Potential Antibacterial Action of α-Pinene †
Abstract
:1. Introduction
2. Methodology
2.1. Study
2.2. Inclusion and Exclusion Criteria
2.3. Selection and Analysis of Studies
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pereira, A.L.; Pita, J.R. Alexander Fleming (1881–1955): Da descoberta da penicilina (1928) ao Prémio Nobel (1945). Rev. Da Fac. De Let. Porto Real 2018, 6, 129–151. [Google Scholar]
- Frieri, M.; Kumar, K.; Boutin, A. Antibiotic resistance. J. Infect. Public Health 2017, 10, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Ložienė, K.; Švedienė, J.; Paškevičius, A.; Raudonienė, V.; Sytar, O.; Kosyan, A. Influence of plant origin natural α-pinene with different enantiomeric composition on bacteria, yeasts and fungi. Fitoterapia 2018, 127, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Allenspach, M.; Steuer, C. α-Pinene: A never-ending story. Phytochemistry 2021, 190, 112857. [Google Scholar] [CrossRef] [PubMed]
- Sieniawska, E.; Swatko-Ossor, M.; Sawicki, R.; Skalicka-Woźniak, K.; Ginalska, G. Natural Terpenes Influence the Activity of Antibiotics against Isolated Mycobacterium tuberculosis. Med. Princ Pract. 2017, 26, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Solomons, T.W.; Graham, F.C.B.; Snyder, S.A. Organic Chemistry, 12th ed.; Wiley: Hoboken, NJ, USA, 2016; p. 1021. ISBN 978-1-118-87576-6. [Google Scholar]
- Wang, C.Y.; Chen, Y.W.; Hou, C.-Y. Antioxidant and antibacterial activity of seven predominant terpenoids. Int. J. Food Prop. 2019, 22, 230–238. [Google Scholar] [CrossRef]
- Sousa Eduardo, L.; Farias, T.C.; Ferreira, S.B.; Ferreira, P.B.; Lima, Z.N.; Ferreira, S.B. Antibacterial Activity and Time-kill Kinetics of Positive Enantiomer of α-pinene Against Strains of Staphylococcus aureus and Escherichia coli. Curr. Top. Med. Chem. 2018, 18, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Shih, M.K.; Lai, Y.H.; Lin, C.M.; Chen, Y.W.; Hou, Z.T.; Hou, C.Y. A novel application of terpene compound α-pinene for alternative use of sulfur dioxide-free white wine. Int. J. Food Prop. 2020, 23, 520–532. [Google Scholar] [CrossRef]
- Araújo, A.C.J.; Freitas, P.R.; Dos Santos Barbosa, C.R.; Muniz, D.F.; de Almeida, R.S.; Alencar de Menezes, I.R. In Vitro and In Silico Inhibition of Staphylococcus aureus Efflux Pump NorA by α-Pinene and Limonene. Curr. Microbiol. 2021, 78, 3388–3393. [Google Scholar] [CrossRef] [PubMed]
- Šimunović, K.; Sahin, O.; Kovač, J.; Shen, Z.; Klančnik, A.; Zhang, Q.; Možina, S.S. (-)-α-Pinene reduces quorum sensing and Campylobacter jejuni colonization in broiler chickens. PLoS ONE 2020, 15, e0230423. [Google Scholar] [CrossRef] [PubMed]
- Melkina, O.E.; Plyuta, V.A.; Khmel, I.A.; Zavilgelsky, G.B. The Mode of Action of Cyclic Monoterpenes (-)-Limoneneand (+)-α-Pinene on Bacterial Cells. Biomolecules 2021, 11, 806. [Google Scholar] [CrossRef] [PubMed]
- Memariani, Z.; Sharifzadeh, M.; Bozorgi, M.; Hajimahmoodi, M.; Farzaei, M.H.; Gholami, M.; Siavoshi, F.; Saniee, P. Protective effect of essential oil of Pistacia atlantica Desf. on peptic ulcer: Role of α-pinene. J. Tradit. Chin. Med. 2017, 37, 57–63. [Google Scholar] [CrossRef]
- Kovač, J.; Šimunović, K.; Wu, Z.; Klančnik, A.; Bucar, F.; Zhang, Q.; Možina, S.S. Antibiotic resistance modulation and modes of action of (-)-α-pinene in Campylobacter jejuni. PLoS ONE 2015, 10, e0122871. [Google Scholar] [CrossRef] [PubMed]
