Comparing Self-Administered Web-Based to Interviewer-Led 24-h Dietary Recall (FOODCONS): An Italian Pilot Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Software FOODCONS 1.0
2.2. Subject Recruitment
2.3. Study Design
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- European Food Safety Authority. General principles for the collection of national food consumption data in the view of a pan-European dietary survey. EFSA J. 2009, 7, 1435. [Google Scholar] [CrossRef]
- European Food Safety Authority. Guidance on the EU Menu methodology. EFSA J. 2014, 12, 3944. [Google Scholar] [CrossRef]
- Saba, A.; Turrini, A.; Mistura, G.; Vichi, M. Indagine nazionale sui consumi alimentari delle famiglie 1980–84: Alcuni principali risultati (Nation-wide survey on Italian households food consumption 1980–84: Main results). J. It. Soc. Food Sci. 1990, 19, 53–65. [Google Scholar]
- Turrini, A.; Saba, A.; Perrone, D.; Cialfa, E.; D’Amicis, A. Food consumption patterns in Italy: The INN-CA Study 1994–1996. Eur. J. Clin. Nutr. 2001, 55, 571–588. [Google Scholar] [CrossRef]
- Leclercq, C.; Arcella, D.; Piccinelli, R.; Sette, S.; Le Donne, C.; Turrini, A.; INRAN-SCAI 2005–06 Study Group. The Italian National Food Consumption Survey INRAN-SCAI 2005–06: Main results in terms of food consumption. Public Health Nutr. 2009, 12, 2504–2532. [Google Scholar] [CrossRef]
- FAO. Dietary Assessment: A Resource Guide to Method Selection and Application in Low Resource Settings; FAO: Rome, Italy, 2018; ISBN 978-92-5-130635-2. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/3dc75cfc-9128-4f29-9d76-8d1f792078f0/content (accessed on 31 January 2025).
- Wark, P.A.; Hardie, L.J.; Frost, G.S.; Alwan, N.A.; Carter, M.; Elliott, P.; Ford, H.E.; Hancock, N.; Morris, M.A.; Mulla, U.Z.; et al. Validity of an online 24-h recall tool (myfood24) for dietary assessment in population studies: Comparison with biomarkers and standard interviews. BMC Med. 2018, 16, 136. [Google Scholar] [CrossRef]
- Baranowski, T. 24-hour Recall and Diet Record Methods. In Nutrition Epidemiology. Monographs in Epidemiology and Biostatistics, 3rd ed.; Oxford University Press: Oxford, UK, 2012. [Google Scholar] [CrossRef]
- Mistura, L.; Comendador Azcarraga, F.J.; D’Addezio, L.; Martone, D.; Turrini, A. An Italian Case Study for Assessing Nutrient Intake through Nutrition-Related Mobile Apps. Nutrients 2021, 13, 3073. [Google Scholar] [CrossRef]
- Timon, C.M.; Evans, K.; Kehoe, L.; Blain, R.J.; Flynn, A.; Gibney, E.R.; Walton, J. Comparison of a Web-Based 24-h Dietary Recall Tool (Foodbook24) to an Interviewer-Led 24-h Dietary Recall. Nutrients 2017, 9, 425. [Google Scholar] [CrossRef] [PubMed]
- Bradley, J.; Simpson, E.; Poliakov, I.; Matthews, J.N.; Olivier, P.; Adamson, A.J.; Foster, E. Comparison of INTAKE24 (an Online 24-h Dietary Recall Tool) with Interviewer-Led 24-h Recall in 11-24 Year-Old. Nutrients 2016, 86, 358. [Google Scholar] [CrossRef]
- NIH. National Cancer Institute, Division of Cancer Control & Population Sciences. Automated Self-Administered 24-Hour (ASA24®) Dietary Assessment Tool. Available online: https://epi.grants.cancer.gov/asa24 (accessed on 31 January 2025).
