The Growth Curve Method to Rapidly Derive the Antibacterial Potential of Polyoxovanadates †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Polyoxovanadates, Bacteria and Culture Medium
2.2. Minimum Inhibitory Concentrations Determination
2.3. Bacterial Growth Monitoring
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aureliano, M.; Marques-da-Silva, D.; Serrano, A.; Martins, J.; Faleiro, L.; Fonseca, C.; Fraqueza, G.; Lagoa, R. Polyoxometalates with anticancer, antibacterial and antiviral activities. In Polyoxometalates: Advances, Properties, and Applications, 1st ed.; Jenny Stanford Publishing: United Square, Singapore, 2022; in press. [Google Scholar]
- Marques-Da-Silva, D.; Fraqueza, G.; Lagoa, R.; Vannathan, A.A.; Mal, S.S.; Aureliano, M. Polyoxovanadate inhibition of: Escherichia coli growth shows a reverse correlation with Ca2+-ATPase inhibition. New J. Chem. 2019, 43, 17577–17587. [Google Scholar] [CrossRef]
- Sun, W.; Weingarten, R.A.; Xu, M.; Southall, N.; Dai, S.; Shinn, P.; Sanderson, P.E.; Williamson, P.R.; Frank, K.M.; Zheng, W. Rapid antimicrobial susceptibility test for identification of new therapeutics and drug combinations against multidrug-resistant bacteria. Emerg. Microbes Infect. 2016, 5, e116. [Google Scholar] [CrossRef] [PubMed]
- Chakansin, C.; Yostaworakul, J.; Warin, C.; Kulthong, K.; Boonrungsiman, S. Resazurin rapid screening for antibacterial activities of organic and inorganic nanoparticles: Potential, limitations and precautions. Anal. Biochem. 2022, 637, 114449. [Google Scholar] [CrossRef] [PubMed]
- Missina, J.M.; Leme, L.B.; Postal, K.; Santana, F.S.; Hughes, D.L.; De Sá, E.L.; Ribeiro, R.R.; Nunes, G.G. Accessing decavanadate chemistry with tris(hydroxymethyl)aminomethane, and evaluation of methylene blue bleaching. Polyhedron 2020, 180, 114414. [Google Scholar] [CrossRef]
- Aureliano, M.; Gumerova, N.I.; Sciortino, G.; Garribba, E.; Rompel, A.; Crans, D.C. Polyoxovanadates with emerging biomedical activities. Coord. Chem. Rev. 2021, 447, 214143. [Google Scholar] [CrossRef]
- Aureliano, M.; Gumerova, N.I.; Sciortino, G.; Garribba, E.; McLauchlan, C.C.; Rompel, A.; Crans, D.C. Polyoxidovanadates’ interactions with proteins: An overview. Coord. Chem. Rev. 2022, 454, 214344. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques-da-Silva, D.; Mal, S.S.; Aureliano, M.; Lagoa, R. The Growth Curve Method to Rapidly Derive the Antibacterial Potential of Polyoxovanadates. Med. Sci. Forum 2022, 11, 2. https://doi.org/10.3390/BiTaP-12790
Marques-da-Silva D, Mal SS, Aureliano M, Lagoa R. The Growth Curve Method to Rapidly Derive the Antibacterial Potential of Polyoxovanadates. Medical Sciences Forum. 2022; 11(1):2. https://doi.org/10.3390/BiTaP-12790
Chicago/Turabian StyleMarques-da-Silva, Dorinda, Sib Sankar Mal, Manuel Aureliano, and Ricardo Lagoa. 2022. "The Growth Curve Method to Rapidly Derive the Antibacterial Potential of Polyoxovanadates" Medical Sciences Forum 11, no. 1: 2. https://doi.org/10.3390/BiTaP-12790