f(R,T) Gravity and Constant Jerk Parameter in FLRW Spacetime †
Abstract
:1. Introduction
2. Field Equations of Gravity
3. Modified Field Equations in the Flat FLRW Background
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GR | General Relativity |
CDM | Cold Dark Matter |
EH | Einstein–Hilbert |
References
- Permutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.G.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astrophys. J. 1999, 517, 565–586. [Google Scholar]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef] [Green Version]
- Riess, A.G.; Kirshner, R.P.; Schmidt, B.P.; Jha, S.; Challis, P.; Garnavich, P.M.; Esin, A.A.; Carpenter, C.; Grashius, R.; Schild, R.E.; et al. BVRI light curves for 22 type Ia supernovae. Astron. J. 1999, 117, 707–724. [Google Scholar] [CrossRef] [Green Version]
- Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; et al. Planck 2015 results-xiii. cosmological parameters. Astron. Astrophys. 2016, 594, A13. [Google Scholar]
- Ratra, B.; Peebles, P.J.E. Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 1988, 37, 3406. [Google Scholar] [CrossRef] [PubMed]
- Wetterich, C. Cosmology and the fate of dilatation symmetry. Nucl. Phys. B 1988, 302, 668–696. [Google Scholar] [CrossRef] [Green Version]
- Khurshudyan, M.; Chubaryan, E.; Pourhassan, B. Inteeracting quintessence models of dark energy. Int. J. Theor. Phys. 2014, 53, 2370–2378. [Google Scholar] [CrossRef] [Green Version]
- Armendariz-Picon, C.; Mukhanov, V.; Steinhardt, P.J. Dynamical Solution to the Problem of a Small Cosmological Constant and Late-Time Cosmic Acceleration. Phys. Rev. Lett. 2000, 85, 4438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamenshchik, A.Y.; Moschella, U.; Pasquier, V. An alternative to quintessence. Phys. Lett. B 2001, 511, 265–268. [Google Scholar] [CrossRef] [Green Version]
- Bento, M.C.; Bertolami, O.; Sen, A.A. Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification. Phys. Rev. D 2002, 66, 043507. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Lu, J.; Wang, Y. Revisiting generalized Chaplygin gas as a unified dark matter and dark energy model. Eur. Phys. J. C 2012, 72, 1883. [Google Scholar] [CrossRef]
- Saadat, H.; Pourhassan, B. FRW Bulk Viscous Cosmology with Modified Chaplygin Gas in Flat Space. Astrophys. Space Sci. 2013, 344, 237. [Google Scholar] [CrossRef]
- Pourhassan, B. FRW Bulk Viscous Cosmology with Modified Chaplygin Gas in Flat SpaceInt. J. Mod. Phys. D 2013, 22, 1350061. [Google Scholar] [CrossRef] [Green Version]
- Harko, T.; Lobo, F.S.N.; Nojiri, S.; Odintsov, S.D. f(R,T) gravity. Phys. Rev. D 2011, 84, 024020. [Google Scholar] [CrossRef] [Green Version]
- Moraes, P.H.R.S.; Sahoo, P.K. The simplest non-minimal matter-geometry coupling in the f(R,T) cosmology. Eur. Phys. J. C 2017, 77, 480. [Google Scholar] [CrossRef] [Green Version]
- Sharma, L.K.; Yadav, A.K.; Sahoo, P.K.; Singh, B.K. Non-minimal matter-geometry coupling in Bianchi I space-time. Results Phys. 2018, 10, 738–742. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Sofuoglu, D.; Isik, R.; Shukla, B.K.; Baysazan, E. Non-minimally coupled transit cosmology in f(R,T) gravity. Int. J. Geom. Meth. Mod. Phys. 2022, 19, 2250118. [Google Scholar] [CrossRef]
- Sofuoglu, D.; Tiwari, R.K.; Abebe, A.; Alfedeel, A.H.A.; Hassan, E.I. The cosmology of a non-minimally coupled f(R,T) gravitation. Physics 2022, 4, 1348–1358. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Sofuoglu, D.; Mishra, S.K.; Beesham, A. Anisotropic model with constant jerk parameter in f(R,T) gravity. Gravit. Cosmol. 2022, 28, 196–203. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sofuoğlu, D.; Beesham, A.
f(R,T) Gravity and Constant Jerk Parameter in FLRW Spacetime
Sofuoğlu D, Beesham A.
f(R,T) Gravity and Constant Jerk Parameter in FLRW Spacetime
Sofuoğlu, Değer, and Aroonkumar Beesham.
2023. "f(R,T) Gravity and Constant Jerk Parameter in FLRW Spacetime
Sofuoğlu, D., & Beesham, A.
(2023). f(R,T) Gravity and Constant Jerk Parameter in FLRW Spacetime