- Subar, A.F.; Kirkpatrick, S.I.; Mittl, B.; Zimmerman, T.P.; Thompson, F.E.; Bingley, C.; Willis, G.; Islam, N.G.; Baranowski, T.; McNutt, S.; et al. The automated self-administered 24-hour dietary recall (ASA24): A resource for researchers, clinicians, and educators from the national cancer institute. J. Acad. Nutr. Diet. 2012, 112, 1134–1137. [Google Scholar] [CrossRef]
- Liu, B.; Young, H.; Crowe, F.L.; Benson, V.S.; Spencer, E.A.; Key, T.J.; Appleby, P.N.; Beral, V. Development and evaluation of the Oxford WebQ, a low-cost, web-based method for assessment of previous 24 h dietary intakes in large-scale prospective studies. Public Health Nut. 2011, 14, 1998–2005. [Google Scholar] [CrossRef]
- Eldridge, A.L.; Piernas, C.; Illner, A.K.; Gibney, M.J.; Gurinović, M.A.; de Vries, J.H.M.; Cade, J.E. Evaluation of New Technology-Based Tools for Dietary Intake Assessment-An ILSI Europe Dietary Intake and Exposure Task Force Evaluation. Nutrients 2018, 11, 55. [Google Scholar] [CrossRef] [PubMed]
- Benedik, E.; Koroušić Seljak, B.; Hribar, M.; Rogelj, I.; Bratanič, B.; Orel, R.; Fidler, N. Comparison of a Web-Based Dietary Assessment Tool with Software for the Evaluation of Dietary Records. Zdr. Varst. 2015, 54, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Foster, E.; Lee, C.; Imamura, F.; Hollidge, S.E.; Westgate, K.L.; Venables, M.C.; Poliakov, I.; Rowland, M.K.; Osadchiy, T.; Bradley, J.C.; et al. Validity and reliability of an online self-report 24-h dietary recall method (Intake24): A doubly labelled water study and repeated-measures analysis. J. Nutr. Sci. 2019, 8, e29. [Google Scholar] [CrossRef] [PubMed]
- Meijboom, S.; van Houts-Streppel, M.T.; Perenboom, C.; Siebelink, E.; van de Wiel, A.M.; Geelen, A.; Feskens, E.J.M.; de Vries, J.H.M. Evaluation of dietary intake assessed by the Dutch self-administered web-based dietary 24-h recall tool (Compl-eat™) against interviewer-administered telephone-based 24-h recalls. J. Nutr. Sci. 2017, 6, e49. [Google Scholar] [CrossRef]
- Ocké, M.; van Rossum, C.; Carvalho, C.; Severo, M.; Correia, D.; Oliveira, A.; Torres, D.; Lopes, C. Advice for the update of the EU Menu guidance: Results of the ERA EU Menu project. EFSA Support. Publ. 2024, 21, 8578E. Available online: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/sp.efsa.2024.EN-8578 (accessed on 24 April 2025). [CrossRef]
- Bondi, D.; Aloisi, A.M.; Pietrangelo, T.; Piccinelli, R.; Le Donne, C.; Jandova, T.; Pieretti, S.; Taraborrelli, M.; Santangelo, C.; Lattanzi, B. Feeding Your Himalayan Expedition: Nutritional Signatures and Body Composition Adaptations of Trekkers and Porters. Nutrients 2021, 13, 460. [Google Scholar] [CrossRef]
- Pounis, G.; Bonanni, A.; Ruggiero, E.; Di Castelnuovo, A.; Costanzo, S.; Persichillo, M.; Bonaccio, M.; Cerletti, C.; Riccardi, G. Food group consumption in an Italian population using the updated food classification system FoodEx2: Results from the Italian Nutrition & HEalth Survey (INHES) study. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 307–328. [Google Scholar] [CrossRef]
- Magliulo, L.; Bondi, D.V.; Pietrangelo, T.; Fulle, S.; Piccinelli, R.; Jandova, T.; Blasio, G.D.; Taraborrelli, M.; Verratti, V. Serum ferritin and vitamin D evaluation in response to high altitude comparing Italians trekkers vs Nepalese porters. Eur. J. Sport. Sci. 2021, 21, 994–1002. [Google Scholar] [CrossRef]
