Evidence and Perspectives on the Use of Phlorotannins as Novel Antibiotics and Therapeutic Natural Molecules †
Abstract
:1. Introduction
- (i)
- fucols, with aryl-aryl linkages;
- (ii)
- phlorethols, with aryl-ether linkages;
- (iii)
- fucophlorethols, with aryl-aryl and aryl-ether units;
- (iv)
- fuhalols, with aryl-ether linkages and additional hydroxyl groups in every third ring;
- (v)
- carmalols, with a dibenzodioxin moiety and derived from phlorethols;
- (vi)
- eckols, which possess at least one three-ring moiety with a dibenzodioxin element substituted by a phenoxyl group at C-4.
2. Scientific Studies on Antimicrobial and Antiviral Effects of Phlorotannins
3. Discussion and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Antimicrobial Resistance Division Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report; WHO: Geneva, Switzerland, 2020; ISBN 9789240005587. [Google Scholar]
- Pérez, M.; Falqué, E.; Domínguez, H. Antimicrobial Action of Compounds from Marine Seaweed. Mar. Drugs 2016, 14, 52. [Google Scholar] [CrossRef] [PubMed]
- Bhowmick, S.; Mazumdar, A.; Moulick, A.; Adam, V. Algal Metabolites: An Inevitable Substitute for Antibiotics. Biotechnol. Adv. 2020, 43, 107571. [Google Scholar] [CrossRef]
- Silva, A.; Silva, S.A.; Lourenço-Lopes, C.; Jimenez-Lopez, C.; Carpena, M.; Gullón, P.; Fraga-Corral, M.; Domingues, V.F.; Fátima Barroso, M.; Simal-Gandara, J.; et al. Antibacterial Use of Macroalgae Compounds against Foodborne Pathogens. Antibiotics 2020, 9, 712. [Google Scholar] [CrossRef]
- Cassani, L.; Gomez-Zavaglia, A.; Jimenez-Lopez, C.; Lourenço-Lopes, C.; Prieto, M.A.; Simal-Gandara, J. Seaweed-Based Natural Ingredients: Stability of Phlorotannins during Extraction, Storage, Passage through the Gastrointestinal Tract and Potential Incorporation into Functional Foods. Food Res. Int. 2020, 137, 109676. [Google Scholar] [CrossRef] [PubMed]
- Erpel, F.; Mateos, R.; Pérez-Jiménez, J.; Pérez-Correa, J.R. Phlorotannins: From Isolation and Structural Characterization, to the Evaluation of Their Antidiabetic and Anticancer Potential. Food Res. Int. 2020, 137, 109589. [Google Scholar] [CrossRef] [PubMed]
- Meng, W.; Mu, T.; Sun, H.; Garcia-Vaquero, M. Phlorotannins: A Review of Extraction Methods, Structural Characteristics, Bioactivities, Bioavailability, and Future Trends. Algal Res. 2021, 60, 102484. [Google Scholar] [CrossRef]
- Tang, J.; Wang, W.; Chu, W. Antimicrobial and Anti-Quorum Sensing Activities of Phlorotannins From Seaweed (Hizikia Fusiforme). Front. Cell Infect. Microbiol. 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Food and Drug Administration. GRAS Notice No. GRN 000661; Centre for Food Safety & Applied Nutrition: College Park, MD, USA, 2017. [Google Scholar]
- EFSA Panel on Dietetic Products Nutrition and Allergies. Safety of Ecklonia Cava Phlorotannins as a Novel Food Pursuant to Regulation (EC) No 258/97. EFSA J. 2017, 15, 5003. [Google Scholar] [CrossRef]
