Reconstruction, Analysis and Constraints of Cosmological Scalar Field ϕCDM Models †
Abstract
:1. Introduction
2. Methods
- Ratra–Peebles potential: [7]
- Ferreira–Joyce potential: [16]
- Zlatev–Wang–Steinhardt potential: [17]
- Sugra potential: [18]
- Sahni–Wang potential: [19]
- Barreiro–Copeland–Nunes potential: [20]
- Albrecht–Skordis potential: 0 [21]
- Urena–Lopez–Matos potential: [22]
- Inverse exponent potential: [23]
- Chang–Scherrer potential: [24]
- Fifth power potential: [25]
- Inverse square potential: [25]
- Exponent potential: [25]
- Quadratic potential: [26]
- Gaussian potential: [26]
- Pseudo-Nambu-Goldstone boson potential: [27]
- Inverse hyperbolic cosine potential: [28]
- The normalized Hubble parameter for the spatially flat universe
- The angular diameter distance for the spatially flat universe
- The combination of the growth rate of the matter density fluctuations and the matter power spectrum amplitude for each CDM and ΛCDM model.
- Our variances correspond to the predicted variances for DESI observations in the redshift range .
- The transition between the matter and dark energy equality () happened relatively recently
- The growth rate of the matter density fluctuations and fractional matter density are parameterized by Linder -parametrization Equation (10);
- The EoS parameter predicted by the different dark energy models should be in agreement with the expected EoS parameter value in the present epoch (for phantom models, ; for the quintessence models, , taking into account that for the freezing type, , and for the thawing type, ).
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiattia, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E. Measurements of Omega and Lambda from 42 high redshift supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Frieman, J.; Turner, M.; Huterer, D. Dark Energy and the Accelerating Universe. Ann. Rev. Astron. Astrophys. 2008, 46, 385–432. [Google Scholar] [CrossRef]
- Einstein, A. On the General Theory of Relativity. Sitzungsber. Preuss. Akad. Wiss. Berlin. (Math. Phys.) 1915, 1915, 778–786. [Google Scholar]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar]
- Valentino, E.D. Challenges of the Standard Cosmological Model. Universe 2022, 8, 399. [Google Scholar] [CrossRef]
- Ratra, B.; Peebles, P.J.E. Cosmological Consequences of a Rolling Homogeneous Scalar Field. Astrophys. J. 1988, 325, L17–L20. [Google Scholar] [CrossRef] [PubMed]
- Wetterich, C. Cosmologies with variable Newton’s constant. Nucl. Phys. B 1988, 302, 645–667. [Google Scholar] [CrossRef]
- Peebles, P.J.E.; Ratra, B. The Cosmological constant and dark energy. Rev. Mod. Phys. 2003, 75, 559. [Google Scholar] [CrossRef]
- Caldwell, R.R. A Phantom menace? Phys. Lett. B 2002, 545, 23. [Google Scholar] [CrossRef]
- Frampton, P.H.; Ludwick, K.J.; Scherrer, R.J. Pseudo-rip: Cosmological models intermediate between the cosmological constant and the little rip. Phys. Rev. D 2011, 84, 063003. [Google Scholar] [CrossRef]
- Levi, M.; Bebek, C.; Beers, T.; Blum, R.; Cahn, R.; Eisenstein, D.; Flaugher, B.; Honscheid, K.; Kron, R.; Lahav, O.; et al. The DESI Experiment, a whitepaper for Snowmass 2013. arXiv 2013, arXiv:1308.0847. [Google Scholar]
- Aghamousa, A.; Aguilar, J.; Ahlen, S.; Alam, S.; Allen, L.E.; Prieto, C.A.; Annis, J.; Bailey, S.; Balland, C.; Ballester, O.; et al. The DESI Experiment Part I: Science, Targeting, and Survey Design. arXiv 2016, arXiv:1611.00036. [Google Scholar]
- Chevallier, M.; Polarski, D. Accelerating universes with scaling dark matter. Int. J. Mod. Phys. D 2001, 10, 213. [Google Scholar] [CrossRef]
- Linder, E.V. Exploring the expansion history of the universe. Phys. Rev. Lett. 2003, 90, 091301. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, P.G.; Joyce, M. Cosmology with a primordial scaling field. Phys. Rev. D 1998, 58, 023503. [Google Scholar] [CrossRef]
- Zlatev, I.; Wang, L.M.; Steinhardt, P.J. Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett. 1999, 82, 896. [Google Scholar] [CrossRef]