- Conway, J.M.; Ingwersen, L.A.; Moshfegh, A.J. Accuracy of dietary recall using the USDA five-step multiple-pass method in men: An observational validation study. J. Am. Diet. Assoc. 2004, 104, 595–603. [Google Scholar] [CrossRef]
- Albar, S.A.; Alwan, N.A.; Evans, C.E.; Greenwood, D.C.; Cade, J.E. Agreement between an online dietary assessment tool (myfood24) and an interviewer-administered 24-h dietary recall in British adolescents aged 11–18 years. Br. J. Nutr. 2016, 115, 1678–1686. [Google Scholar] [CrossRef] [PubMed]
- Drapeau, V.; Laramée, C.; Lafreniere, J.; Trottier, C.; Brochu, C.; Robitaille, J.; Lamarche, B.; Lemieux, S. Assessing the relative validity of a web-based self-administered 24-hour dietary recall in a Canadian adolescent’s population. Nutr. J. 2024, 23, 66. [Google Scholar] [CrossRef] [PubMed]
- van Rossum, C.; ter Borg, S.; Nawijn, E.; Oliveira, A.; Carvalho, C.; Ocké, M. Literature review on methodologies and tools for national dietary surveys; results of ERA EU-menu-project. EFSA Support. Publ. 2022, 19, 7725E. [Google Scholar] [CrossRef]
- Amoutzopoulos, B.; Steer, T.; Roberts, C.; Collins, D.; Trigg, K.; Barratt, R.; Abraham, S.; Cole, D.J.; Mulligan, A.; Foreman, J.; et al. Rationalisation of the UK Nutrient Databank for Incorporation in a Web-Based Dietary Recall for Im-plementation in the UK National Diet and Nutrition Survey Rolling Programme. Nutrients 2022, 14, 4551. [Google Scholar] [CrossRef]
- Lindroos, A.; Petrelius Sipinen, J.; Axelsson, C.; Nyberg, G.; Landberg, R.; Leanderson, P.; Arnemo, M.; Warensjo Lemming, E. Use of a Web-Based Dietary Assessment Tool (RiksmatenFlex) in Swedish Adolescents: Comparison and Validation Study. J. Med. Internet Res. 2019, 21, e12572. [Google Scholar] [CrossRef]
- Biltoft-Jensen, A.; Trolle, E.; Christensen, T.; Islam, N.; Andersen, L.F.; Egenfeldt-Nielsen, S.; Tetens, I. WebDASC: A web-based dietary assessment software for 8–11-year-old Danish children. J. Hum. Nutr. Diet. 2014, 27, 43–53. [Google Scholar] [CrossRef]
Self-Administrated (n = 39) | Interviewer Led (n = 39) | |||||
---|---|---|---|---|---|---|
Mean ± SD | Median (QR) | r | Mean ± SD | Median (QR) | p * | |
Energy (kcal) | 2238.9 ± 961.2 | 2047.1 (1128.2) | 0.809 | 1993.8 ± 658.9 | 1862.4 (1128.2) | 0.335 |
Water (g) | 2126.5 ± 537.8 | 2068 (640.6) | 0.854 | 2179.2 ± 552.8 | 2059.8 (640.6) | 0.628 |
Protein (g) | 84.3 ± 32.2 | 78.2 (51.4) | 0.657 | 75.1 ± 22.4 | 72.7 (51.4) | 0.350 |
Total Fat (g) | 104.1 ± 49.4 | 99.1 (53.0) | 0.648 | 87.8 ± 29.9 | 84.4 (53.0) | 0.128 |
Saturated Fatty Acid (g) | 32.2 ± 23 | 27 (21.4) | 0.713 | 27.1 ± 11.5 | 24.4 (21.4) | 0.376 |
Monounsaturated Fatty Acid (g) | 48.7 ± 22.8 | 46.6 (20.0) | 0.581 | 41.8 ± 14.2 | 43.3 (20.0) | 0.253 |
Polyunsaturated Fatty Acid (g) | 14.7 ± 7.0 | 13.3 (9.0) | 0.622 | 11.6 ± 4.7 | 10.9 (9.0) | 0.053 |
Linoleic Acid (g) | 12 ± 6.1 | 10.2 (7.5) | 0.621 | 9.4 ± 4 | 8.7 (7.5) | 0.061 |
Linolenic Acid (g) | 1.7 ± 0.9 | 1.5 (1.0) | 0.694 | 1.3 ± 0.6 | 1.1 (1.0) | 0.032 |
Available Carbohydrate (g) | 248.3 ± 118.5 | 225.9 (134.2) | 0.910 | 233.3 ± 92.1 | 227.7 (134.2) | 0.764 |
Starch (g) | 147.4 ± 66.1 | 137.8 (97.6) | 0.875 | 141.8 ± 61.7 | 131.9 (97.6) | 0.749 |
Sugar (g) | 85.6 ± 69 | 77.9 (46.0) | 0.846 | 76.6 ± 33.4 | 76.2 (46) | 0.675 |