- Nagayama, K.; Iwamura, Y.; Shibata, T.; Hirayama, I.; Nakamura, T. Bactericidal Activity of Phlorotannins from the Brown Alga Ecklonia Kurome. J. Antimicrob. Chemother. 2002, 50, 889–893. [Google Scholar] [CrossRef]
- Choi, J.-G.; Kang, O.; Brice, O.; Lee, Y.; Chae, H.; Oh, Y.-C.; Sohn, D.-H.; Park, H.; Choi, H.-G.; Kim, S.-G.; et al. Antibacterial Activity of Ecklonia Cava Against Methicillin-Resistant Staphylococcus Aureus and Salmonella Spp. Foodborne Pathog. Dis. 2010, 7, 435–441. [Google Scholar] [CrossRef]
- Lee, J.-H.; Eom, S.-H.; Lee, E.-H.; Jung, Y.-J.; Kim, H.-J.; Jo, M.-R.; Son, K.-T.; Lee, H.-J.; Kim, J.H.; Lee, M.-S.; et al. In Vitro Antibacterial and Synergistic Effect of Phlorotannins Isolated from Edible Brown Seaweed Eisenia Bicyclis against Acne-Related Bacteria. ALGAE 2014, 29, 47–55. [Google Scholar] [CrossRef]
- Kim, H.J.; Dasagrandhi, C.; Kim, S.H.; Kim, B.G.; Eom, S.H.; Kim, Y.M. In Vitro Antibacterial Activity of Phlorotannins from Edible Brown Algae, Eisenia Bicyclis Against Streptomycin-Resistant Listeria Monocytogenes. Indian J Microbiol. 2018, 58, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.M.; Doan, T.P.; Quy Ha, T.K.; Kim, H.W.; Lee, B.W.; Tung Pham, H.T.; Cho, T.O.; Oh, W.K. Dereplication by High-Performance Liquid Chromatography (HPLC) with Quadrupole-Time-of-Flight Mass Spectroscopy (QTOF-MS) and Antiviral Activities of Phlorotannins from Ecklonia Cava. Mar. Drugs 2019, 17, 149. [Google Scholar] [CrossRef]
- Karadeniz, F.; Kang, K.H.; Park, J.W.; Park, S.J.; Kim, S.K. Anti-HIV-1 Activity of Phlorotannin Derivative 8,4‴-Dieckol from Korean Brown Alga Ecklonia Cava. Biosci. Biotechnol. Biochem. 2014, 78, 1151–1158. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Liu, Q.; Xu, C.; Yu, J.; Zhao, L.; Guo, Q. Damage to the Membrane Permeability and Cell Death of Vibrio Parahaemolyticus Caused by Phlorotannins with Low Molecular Weight from Sargassum Thunbergii. J. Aquat. Food Prod. Technol. 2016, 25, 323–333. [Google Scholar] [CrossRef]
- Puspita, M.; Déniel, M.; Widowati, I.; Radjasa, O.K.; Douzenel, P.; Marty, C.; Vandanjon, L.; Bedoux, G.; Bourgougnon, N. Total Phenolic Content and Biological Activities of Enzymatic Extracts from Sargassum Muticum (Yendo) Fensholt. J. Appl. Phycol. 2017, 29, 2521–2537. [Google Scholar] [CrossRef] [PubMed]
- Ford, L.; Stratakos, A.C.; Theodoridou, K.; Dick, J.T.A.; Sheldrake, G.N.; Linton, M.; Corcionivoschi, N.; Walsh, P.J. Polyphenols from Brown Seaweeds as a Potential Antimicrobial Agent in Animal Feeds. ACS Omega 2020, 5, 9093–9103. [Google Scholar] [CrossRef]
- Heavisides, E.; Rouger, C.; Reichel, A.F.; Ulrich, C.; Wenzel-Storjohann, A.; Sebens, S.; Tasdemir, D. Seasonal Variations in the Metabolome and Bioactivity Profile of Fucus Vesiculosus Extracted by an Optimised, Pressurised Liquid Extraction Protocol. Mar. Drugs 2018, 16, 503. [Google Scholar] [CrossRef]
