Introduction to a “Radical” Working Hypothesis about a Hemisphere-Scale Impact on Dione (Saturn) †
Abstract
:1. Introduction
2. Data and Methods
2.1. Calculations Supporting the Estimation of the Primary Impactor and Secondary Crater Size
2.1.1. Scenarios of the Secondary Crater Formation
2.2. The Studied Location and the Crater Distribution Map
3. Results and Discussion
3.1. Simulation of Secondary Crater Formation
3.2. Distribution Patterns of Various Crater Classes
3.3. Surface Renewal Model for the Studied Intermediate Cratered Terrain
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kirchoff, M.R.; Schenk, P. Dione’s resurfacing history as determined from a global impact crater database. Icarus 2015, 256, 78–89. [Google Scholar] [CrossRef]
- Kirchoff, M.R.; Schenk, P. Crater modification and geologic activity in Enceladus’ heavily cratered plains: Evidence from the impact crater distribution. Icarus 2009, 202, 656–668. [Google Scholar] [CrossRef]
- Schenk, P.; Hamilton, D.P.; Johnson, R.E.; McKinnon, W.B.; Paranicas, C.; Schmidt, J.; Showalter, M.R. Plasma, plumes and rings: Saturn system dynamics as recorded in global color patterns on its midsize icy satellites. Icarus 2011, 211, 740–757. [Google Scholar] [CrossRef]
- Segatz, M.; Spohn, T.; Ross, M.; Schubert, G. Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io. Icarus 1988, 75, 187–206. [Google Scholar] [CrossRef]
- Chen, E.M.A.; Nimmo, F. Implications from Ithaca Chasma for the thermal and orbital history of Tethys. Geophys. Res. Lett. 2008, 35, L19203. [Google Scholar] [CrossRef] [Green Version]
- Meyer, J.; Wisdom, J. Tidal evolution of Mimas, Enceladus, and Dione. Icarus 2008, 193, 213–223. [Google Scholar] [CrossRef]
- Zhang, K.; Nimmo, F. Recent orbital evolution and the internal structures of Enceladus and Dione. Icarus 2009, 204, 597–609. [Google Scholar] [CrossRef]
- Hammond, N.; Phillips, C.; Nimmo, F.; Kattenhorn, S. Flexure on Dione: Investigating subsurface structure and thermal history. Icarus 2013, 223, 418–422. [Google Scholar] [CrossRef]
- Alvarellos, J.L.; Zahnle, K.J.; Dobrovolskis, A.R.; Hamill, P. Fates of satellite ejecta in the Saturn system. Icarus 2005, 178, 104–123. [Google Scholar] [CrossRef]
- Alvarellos, J.L.; Dobrovolskis, A.R.; Zahnle, K.J.; Hamill, P.; Dones, L.; Robbins, S. Fates of satellite ejecta in the Saturn system, II. Icarus 2017, 284, 70–89. [Google Scholar] [CrossRef]
- Mileikowsky, C.; Cucinotta, F.A.; Wilson, J.W.; Gladman, B.; Horneck, G.; Lindegren, L.; Melosh, J.; Rickman, H.; Valtonen, M.; Zheng, J.Q. Natural Transfer of Viable Microbes in Space: 1. From Mars to Earth and Earth to Mars. Icarus 2000, 145, 391–427. [Google Scholar] [CrossRef] [PubMed]
- Melosh, H. Impact ejection, spallation, and the origin of meteorites. Icarus 1984, 59, 234–260. [Google Scholar] [CrossRef]
- Farinella, P.; Davis, D.R. Collision rates and impact velocities in the main asteroid belt. Icarus 1992, 97, 111–123. [Google Scholar] [CrossRef]
- Elbeshausen, D.; Wünnemann, K.; Collins, G.S. The transition from circular to elliptical impact craters. J. Geophys. Res. Planets 2013, 118, 2295–2309. [Google Scholar] [CrossRef]
- Batson, R. Voyager 1 and 2 Atlas of Six Saturnian Satellites (NASA-SP-474). Available online: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19840027171.pdf (accessed on 14 February 2023).
- Greely, R.; Batson, R. Planetary Mapping. Cambridge University Press: New York, NY, USA, 2007; 312p, ISBN 0-521-30774-0. [Google Scholar]
- Roatsch, T.; Kersten, E.; Matz, K.D.; Scholten, F.; Wagner, R.; Porco, C. Cartography of the Medium-Sized Saturnian Satellites Based on Cassini-ISS Images. Presented at the Enceladus and the Icy Moons of Saturn Conference, Boulder, CO, USA, 26–29 July 2016; p. 2. Available online: https://www.hou.usra.edu/meetings/enceladus2016/pdf/3032.pdf (accessed on 14 February 2023).
- Schneck, P. Global Color and Cartographic Mapping of Saturn’s Midsize Icy Moons. Presented at the Enceladus and the Icy Moons of Saturn Conference, Boulder, CO, USA, 26–29 July 2016; p. 2. Available online: https://www.hou.usra.edu/meetings/enceladus2016/pdf/3053.pdf (accessed on 14 February 2023).
- Gazetteer of Planetary Nomenclature. International Astronomical Union (IAU). Available online: https://asc-planetarynames-data.s3.us-west-2.amazonaws.com/dione_comp.pdf (accessed on 11 December 2022).