Dietary Fiber (g) | 22.8 ± 11.5 | 19.8 (7.9) | 0.740 | 20.7 ± 8.1 | 20.7 (7.9) | 0.780 |
Potassium (mg) | 3214.4 ± 950.1 | 3037.8 (1199.2) | 0.691 | 3028.8 ± 846.4 | 2899.5 (1199.2) | 0.506 |
Phosphorus (mg) | 1375.3 ± 513.9 | 1318.4 (708.2) | 0.626 | 1240.9 ± 376.9 | 1203.1 (708.2) | 0.335 |
Calcium (mg) | 909.2 ± 386.8 | 850.2 (562.3) | 0.644 | 870.3 ± 333.3 | 817.6 (562.3) | 0.723 |
Magnesium (mg) | 364.2 ± 164.8 | 337.5 (124.4) | 0.650 | 342.3 ± 105.6 | 295.7 (124.4) | 0.715 |
Iron (mg) | 13.0 ± 7.0 | 11.7 (5.2) | 0.621 | 11.8 ± 4.5 | 11.5 (5.2) | 0.671 |
Zinc (mg) | 14.9 ± 18.8 | 11.4 (6.9) | 0.245 | 12.4 ± 13.7 | 10.8 (6.9) | 0.320 |
Thiamine (mg) | 1.2 ± 0.5 | 1.1 (0.5) | 0.340 | 1.2 ± 0.5 | 1.0 (0.5) | 0.776 |
Riboflavin (mg) | 1.5 ± 0.5 | 1.5 (0.8) | 0.734 | 1.5 ± 0.4 | 1.5 (0.8) | 0.635 |
Vitamin A (RE μg) | 811.2 ± 367.7 | 749.5 (610.9) | 0.604 | 758.3 ± 357.3 | 751.2 (610.9) | 0.457 |
Retinol (μg) | 301.8 ± 169.7 | 314.8 (222.8) | 0.660 | 276.9 ± 155.2 | 264.5 (222.8) | 0.404 |
Vitamin B6 (mg) | 2.7 ± 8.9 | 0.0 (0.0) | 0.306 | 1.5 ± 3.7 | 0.0 (0.0) | 0.582 |
Vitamin B12 (μg) | 5.6 ± 5.9 | 4.1 (2.5) | 0.979 | 5.1 ± 6.1 | 3.9 (2.5) | 0.143 |
β-Carotene (μg) | 3057.5 ± 1877.8 | 2335.8 (2604.9) | 0.678 | 2889.8 ± 1984 | 2431.3 (2604.9) | 0.822 |
Vitamin C (mg) | 133.6 ± 67.1 | 122.2 (86.9) | 0.890 | 127.6 ± 67.2 | 109.3 (86.9) | 0.610 |
Vitamin D (μg) | 3.0 ± 3.0 | 2.0 (2.1) | 0.708 | 2.9 ± 2.4 | 2.1 (2.1) | 0.830 |
Vitamin E (mg) | 15.1 ± 5.0 | 14.4 (7.7) | 0.600 | 13.8 ± 4.5 | 13.4 (7.7) | 0.269 |
Food Groups | Self Administrated (Mean ± SD) g/Die | Interviewer Led (Mean ± SD) g/Die | Mean Difference (%) | rs |
---|---|---|---|---|
Cereals products and substitutes | 258.5 ± 138.7 | 256.3 ± 125.1 | 0.9 | 0.865 |
Potatoes and tubers | 92.0 ± 72.3 | 80.1 ± 52.3 | 12.9 | 0.833 |
Pulses | 53.8 ± 41.6 | 40.0 ± 24.7 | 25.7 | 0.782 |
Vegetables | 262.4 ± 130 | 253.3 ± 141 | 3.5 | 0.833 |
Fruit | 190.1 ± 105.2 | 182.4 ± 93.8 | 4.0 | 0.854 |
Meat products and substitutes | 102.0 ± 74.1 | 82.8 ± 49.7 | 18.8 | 0.599 |
Fish and seafood | 53.4 ± 42.5 | 50.8 ± 52.1 | 4.8 | 0.955 |
Milk products and substitutes | 212.9 ± 103.4 | 211.6 ± 107.3 | 0.6 | 0.811 |
Eggs | 42.7 ± 35.1 | 36.0 ± 33.4 | 15.7 | 0.663 |
Oils and fats | 41.2 ± 21.0 | 36.8 ± 18.6 | 10.7 | 0.861 |
Sweet products and substitutes | 46.7 ± 111.4 | 29.7 ± 31.2 | 36.5 | 0.866 |
Non-alcoholic beverages | 1328.9 ± 507.0 | 1419.8 ± 523.7 | −6.8 | 0.871 |
Alcoholic beverages | 67.4 ± 83.8 | 62.7 ± 80.1 | 6.9 | 0.990 |
Miscellaneous | 13.2 ± 36.5 | 4.4 ± 3.2 | 67.0 | −0.074 |
Day 1 % (a) | Day 2 % (a) | |
---|---|---|
Food exact matches (b) | 56.7 | 64.6 |
Food approximate matches (c) | 16.8 | 12.6 |
Food omitted in self-administered mode (d) | 15.7 | 11.4 |
Food added in self-administered mode (e) | 10.8 | 11.3 |
Interviewer Led 24 h Recall n (%) | Self-Administered 24 h Recall n (%) | |
---|---|---|
How long did it take you to complete the 24 h recall? | ||
<30 min | 10 (24) | 9 (22) |
>1 h | 2 (5) | 6 (15) |
30–45 min | 17 (41) | 17 (41) |
45–60 min | 12 (29) | 9 (22) |
Which of the two types of modalities do you think is more suitable for recording data on food consumption? | 27 (66) | 14 (34) |
How easy is it to carry out the 24 h recall? | ||
Very difficult | 0 (0) | 0 (0) |
Difficult | 0 (0) | 1 (2) |