- Bogolitsyn, K.; Dobrodeeva, L.; Druzhinina, A.; Ovchinnikov, D.; Parshina, A.; Shulgina, E. Biological Activity of a Polyphenolic Complex of Arctic Brown Algae. J. Appl. Phycol. 2019, 31, 3341–3348. [Google Scholar] [CrossRef]
- Kim, M.S.; Oh, G.W.; Jang, Y.M.; Ko, S.C.; Park, W.S.; Choi, I.W.; Kim, Y.M.; Jung, W.K. Antimicrobial Hydrogels Based on PVA and Diphlorethohydroxycarmalol (DPHC) Derived from Brown Alga Ishige Okamurae: An in Vitro and in Vivo Study for Wound Dressing Application. Mater. Sci. Eng. C 2020, 107, 110352. [Google Scholar] [CrossRef]
- Yang, H.K.; Jung, M.H.; Avunje, S.; Nikapitiya, C.; Kang, S.Y.; Ryu, Y.B.; Lee, W.S.; Jung, S.J. Efficacy of Algal Ecklonia Cava Extract against Viral Hemorrhagic Septicemia Virus (VHSV). Fish Shellfish Immunol. 2018, 72, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Eom, S.H.; Lee, D.S.; Jung, Y.J.; Park, J.H.; Choi, J. Il; Yim, M.J.; Jeon, J.M.; Kim, H.W.; Son, K.T.; Je, J.Y.; et al. The Mechanism of Antibacterial Activity of Phlorofucofuroeckol-A against Methicillin-Resistant Staphylococcus Aureus. Appl. Microbiol. Biotechnol. 2014, 98, 9795–9804. [Google Scholar] [CrossRef] [PubMed]
- Eom, S.H.; Moon, S.Y.; Lee, D.S.; Kim, H.J.; Park, K.; Lee, E.W.; Kim, T.H.; Chung, Y.H.; Lee, M.S.; Kim, Y.M. In Vitro Antiviral Activity of Dieckol and Phlorofucofuroeckol-A Isolated from Edible Brown Alga Eisenia Bicyclis against Murine Norovirus. Algae 2015, 30, 241–246. [Google Scholar] [CrossRef]
- Lee, S.H.; Jeon, Y.J. Anti-Diabetic Effects of Brown Algae Derived Phlorotannins, Marine Polyphenols through Diverse Mechanisms. Fitoterapia 2013, 86, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Charoensiddhi, S.; Conlon, M.A.; Vuaran, M.S.; Franco, C.M.M.; Zhang, W. Polysaccharide and Phlorotannin-Enriched Extracts of the Brown Seaweed Ecklonia Radiata Influence Human Gut Microbiota and Fermentation in Vitro. J. Appl. Phycol. 2017, 29, 2407–2416. [Google Scholar] [CrossRef]
Algae Source | Compound/Extract | Microbial Strains | Main Findings | Ref. |
---|---|---|---|---|
Sargassum fusiforme | Commercial phlorotannin extract | Pseudomonas aeruginosa, Staphylococcus aureus, Vibrio parahaemolyticus, Aeromonas hydrophila | MIC = 97 mg/mL Reduction of P. aeruginosa virulence and biofilm formation at 6 mg/mL | [8] |
Sargassum thunbergii | PT extract | Vibrio parahaemolyticus | MIC = 0.9 mg/mL | [17] |
Sargassum muticum | PT extract | Pseodomonas aeruginosa, Escherichia coli, HSV-1 | 5 mg/mL extract achieved 43.7% inhibition in biofilm formation for P. aeruginosa and 64.3% for E. coli. EC50 (HSV-1) = 0.2 mg/mL | [18] |
Ascophyllum nodosum | PT extract | Salmonella agona, Streptococcus suis, Escherichia coli | MBC (E. coli, S. agona) = 3.1 mg/mL MBC (S. suis) = 1.56 mg/mL | [19] |
Fucus serratus | MBC (All) = 6.25 mg/mL | |||
Fucus vesiculosus | PT extract | MRSA | 100 μg/mL showed a 57.6% inhibition | [20] |
