The Bound of the Non-Commutative Parameter Based on Gravitational Measurements †
Abstract
:1. Introduction
2. Non-Commutative Corrections for the Schwarzschild Black Hole
3. Experimental Test of GR in NC Spacetime
3.1. Gravitational Periastron Advance
3.2. Deflection of Light
3.3. Gravitational Red Shift
3.4. Time Delay (Shapiro Effect)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ryder, L. Introduction to General Relativity, 1st ed; Cambridge University Press: New York, NY, USA, 2009; pp. 154–169. [Google Scholar]
- Shapiro, I.I. Fourth test of general relativity. Phys. Rev. Lett. 1964, 13, 789–791. [Google Scholar] [CrossRef]
- Kazakov, D.I.; Solodukhin, S.N. On quantum deformation of the Schwarzschild solution. Nucl. Phys. B 1994, 429, 153–176. [Google Scholar] [CrossRef]
- Romero, J.M.; Vergara, J.D. The kepler problem and noncommutativity. Mod. Phys. Lett. A 2003, 18, 1673–1680. [Google Scholar] [CrossRef]
- Mirza, B.; Dehghani, M. Noncommutative geometry and classical orbits of particles in a central force potential. Commun. Theor. Phys 2004, 42, 183. [Google Scholar] [CrossRef]
- Nicolini, P. A model of radiating black hole in noncommutative geometry. J. Phys. A Math. Gen. 2005, 38, L631. [Google Scholar] [CrossRef]
- Nicolini, P.; Smailagic, A.; Spallucci, E. Noncommutative geometry inspired schwarzschild black hole. Phys. Lett. B 2006, 632, 547–551. [Google Scholar] [CrossRef]
- Alavi, S.A. Reissner-nordstrom black hole in noncommutative spaces. Acta Phys. Pol. B 2009, 40, 2679–2687. [Google Scholar]
- Kim, W.; Lee, D. Bound of noncommutativity parameter based on black hole entropy. Mod. Phys. Lett. A 2010, 25, 3213–3218. [Google Scholar] [CrossRef]
- Ghosh, S. Quantum Gravity Effects in Geodesic Motion and Predictions of Equivalence Principle Violation. Class. Quantum Gravity 2013, 31, 025025. [Google Scholar] [CrossRef]
- Ulhoa, S.C.; Amorim, R.G.G.; Santos, A.F. On non-commutative geodesic motion. Gen. Relativ. Gravit. 2014, 46, 1760. [Google Scholar] [CrossRef]
- Joby, P.K.; Chingangbam, P.; Das, S. Constraint on noncommutative spacetime from planck data. Phy. Rev. D 2015, 91, 083503. [Google Scholar] [CrossRef]
- Deng, X.M. Solar System and stellar tests of noncommutative spectral geometry. Eur. Phys. J. Plus 2017, 132, 85. [Google Scholar] [CrossRef]
- Deng, X.M. Solar system and binary pulsars tests of the minimal momentum uncertainty principle. Europhys. Lett. 2018, 120, 060004. [Google Scholar] [CrossRef]
- Kanazawa, T.; Lambiase, G.; Vilasi, G.; Yoshioka, A. Noncommutative Schwarzschild geometry and generalized uncertainty principle. Eur. Phys. J. C 2019, 79, 95. [Google Scholar] [CrossRef]
- Karimabadi, M.; Alavi, S.A.; Yekta, D.M. Non-commutative effects on gravitational measurements. Class. Quantum Gravity 2020, 37, 085009. [Google Scholar] [CrossRef]
- Linares, R.; Maceda, M.; Sánchez-Santos, O. Thermodynamical properties of a noncommutativeanti–deSitter–Einstein-Born- Infeld spacetime from gauge theory of gravity. Phys. Rev. D 2020, 101, 044008. [Google Scholar] [CrossRef]
- Deng, X.M. Geodesics and periodic orbits around quantum-corrected black holes. Phys. Dark Universe 2020, 30, 100629. [Google Scholar] [CrossRef]
- Zaim, S.; Rezki, H. Thermodynamic properties of a yukawa–schwarzschild black hole in noncommutative gauge gravity. Gravit. Cosmol. 2020, 26, 200–207. [Google Scholar] [CrossRef]
- Line, H.L.; Deng, X.M. Rational orbits around 4D Einstein–Lovelock black holes. Phys. Dark Universe 2021, 31, 100745. [Google Scholar] [CrossRef]
- Touati, A.; Zaim, S. Geodesic equation in non-commutative gauge theory of gravity. Chin. Phys. C 2022, 46, 105101. [Google Scholar] [CrossRef]
- Seiberg, N.; Witten, E. String theory and noncommutative geometry. J. High Energy Phys. 1999, 1999, 032. [Google Scholar] [CrossRef]
- Chamseddine, A.H. Deforming einstein’s gravity. Phys. Lett. B 2001, 504, 33–37. [Google Scholar] [CrossRef]
- Adkins, G.S.; McDonnell, J. Orbital precession due to central-force perturbations. Phys. Rev. D 2007, 75, 082001. [Google Scholar] [CrossRef]
- Nyambuya, G.G. Azimuthally symmetric theory of gravitation—I. on the perihelion precession of planetary orbits. Mon. Not. R. Astron. Soc. 2010, 403, 1381–1391. [Google Scholar]
- Nyambuya, G.G. Azimuthally symmetric theory of gravitation—II. On the perihelion precession of solar planetary orbits. Mon. Not. R. Astron. Soc. 2015, 451, 3034–3043. [Google Scholar]
- Fomalont, E.; Kopeikin, S. Progress in measurements of the gravitational bending of radio waves using the VLBA. Astrophys. J. 2009, 699, 1395. [Google Scholar] [CrossRef]
- Müller, H.; Peters, A.; Chu, S. A precision measurement of the gravitational redshift by the interference of matter waves. Nature 2010, 463, 926–929. [Google Scholar] [CrossRef]
- Bertotti, B.; Iess, L.; Tortora, P. A test of general relativity using radio links with the Cassini spacecraft. Nature 2003, 425, 374–376. [Google Scholar] [CrossRef]
- Touati, A.; Zaim, S. Thermodynamic Properties of Schwarzschild Black Hole in Non-Commutative Gauge Theory of Gravity. arXiv 2022, arXiv:2204.01901. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Touati, A.; Zaim, S. The Bound of the Non-Commutative Parameter Based on Gravitational Measurements. Phys. Sci. Forum 2023, 7, 54. https://doi.org/10.3390/ECU2023-14061
Touati A, Zaim S. The Bound of the Non-Commutative Parameter Based on Gravitational Measurements. Physical Sciences Forum. 2023; 7(1):54. https://doi.org/10.3390/ECU2023-14061
Chicago/Turabian StyleTouati, Abdellah, and Slimane Zaim. 2023. "The Bound of the Non-Commutative Parameter Based on Gravitational Measurements" Physical Sciences Forum 7, no. 1: 54. https://doi.org/10.3390/ECU2023-14061
APA StyleTouati, A., & Zaim, S. (2023). The Bound of the Non-Commutative Parameter Based on Gravitational Measurements. Physical Sciences Forum, 7(1), 54. https://doi.org/10.3390/ECU2023-14061