- Ferguson, S.N.; Rhoden, A.R.; Kirchoff, M.R.; Salmon, J.J. A unique Saturnian impactor population from elliptical craters. Earth Planet. Sci. Lett. 2022, 593, 117652. [Google Scholar] [CrossRef]
- Asphaug, E.; Reufer, A. Late origin of the Saturn system. Icarus 2013, 223, 544–565. [Google Scholar] [CrossRef]
Crater Size [km] | Simulations (Impactor Size [km]|Secondary Crater Size [km]) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Scen. 1 | Scen. 2 | Scen. 3 | Scen. 4 | Scen. 5 | Scen. 6 | Scen. 7 | Scen. 8 | |||||||||
62 (Remus) | 8.0 | 0.9 | 6.5 | 0.5 | 5.5 | 0.4 | 3.2 | 0.1 | 8.3 | 0.9 | 6.7 | 0.5 | 5.7 | 0.4 | 3.3 | 0.1 |
81 (Antenor) | 10.9 | 1.3 | 8.8 | 0.7 | 7.5 | 0.5 | 4.4 | 0.1 | 11.2 | 1.3 | 9.0 | 0.7 | 7.7 | 0.5 | 4.5 | 0.1 |
90.1 (Romulus) | 12.3 | 1.4 | 9.9 | 0.8 | 8.5 | 0.5 | 4.9 | 0.1 | 12.6 | 1.4 | 10.2 | 0.8 | 8.7 | 0.5 | 5.1 | 0.1 |
100 | 13.8 | 1.6 | 11.1 | 0.9 | 9.5 | 0.6 | 5.5 | 0.1 | 14.2 | 1.6 | 11.4 | 0.9 | 9.8 | 0.6 | 5.7 | 0.1 |
122 (Dido) | 17.3 | 2.0 | 13.9 | 1.1 | 11.9 | 0.8 | 6.9 | 0.2 | 17.8 | 2.0 | 14.3 | 1.1 | 12.3 | 0.8 | 7.1 | 0.2 |
150 | 21.8 | 2.9 | 17.6 | 1.6 | 15.0 | 1.1 | 8.8 | 0.3 | 22.5 | 2.9 | 18.1 | 1.6 | 15.5 | 1.1 | 9.0 | 0.3 |
200 | 30.2 | 4.0 | 24.3 | 2.3 | 20.8 | 1.5 | 12.1 | 0.4 | 31.1 | 4.0 | 25.0 | 2.3 | 21.4 | 1.5 | 12.5 | 0.4 |
250 | 38.9 | 5.2 | 31.3 | 2.9 | 26.8 | 1.9 | 15.6 | 0.5 | 40.0 | 5.2 | 32.2 | 2.9 | 27.6 | 2.0 | 16.1 | 0.5 |
300 | 47.7 | 6.3 | 38.4 | 3.6 | 32.9 | 2.4 | 19.2 | 0.6 | 49.2 | 6.4 | 39.6 | 3.6 | 33.9 | 2.4 | 19.7 | 0.6 |
350 | 56.8 | 7.5 | 45.8 | 4.3 | 39.2 | 2.8 | 22.8 | 0.7 | 58.6 | 7.6 | 47.1 | 4.3 | 40.4 | 2.9 | 23.5 | 0.7 |
400 | 66.1 | 8.8 | 53.2 | 5.0 | 45.6 | 3.3 | 26.5 | 0.8 | 68.1 | 8.8 | 54.8 | 5.0 | 46.9 | 3.3 | 27.3 | 0.8 |
450 | 75.5 | 10.0 | 60.8 | 5.7 | 52.0 | 3.8 | 30.3 | 0.9 | 77.8 | 10.1 | 62.6 | 5.7 | 53.6 | 3.8 | 31.2 | 0.9 |
500 | 85.0 | 11.3 | 68.5 | 6.4 | 58.6 | 4.3 | 34.1 | 1.0 | 87.6 | 11.4 | 70.5 | 6.4 | 60.4 | 4.3 | 35.2 | 1.0 |
550 | 94.7 | 12.6 | 76.3 | 7.1 | 65.3 | 4.7 | 38.0 | 1.1 | 97.6 | 12.7 | 78.5 | 7.2 | 67.3 | 4.8 | 39.2 | 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bradák, B.; Nishikawa, M.; Gomez, C. Introduction to a “Radical” Working Hypothesis about a Hemisphere-Scale Impact on Dione (Saturn). Phys. Sci. Forum 2023, 7, 14. https://doi.org/10.3390/ECU2023-14010
Bradák B, Nishikawa M, Gomez C. Introduction to a “Radical” Working Hypothesis about a Hemisphere-Scale Impact on Dione (Saturn). Physical Sciences Forum. 2023; 7(1):14. https://doi.org/10.3390/ECU2023-14010
Chicago/Turabian StyleBradák, Balázs, Mayuko Nishikawa, and Christopher Gomez. 2023. "Introduction to a “Radical” Working Hypothesis about a Hemisphere-Scale Impact on Dione (Saturn)" Physical Sciences Forum 7, no. 1: 14. https://doi.org/10.3390/ECU2023-14010
APA StyleBradák, B., Nishikawa, M., & Gomez, C. (2023). Introduction to a “Radical” Working Hypothesis about a Hemisphere-Scale Impact on Dione (Saturn). Physical Sciences Forum, 7(1), 14. https://doi.org/10.3390/ECU2023-14010