PT extract | Staphylococcus aureus, Streptococcus pneumoniae, Klebsiella pneumoniae, Pseudomonas aeruginosa | 20 pg/mL achieved an average 61.3% inhibition, which was higher for Gram+ | [21] | |
Ishige okamurae | Diphlorethohydroxycarmalol | Staphylococcus aureus, Pseudomonas aeruginosa | MBC (S. aureus) = 512 μg/m LMBC (P. aeruginosa) = 256 μg/mL | [22] |
Ecklonia cava | Dieckol, 8,8′-dieckol | MRSA, Bacillus cereus, Campylobacter jejuni, Escherichia coli, Streptococcus epidermidis, Salmonella typhimurium, Vibrio parahaemolyticus | MBC = 0-03-0.54 μmol/mL against all strains, being C. jejuni the most susceptible | [11] |
Phlorofucofuroeckol A | Human Influenza H1N1, A/PR/8/34, H9N2 | MIC = 13.48 μg/mL | [15] | |
Dieckol | HIV-1 | 37.1 μg/mL inhibited viral replication by 80% | [16] | |
Eckol | MRSA, Salmonella typhimurium, S. typhi, S. paratyphi, S. gallinarium, S. enteritidis | MIC = 250 μg/mL; synergy if combined with ampicillin (MIC = 150 μg/mL) | [12] | |
Eckol, phlorofucofuroeckol-A, PT extract | VHSV | EC50 (eckol) = 1.97 μg/mL EC50 (phlorofucofuroeckol-A) = 0.99 μg/mL EC50 (PT extract) = 4.76 μg/mL 1 mg/g bw daily oral administration increased survivability of fish by >40% | [23] | |
Eisenia bicyclis | Phlorofucofuroeckol-A | MRSA | MIC = 16 μg/mL; down-regulation of PBP2a conferring MR | [24] |
Phlorofucofuroeckol-A, fucofuroeckol-A, dioxinodehydroeckol | Propionibacterium acnes, Staphylococcus aureus, Streptococcus epidermidis, Pseudomonas aeruginosa | MIC = 126 μg/mL, synergistic bactericidal activity in combination with tetracycline | [13] | |
Phlorofucofuroeckol-A, dieckol | Murine norovirus | MIC = 0.9 μg/mL; Phlorofucofuroeckol-A showed a higher selectivity index | [25] | |
Fucofuroeckol-A | Streptomycin-R Listeria monocytogenes | MIC = 16 μg/mL | [14] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Echave, J.; Lourenço-Lopes, C.; Cassani, L.; Fraga-Corral, M.; Garcia-Perez, P.; Otero, P.; Carreira-Casais, A.; Perez-Gregorio, R.; Baamonde, S.; Saa, F.F.; et al. Evidence and Perspectives on the Use of Phlorotannins as Novel Antibiotics and Therapeutic Natural Molecules. Med. Sci. Forum 2022, 12, 43. https://doi.org/10.3390/eca2022-12728
Echave J, Lourenço-Lopes C, Cassani L, Fraga-Corral M, Garcia-Perez P, Otero P, Carreira-Casais A, Perez-Gregorio R, Baamonde S, Saa FF, et al. Evidence and Perspectives on the Use of Phlorotannins as Novel Antibiotics and Therapeutic Natural Molecules. Medical Sciences Forum. 2022; 12(1):43. https://doi.org/10.3390/eca2022-12728
Chicago/Turabian StyleEchave, Javier, Catarina Lourenço-Lopes, Lucia Cassani, Maria Fraga-Corral, Pascual Garcia-Perez, Paz Otero, Anxo Carreira-Casais, Rosa Perez-Gregorio, Sergio Baamonde, Fermín Fernández Saa, and et al. 2022. "Evidence and Perspectives on the Use of Phlorotannins as Novel Antibiotics and Therapeutic Natural Molecules" Medical Sciences Forum 12, no. 1: 43. https://doi.org/10.3390/eca2022-12728