Frequency Questionnaire Based on Food Groups for Estimating Individual Nutrient Intake. Jpn. J. Nutr. 2001, 59, 221–232. [Google Scholar] [CrossRef]
- Report of the Subcommittee on Survey of Resources “Standard Tables of Food Composition in Japan 2010”: Ministry of Education, Culture, Sports, Science and Technology. Available online: https://www.jsum.or.jp/committee/diagnostic/pdf/jsum0515_guideline.pdf (accessed on 22 April 2025).
- Nakamura, Y.; Okuda, N.; Okamura, T.; Kadota, A.; Miyagawa, N.; Hayakawa, T.; Kita, Y.; Fujiyoshi, A.; Nagai, M.; Takashima, N.; et al. NIPPON DATA Research Group. Low-carbohydrate diets and cardiovascular and total mortality in Japanese: A 29-year follow-up of NIPPON DATA80. Br. J. Nutr. 2014, 112, 916–924. [Google Scholar] [CrossRef]
- Ishikawa-Takata, K.; Naito, Y.; Tanaka, S.; Ebine, N.; Tabata, I. Use of doubly labeled water to validate a physical activity questionnaire developed for the Japanese population. J. Epidemiol. 2011, 21, 114–121. [Google Scholar] [CrossRef]
- Iso, H.; Kitamura, A.; Shimamoto, T.; Sankai, T.; Naito, Y.; Sato, S.; Kiyama, M.; Iida, M.; Komachi, Y. Alcohol intake and the risk of cardiovascular disease in middle-aged Japanese men. Stroke 1995, 26, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Health Japan 21 Analysis and Assessment Project. Available online: https://www.nibn.go.jp/eiken/kenkounippon21/en/kenkounippon21/dete_detail.html#detail_05_04_01 (accessed on 22 July 2025).
- Dong, T.; Guo, M.; Zhang, P.; Sun, G.; Chen, B. The effects of low-carbohydrate diets on cardiovascular risk factors: A meta-analysis. PLoS ONE 2020, 15, e0225348. [Google Scholar] [CrossRef] [PubMed]
- Vasdev, S.; Gill, V.D.; Singal, P.K. Modulation of oxidative stress induced changes in hypertension and atherosclerosis by antioxidants. Exp. Clin. Cardiol. 2006, 11, 206–216. [Google Scholar]
- Tomé-Carneiro, J.; Visioli, F. Plant-Based Diets Reduce Blood Pressure: A Systematic Review of Recent Evidence. Curr. Hypertens. Rep. 2023, 25, 127–150. [Google Scholar] [CrossRef] [PubMed]
- Stamler, J.; Brown, I.J.; Daviglus, M.L.; Chan, Q.; Kesteloot, H.; Ueshima, H.; Zhao, L.; Elliott, P.; INTERMAP Research Group. Glutamic acid, the main dietary amino acid, and blood pressure: The INTERMAP Study (International Collaborative Study of Macronutrients, Micronutrients and Blood Pressure). Circulation 2009, 120, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Altorf-van der Kuil, W.; Engberink, M.F.; De Neve, M.; van Rooij, F.J.; Hofman, A.; van’t Veer, P.; Witteman, J.C.; Franco, O.H.; Geleijnse, J.M. Dietary amino acids and the risk of hypertension in a Dutch older population: The Rotterdam Study. Am. J. Clin. Nutr. 2013, 97, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Poggiogalle, E.; Fontana, M.; Giusti, A.M.; Pinto, A.; Iannucci, G.; Lenzi, A.; Donini, L.M. Amino Acids and Hypertension in Adults. Nutrients 2019, 11, 1459. [Google Scholar] [CrossRef]
