Extracts of Different Polarity of Daphne laureola L. as Valuable Source of Antioxidant and Neuroprotective Compounds †
Abstract
:1. Introduction
2. Experiments
2.1. Chemicals and Reagents
2.2. Plant Materials and Extraction Procedure
2.3. Chemical Analysis
2.4. Antioxidant Activity
2.5. Acetylcholinesterase (AChE) and Butyrylcholinesterase (BChE) Inhibitory Activity
2.6. Statistical Analysis
3. Results
3.1. Phytochemicals Content
3.2. Antioxidant Properties
3.3. Cholinesterases Inhibitory Activity
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
Abbreviations
ABTS | 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic) acid |
AChE | Acetylcholinesterase |
BChE | Butyrylcholinesterase |
BHT | Butylated hydroxytoluene |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
FRAP | Ferric Reducing Antioxidant Power |
IC50 | Half Maximal Inhibitory Concentration |
SD | Standard Deviation |
References
- Moshiashvilia, G.; Tabatadze, N.; Mshvildadze, V. The genus Daphne: A review of its traditional uses, phytochemistry and pharmacology. Fitoterapia 2020, 143, 104540. [Google Scholar] [CrossRef] [PubMed]
- Pignatti, S. Flora d’Italia, 2nd ed.; New Business Media: Milano, Italy, 2017; Volume 2, pp. 1040–1045. [Google Scholar]
- Juskovic, M.; Zabar-Popovic, A.; Matejic, J.; Mihajilov-Krstev, T.; Manojlovic, N.; Vasiljevic, P. Phytochemical screening, antioxidants and antimicrobial potential of leaves of Daphne laureola L. Oxid. Commun. 2017, 40, 1058–1069. [Google Scholar]
- Andrade, S.; Ramalho, M.J.; Loureiro, J.A.; do Carmo Pereira, M. Natural compounds for Alzheimer’s disease therapy: A systematic review of preclinical and clinical studies. Int. J. Mol. Sci. 2019, 20, 2313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tundis, R.; Bonesi, M.; Sicari, V.; Pellicanò, T.M.; Tenuta, M.C.; Leporini, M.; Menichini, F.; Loizzo, M.R. Poncirus trifoliata (L.) Raf.: Chemical composition, antioxidant properties and hypoglycaemic activity via the inhibition of α-amylase and α-glucosidase enzymes. J. Funct. Foods 2016, 25, 477–485. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007. [Google Scholar]
- Davies, N.W. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicon and Carbowax 20M phases. J. Chromatogr. 1990, 503, 1–24. [Google Scholar] [CrossRef]
- Tenuta, M.C.; Deguin, B.; Loizzo, M.R.; Dugay, A.; Acquaviva, R.; Malfa, G.A.; Bonesi, M.; Bouzidi, C.; Tundis, R. Contribution of flavonoids and iridoids to the hypoglycaemic, antioxidant, and nitric oxide (NO) inhibitory activities of Arbutus unedo L. Antioxidants 2020, 9, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brindisi, M.; Bouzidi, C.; Frattaruolo, L.; Loizzo, M.R.; Tundis, R.; Dugay, A.; Deguin, B.; Cappello, A.R.; Cappello, M.S. Chemical profile, antioxidant, anti-inflammatory, and anti-cancer effects of Italian Salvia rosmarinus Spenn. methanol leaves extracts. Antioxidants 2020, 9, 826–847. [Google Scholar] [CrossRef]
- Leporini, M.; Bonesi, M.; Loizzo, M.R.; Passalacqua, N.G.; Tundis, R. The essential oil of Salvia rosmarinus Spenn. from Italy as a source of health-promoting compounds: Chemical profile and antioxidant and cholinesterase inhibitory activity. Plants 2020, 9, 798–811. [Google Scholar] [CrossRef] [PubMed]
- Costa, P.; Gonçalves, S.; Valentao, P.; Andrade, P.B.; Romano, A. Accumulation of phenolic compounds in in vitro cultures and wild plants of Lavandula viridis L’Hér and their antioxidant and anti-cholinesterase potential. Food Chem. Toxicol. 2013, 57, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Kupeli, E.; Tosun, A.; Yesilada, E. Assessment of anti-inflammatory and antinociceptive activities of Daphne pontica L. (Thymelaeaceae). J. Ethnopharmacol. 2007, 113, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Suntar, I.; Kupeli, A.E.; Keles, H.; Yesilada, E.; Sarker, S.D.; Arroo, R. Efficacy of Daphne oleoides subsp. kurdica used for wound healing, identification of active compounds through bioassay guided isolation technique. J. Ethnopharmacol. 2012, 141, 1058–1070. [Google Scholar] [CrossRef] [PubMed]