Neither difficult nor easy | 2 (5) | 10 (24) |
Easy | 22 (54) | 26 (63) |
Very Easy | 17 (41) | 4 (10) |
How likely do you think this software can be used in research projects? | ||
Very unlikely | 1 (2) | 0 (0) |
Unlikely | 2 (5) | 4 (10) |
Neither unlikely nor probable | 0 (0) | 1 (2) |
Likely | 23 (56) | 21 (51) |
Very likely | 15 (37) | 15 (37) |
Compared to what you consumed, can you define the recording of food consumption as complete and precise? | ||
False | 1 (2) | 4 (10) |
True | 40 (98) | 37 (90) |
False n (%) | True n (%) | |
Did the software interface make data entry easy for you? | 3 (7) | 38 (93) |
In the self-administered version, were the instructions received and those present in the software screens adequate to understand for entering the requested information? | 2 (5) | 39 (95) |
In the self-administered version, what problems did you have while searching for the food to code in the database? 1 | ||
It was difficult to find food | 37 (90) | 4 (10) |
It was difficult to identify the most similar food 2 | 26 (63) | 15 (37) |
It was difficult to break down the food consumed 2 | 27 (66) | 14 (34) |
In the self-administered version, what problems did you have while using the food atlas to identify the portion consumed? 1 | ||
Looking at the photo, it was difficult to understand the actual portion | 33 (80) | 8 (20) |
The photos did not show the reference food | 33 (80) | 8 (20) |
I didn’t quite understand how to use the food atlas | 41 (100) | 0 (0) |
In the self-administered version, what problems did you have in the step of correcting the entered data? 1 | ||
It was unclear how to consult the meal summary | 37 (90) | 4 (10) |
It was unclear how to correct the data entered | 32 (78) | 9 (22) |
Is the number of foods present in the software database sufficient to compile a food day? | 5 (12) | 36 (88) |
Both Data Entry Modalities | ||
Overall, are you satisfied with the FOODCONS 1.0 software? | ||
Very dissatisfied | 1 (2) | |
Dissatisfied | 3 (7) | |
Neither dissatisfied nor satisfied | 8 (20) | |
Satisfied | 20 (49) | |
Very satisfied | 9 (22) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mistura, L.; Azcarraga, F.J.C.; D’Addezio, L.; Le Donne, C.; Martone, D.; Piccinelli, R.; Sette, S. Comparing Self-Administered Web-Based to Interviewer-Led 24-h Dietary Recall (FOODCONS): An Italian Pilot Case Study. Dietetics 2025, 4, 17. https://doi.org/10.3390/dietetics4020017
Mistura L, Azcarraga FJC, D’Addezio L, Le Donne C, Martone D, Piccinelli R, Sette S. Comparing Self-Administered Web-Based to Interviewer-Led 24-h Dietary Recall (FOODCONS): An Italian Pilot Case Study. Dietetics. 2025; 4(2):17. https://doi.org/10.3390/dietetics4020017
Chicago/Turabian StyleMistura, Lorenza, Francisco Javier Comendador Azcarraga, Laura D’Addezio, Cinzia Le Donne, Deborah Martone, Raffaela Piccinelli, and Stefania Sette. 2025. "Comparing Self-Administered Web-Based to Interviewer-Led 24-h Dietary Recall (FOODCONS): An Italian Pilot Case Study" Dietetics 4, no. 2: 17. https://doi.org/10.3390/dietetics4020017
APA StyleMistura, L., Azcarraga, F. J. C., D’Addezio, L., Le Donne, C., Martone, D., Piccinelli, R., & Sette, S. (2025). Comparing Self-Administered Web-Based to Interviewer-Led 24-h Dietary Recall (FOODCONS): An Italian Pilot Case Study. Dietetics, 4(2), 17. https://doi.org/10.3390/dietetics4020017