- Di Castelnuovo, A.; Costanzo, S.; Bagnardi, V.; Donati, M.B.; Iacoviello, L.; de Gaetano, G. Alcohol dosing and total mortality in men and women: An updated meta-analysis of 34 prospective studies. Arch. Intern. Med. 2006, 166, 2437–2445. [Google Scholar] [CrossRef]
- Ronksley, P.E.; Brien, S.E.; Turner, B.J.; Mukamal, K.J.; Ghali, W.A. Association of alcohol consumption with selected cardiovascular disease outcomes: A systematic review and meta-analysis. Br. Med. J. 2011, 342, d671. [Google Scholar] [CrossRef]
T1 (Low) | T2 | T3 (High) | p for Trend | |
---|---|---|---|---|
Number of subjects | 291 | 307 | 314 | |
Age (Years) | 56.2 | 55.1 | 52.9 | <0.01 |
Men (%) | 28.8 | 28.7 | 27.7 | - |
BMI (kg/m2) | 22.5 | 22.7 | 22.7 | 0.36 |
Current alcohol drinkers (%) | 62.7 | 63.2 | 56.5 | 0.08 |
Ethanol Intake (g/day) | 10.8 | 28.6 | 27.7 | 0.16 |
Current smokers (%) | 12.9 | 13 | 10.4 | 0.21 |
Physical activity (METs h/day) | 35.5 | 35.9 | 35.5 | 0.92 |
Dyslipidemia (%) | 35.8 | 41.7 | 37.2 | 0.83 |
Diabetes (%) | 6.7 | 4.1 | 6.0 | 0.83 |
Dietary intakes | ||||
Total energy (kcal) | 1771.3 | 1912.4 | 2030.3 | <0.01 |
Energy from Carbohydrates (%E) | 63.1 | 57.4 | 51.9 | <0.01 |
Energy from Protein (%E) | 12.4 | 13.9 | 15.2 | <0.01 |
Energy from Fat (%E) | 24.5 | 28.6 | 32.9 | <0.01 |
Energy from MUFA and PUFA (%E) | 13.7 | 16 | 18.4 | <0.01 |
Energy from SFA (%E) | 7.6 | 8.9 | 10.2 | <0.01 |
Dietary Fiber (g/1000 kcal) | 6.9 | 7.1 | 7 | 0.40 |
Sodium (mg/1000 kcal) | 1879.7 | 1955.3 | 1944.5 | 0.16 |
Plant-based LCD score | 8.8 | 15.0 | 20.8 | <0.01 |
Animal-based LCD score | 6.4 | 15.0 | 23.1 | <0.01 |
T1 (Low) | T2 | T3 (High) | p for Trend | |
---|---|---|---|---|
Total LCD | ||||
Cases of hypertension /number of subjects | 44/291 (15.1%) | 29/307 (9.4%) | 28/314 (8.9%) | |
Age and sex-adjusted OR (95% CI) | 1.00 | 0.60 (0.36–0.99) | 0.61 (0.37–1.03) | 0.07 |
Multivariable OR (95% CI) * | 1.00 | 0.62 (0.37–1.06) | 0.67 (0.38–1.17) | 0.17 |
Animal-based LCD | ||||
Cases of hypertension /number of subjects | 37/307 (12%) | 37/314 (11.8%) | 27/291 (9.2%) | |
Age and sex-adjusted OR (95% CI) | 1.00 | 0.98 (0.60–1.61) | 0.84 (0.49–1.44) | 0.50 |
Multivariable OR (95% CI) * | 1.00 | 1.04 (0.62–1.74) | 0.88 (0.50–1.57) | 0.65 |
Plant-based LCD | ||||
Cases of hypertension /number of subjects | 42/289(14.5%) | 32/321(9.9%) | 27/302(8.9%) | |
Age and sex-adjusted OR (95% CI) | 1.00 | 0.70(0.42–1.15) | 0.65(0.39–1.10) | 0.09 |
Multivariable OR (95% CI) * | 1.00 | 0.79(0.47–1.33) | 0.83(0.47–1.46) | 0.45 |