- Mansoor, F.; Anis, I.; Ali, S.; Choudhary, M.I.; Shah, M.R. New dimeric and trimeric coumarin glucosides from Daphne retusa Hemsl. Fitoterapia 2013, 88, 19–24. [Google Scholar] [CrossRef]
- Tundis, R.; Loizzo, M.R.; Bonesi, M.; Peruzzi, L.; Efferth, T. Daphne striata Tratt. and D. mezereum L.: A study of anti-proliferative activity towards human cancer cells and antioxidant properties. Nat. Prod. Res. 2019, 33, 1809–1812. [Google Scholar] [CrossRef]
- Tongur, T.; Erkan, N.; Ayranci, E. Investigation of the composition and antioxidant activity of acetone and methanol extracts of Daphne sericea L. and Daphne gnidioides L. J. Food Sci. Technol. 2018, 55, 1396–1406. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.-Y.; Chen, Y.-C.; Huang, S.-Z.; Kong, F.-D.; Zhou, L.-M.; Dai, H.-F.; Hua, Y.; Zhao, Y.-Z. Chemical constituents from the stems of Daphne holosericea (Diels) Hamaya. Chem. Biodivers. 2016, 13, 1469–1474. [Google Scholar] [CrossRef]
- Hajimehdipoor, H.; Ara, L.; Moazzeni, H.; Esmaeili, S. Evaluating the antioxidant and acetylcholinesterase inhibitory activities of some plants from Kohgiluyeh va Boyerahmad province, Iran. Res. J. Pharmacogn. 2016, 3, 1–7. [Google Scholar]
- Grisaru, D.; Sternfeld, M.; Eldor, A.; Glick, D.; Soreq, H. Structural roles of acetylcholinesterase variants in biology and pathology. Eur. J. Biochem. 1999, 264, 672–686. [Google Scholar] [CrossRef]
- Darvesh, S.; Hopkins, D.A.; Geula, C. Neurobiology of butyrylcholinesterase. Nat. Rev. Neurosci. 2003, 4, 131–138. [Google Scholar] [CrossRef] [PubMed]
D. laureola | DPPH Assay (IC50 μg/mL) | ABTS Assay (IC50 μg/mL) | FRAP Test 1 (μM Fe(II)/g) | β-Carotene Bleaching Test (IC50 μg/mL) | |
---|---|---|---|---|---|
30 min | 60 min | ||||
n-Hexane | 74.3 ± 1.8 **** | 47.4 ± 1.2 **** | 2.2 ± 0.5 **** | 42.9 ± 1.0 **** | 46.3 ± 1.4 **** |
Dichloromethane | 32.2 ± 0.9 **** | 18.3 ± 0.7 **** | 71.5 ± 2.1 | 8.5 ± 0.8 *** | 9.4 ± 0.4 **** |
Metanolo | 63.6 ± 1.2 **** | 22.5 ± 1.1 **** | 4.1 ± 0.8 **** | 6.6 ± 0.6 *** | 9.9 ± 0.7 **** |
Positive control | |||||
Ascorbic acid | 5.1 ± 0.8 | 1.1 ± 0.03 | |||
Propyl gallate | 1.2 ± 0.01 | 1.0 ± 0.01 | |||
BHT | 63.0 ± 4.1 |
D. laureola | AChE | BChE | SI (BChE/AChE) |
---|---|---|---|
n-Hexane | NA | 49.7 ± 2.1 **** | - |
Dichloromethane | 147.7 ± 4.4 **** | 106.1 ± 4.3 **** | 0.7 |
Methanol | 56.9 ± 2.2 **** | 199.4 ± 4.7 **** | 3.5 |
Positive control | |||
Physostigmine | 0.1 ± 0.01 | 0.2 ± 0.03 | 2.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tundis, R.; Cappello, A.R.; Bonesi, M.; Peruzzi, L.; Loizzo, M.R. Extracts of Different Polarity of Daphne laureola L. as Valuable Source of Antioxidant and Neuroprotective Compounds. Med. Sci. Forum 2021, 2, 19. https://doi.org/10.3390/CAHD2020-08560
Tundis R, Cappello AR, Bonesi M, Peruzzi L, Loizzo MR. Extracts of Different Polarity of Daphne laureola L. as Valuable Source of Antioxidant and Neuroprotective Compounds. Medical Sciences Forum. 2021; 2(1):19. https://doi.org/10.3390/CAHD2020-08560
Chicago/Turabian StyleTundis, Rosa, Anna Rita Cappello, Marco Bonesi, Lorenzo Peruzzi, and Monica Rosa Loizzo. 2021. "Extracts of Different Polarity of Daphne laureola L. as Valuable Source of Antioxidant and Neuroprotective Compounds" Medical Sciences Forum 2, no. 1: 19. https://doi.org/10.3390/CAHD2020-08560
APA StyleTundis, R., Cappello, A. R., Bonesi, M., Peruzzi, L., & Loizzo, M. R. (2021). Extracts of Different Polarity of Daphne laureola L. as Valuable Source of Antioxidant and Neuroprotective Compounds. Medical Sciences Forum, 2(1), 19. https://doi.org/10.3390/CAHD2020-08560