- Leite-Sampaio, N.F.; Gondim, C.N.F.L.; de Souza, C.E.S.; Coutinho, H.D.M. Antibiotic potentiating action of α-PINENE and borneol against EPEC and ETEC sorotypes. Microb. Pathog. 2022, 162, 105371. [Google Scholar] [CrossRef] [PubMed]
- Amaral, F.L.E.; Farias, T.C.; Brito, R.C.; Melo, T.R.; Ferreira, P.B.; Lima, Z.N.; Silva, F.F.M.; Ferreira, S.B. Effect of the Association and Evaluation of the Induction to Adaptation of the (+)-α-pinene with Commercial Antimicrobials against Strains of Escherichia coli. Curr. Top. Med. Chem. 2020, 20, 2300–2307. [Google Scholar] [CrossRef] [PubMed]
Author (Year) | Bacterial Strains | Type of Test Used | Sensitivity to A-Pinene | Active Concentrations |
---|---|---|---|---|
Ložienė et al. (2018) | S. aureus ATCC 29213 * | Microdilution in broth | Positive | - |
E. coli ATCC 25922 ** | ||||
Leite-Sampaio et al. (2022) | E. coli, EPEC e ETEC ** | Microdilution in broth | Weak or none | MIC ≥ 1024 μg/mL for (+)-α-pinene + sulfamethoxazole + trimethoprine |
Sieniawska et al. (2017) | M. tuberculosis *** | Serial dilution | Positive Negative | MIC = 0.475 µg/mL for α-pinene + rifampicin MIC = 16 to 125 µg/mL for α -pinene + ethambutol; MIC = 32 to 125 µg/mL α-pinene + isoniazid |
Shih et al. (2020) | Nonspecific | Standard total plate count | Positive | MIC = 0.03125 g/100 mL, 0.0625 g/100 mL e 0.125 g/100 mL |
Wang, Chen e Hou (2019) | E. coli ** S. enterica ** S. aureus * | Dilution in agar with minor modifications | Positive | MIC = 0.686 mg/mL MIC = 0.686 mg/mL MIC = 0.420 mg/mL |
Araújo et al. (2021) | S. aureus 1199 * | Serial dilution | Negative | MIC = between 20 and 40 μg/mL for α-pinene + ethidium bromide; between 50 and 75 μg/mL for α-pinene + norfloxacin |
Melkina et al. (2021) | E. coli K12 MG1655, JW3914-1, JW3933-3, QC868 e QC871 ** | Agar diffusion | Weak to ≤5 mg (≤6 µL) (+)-α-Pinene | - |
Šimunović et al. (2020) | C. jejuni NCTC 11168 ** | Microdilution in broth | Weak | Overall MIC for (-)-α-pinene alone = 2000 mg/mL |
Eduardo et al. (2018) | E. coli ATCC (25922) ** S. aureus ATCC 25923 * | Disk diffusion, broth microdilution and bacterial killing kinetics | Positive | Inhibition halos = 12 mm at a concentration of 160 µL/mL Inhibition halos = 11 mm at a concentration of 160 µL/mL |
Amaral et al. (2020) | E. coli ATCC 25922 ** | Broth microdilution and modified disk diffusion | Positive in synergism with other antibiotics | Inhibition halos for (+)-α-pinene = 13 mm at a concentration of 160 µL/mL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borges, M.F.d.A.; Lacerda, R.d.S.; Correia, J.P.d.A.; de Melo, T.R.; Ferreira, S.B. Potential Antibacterial Action of α-Pinene. Med. Sci. Forum 2022, 12, 11. https://doi.org/10.3390/eca2022-12709
Borges MFdA, Lacerda RdS, Correia JPdA, de Melo TR, Ferreira SB. Potential Antibacterial Action of α-Pinene. Medical Sciences Forum. 2022; 12(1):11. https://doi.org/10.3390/eca2022-12709
Chicago/Turabian StyleBorges, Mirla Fontes de Araújo, Roosveni de Sousa Lacerda, Jásny Pintor de Assis Correia, Thamara Rodrigues de Melo, and Sávio Benvindo Ferreira. 2022. "Potential Antibacterial Action of α-Pinene" Medical Sciences Forum 12, no. 1: 11. https://doi.org/10.3390/eca2022-12709
APA StyleBorges, M. F. d. A., Lacerda, R. d. S., Correia, J. P. d. A., de Melo, T. R., & Ferreira, S. B. (2022). Potential Antibacterial Action of α-Pinene. Medical Sciences Forum, 12(1), 11. https://doi.org/10.3390/eca2022-12709