T1 (Low) | T2 | T3 (High) | p for Trend | p for Interaction | |
---|---|---|---|---|---|
Total LCD | |||||
Alcohol drinkers | |||||
Cases of hypertension/number of subjects | 28/160 (17.5%) | 19/173 (10.9%) | 11/160 (6.8%) | 0.04 | |
Multivariable OR (95% CI) | 1.00 | 0.61(0.31–1.19) | 0.38(0.17–0.83) | 0.01 | |
Non-Drinkers | |||||
Cases of hypertension/number of subjects | 16/131 (12.2%) | 10/134 (7.5%) | 17/154 (11.0%) | ||
Multivariable OR (95% CI) | 1.00 | 0.62 (0.25–1.49) | 1.29 (0.56–2.98) | 0.47 | |
Animal-based LCD | |||||
Alcohol drinkers | |||||
Cases of hypertension/number of subjects | 24/171 (14.0%) | 20/166 (12.0%) | 14/156 (8.9%) | 0.20 | |
Multivariable OR (95% CI) | 1.00 | 0.87 (0.44–1.72) | 0.65 (0.30–1.37) | 0.26 | |
Non-Drinkers | |||||
Cases of hypertension/number of subjects | 13/136 (9.5%) | 17/148 (11.5%) | 13/135 (9.6%) | ||
Multivariable OR (95% CI) | 1.00 | 1.25 (0.55–2.82) | 1.32 (0.52–3.33) | 0.55 | |
Plant-based LCD | |||||
Alcohol drinkers | |||||
Cases of hypertension/number of subjects | 29/166 (12.6%) | 19/176 (10.8%) | 10/151 (6.6%) | 0.03 | |
Multivariable OR (95% CI) | 1.00 | 0.65 (0.33–1.25) | 0.39 (0.17–0.90) | 0.01 | |
Non-Drinkers | |||||
Cases of hypertension/number of subjects | 13/123 (10.6%) | 13/145 (8.9%) | 17/151 (11.2%) | ||
Multivariable OR (95% CI) | 1.00 | 1.02 (0.43–2.42) | 1.88 (0.78–4.52) | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shoaib, A.; Miyazaki, S.; Maruyama, K.; Tomooka, K.; Tanigawa, T.; Kawamura, R.; Takata, Y.; Osawa, H.; Saito, I. Association Between Low-Carbohydrate Diet Scores and Incidence of Hypertension Among the Middle-Aged Japanese Population: The Toon Health Study. Dietetics 2025, 4, 33. https://doi.org/10.3390/dietetics4030033
Shoaib A, Miyazaki S, Maruyama K, Tomooka K, Tanigawa T, Kawamura R, Takata Y, Osawa H, Saito I. Association Between Low-Carbohydrate Diet Scores and Incidence of Hypertension Among the Middle-Aged Japanese Population: The Toon Health Study. Dietetics. 2025; 4(3):33. https://doi.org/10.3390/dietetics4030033
Chicago/Turabian StyleShoaib, Aziz, Saori Miyazaki, Koutatsu Maruyama, Kiyohide Tomooka, Takeshi Tanigawa, Ryoichi Kawamura, Yasunori Takata, Haruhiko Osawa, and Isao Saito. 2025. "Association Between Low-Carbohydrate Diet Scores and Incidence of Hypertension Among the Middle-Aged Japanese Population: The Toon Health Study" Dietetics 4, no. 3: 33. https://doi.org/10.3390/dietetics4030033
APA StyleShoaib, A., Miyazaki, S., Maruyama, K., Tomooka, K., Tanigawa, T., Kawamura, R., Takata, Y., Osawa, H., & Saito, I. (2025). Association Between Low-Carbohydrate Diet Scores and Incidence of Hypertension Among the Middle-Aged Japanese Population: The Toon Health Study. Dietetics, 4(3), 33. https://doi.org/10.3390/dietetics4030033