- Brax, P.; Martin, J. Quintessence model building. Phys. Lett. B 1999, 468, 40. [Google Scholar] [CrossRef]
- Sahni, V.; Wang, L.M. A new cosmological model of quintessence and dark matter. Phys. Rev. D 2000, 62, 103517. [Google Scholar] [CrossRef]
- Barreiro, T.; Copeland, E.J.; Nunes, N.J. Quintessence arising from exponential potentials. Phys. Rev. D 2000, 61, 127301. [Google Scholar] [CrossRef]
- Albrecht, A.; Skordis, C. Phenomenology of a realistic accelerating universe using only Planck scale physics. Phys. Rev. Lett. 2000, 84, 2076. [Google Scholar] [CrossRef] [PubMed]
- Urena-Lopez, L.A.; Matos, T. A new cosmological tracker solution for quintessence. Phys. Rev. D 2000, 62, 081302. [Google Scholar] [CrossRef]
- Caldwell, R.R.; Linder, E.V. The limits of quintessence. Phys. Rev. Lett. 2005, 95, 141301. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.Y.; Scherrer, R.J. Reviving Quintessence with an Exponential Potential. arXiv 2016, arXiv:1608.03291. [Google Scholar]
- Scherrer, R.J.; Sen, A.A. Phantom Dark Energy Models with a Nearly Flat Potential. Phys. Rev. D 2008, 78, 067303. [Google Scholar] [CrossRef]
- Dutta, S.; Scherrer, R.J. Dark Energy from a Phantom Field Near a Local Potential Minimum. Phys. Lett. B 2009, 676, 12. [Google Scholar] [CrossRef]
- Frieman, J.A.; Hill, C.T.; Stebbins, A.; Waga, I. Cosmology with ultralight pseudo Nambu-Goldstone bosons. Phys. Rev. Lett. 1995, 75, 2077. [Google Scholar] [CrossRef]
- Rakhi, R.; Indulekha, K. Dark Energy and Tracker Solution: A Review. arXiv 2009, arXiv:0910.5406. [Google Scholar]
- Font-Ribera, A.; McDonald, P.; Mostek, N.; Reid, B.A.; Seo, H.J.; Slosar, A. DESI and other dark energy experiments in the era of neutrino mass measurements. J. Cosmol. Astropart. Phys. 2014, 1405, 023. [Google Scholar] [CrossRef]
- Wang, L.M.; Steinhardt, P.J. Cluster abundance constraints on quintessence models. Astrophys. J. 1998, 508, 483. [Google Scholar] [CrossRef]
- Linder, E.V.; Cahn, R.N. Parameterized Beyond-Einstein Growth. Astropart. Phys. 2007, 28, 481. [Google Scholar] [CrossRef]
- Pace, F.; Waizmann, J.-C.; Bartelmann, M. Spherical collapse model in dark-energy cosmologies. Mon. Not. R. Astron. Soc. 2010, 406, 1865. [Google Scholar] [CrossRef]
- Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 2016, 594, A13. [Google Scholar]
- Akaike, H. A new look at the statistical model identification. IEEE Transl. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Schwarz, G.H. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
Phantom Potential | AIC | BIC | Bayes Factor |
---|---|---|---|
10 | 18.7 | 0.0921 | |
10 | 18.7 | 0.0142 | |
22.4 | 12 | 0.0024 | |
10 | 18.7 | 0.0808 | |
12 | 22.4 | 0.0113 | |
12 | 22.4 | 0.0061 | |
12 | 22.4 | 0.0056 |
Quintessence Potential | AIC | BIC | Bayes Factor |
---|---|---|---|
10 | 18.7 | 0.5293 | |
12 | 22.4 | 0.0059 | |
10 | 18.7 | 0.0067 | |
14 | 26.2 | 0.0016 | |
14 | 26.2 | 0.0012 | |
14 | 26.2 | 0.0053 | |
16 | 29.9 | 0.0034 | |
14 | 26.2 | 0.0014 | |
10 | 18.7 | 0.0077 | |
12 | 22.4 | 0.0024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avsajanishvili, O.; Samushia, L. Reconstruction, Analysis and Constraints of Cosmological Scalar Field ϕCDM Models. Phys. Sci. Forum 2023, 7, 26. https://doi.org/10.3390/ECU2023-14060
Avsajanishvili O, Samushia L. Reconstruction, Analysis and Constraints of Cosmological Scalar Field ϕCDM Models. Physical Sciences Forum. 2023; 7(1):26. https://doi.org/10.3390/ECU2023-14060
Chicago/Turabian StyleAvsajanishvili, Olga, and Lado Samushia. 2023. "Reconstruction, Analysis and Constraints of Cosmological Scalar Field ϕCDM Models" Physical Sciences Forum 7, no. 1: 26. https://doi.org/10.3390/ECU2023-14060
APA StyleAvsajanishvili, O., & Samushia, L. (2023). Reconstruction, Analysis and Constraints of Cosmological Scalar Field ϕCDM Models. Physical Sciences Forum, 7(1), 26. https://doi.org/10.3390/ECU2023-14060