Equivariant Neural Networks and Differential Invariants Theory for Solving Partial Differential Equations †
Abstract
:1. Introduction
Contributions
2. PDEs and Symmetries
2.1. Systems of PDEs
2.2. Symmetry Group and Differential Invariants
3. Equivariant Neural Networks
3.1. G-CNN
3.2. A New Convolution
Lifting the Coordinate Space
4. Solving of PDEs with ENN
4.1. Equivariant PINN
4.2. Symmetry-Preserving Finite Difference
4.3. Numerical Experiments
4.3.1. Approximating Differential Invariants
4.3.2. Solving the 2D Heat Equation
5. Conclusions and Further Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Lu, L.; Meng, X.; Mao, Z.; Karniadakis, G.E. DeepXDE: A deep learning library for solving differential equations. arXiv 2020, arXiv:cs.LG/1907.04502. [Google Scholar] [CrossRef]
- Sirignano, J.; Spiliopoulos, K. DGM: A Deep Learning Algorithm for Solving Partial Differential Equations. J. Comput. Phys. 2018, 2018 375, 1339–1364. [Google Scholar] [CrossRef] [Green Version]
- Raissi, M.; Yazdani, A.; Karniadakis, G.E. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations. Science 2020, 367, 1026–1030. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Kashinath, K.; Mustafa, M.; Albert, A.; Yu, R. Towards Physics-Informed Deep Learning for Turbulent Flow Prediction. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’20, Virtual Event, 6–10 July 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 1457–1466. [Google Scholar] [CrossRef]
- Olver, P. Applications of Lie Groups to Differential Equations. In The Handbook of Brain Theory and Neural Networks; Springer: New York, NY, USA, 1993. [Google Scholar]
- Fushchich, W.; Nikitin, A. Symmetries of Maxwell’s Equations; Mathematics and Its Applications; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Morrison, P. Structure and structure-preserving algorithms for plasma physics. Phys. Plasmas 2016, 24, 055502. [Google Scholar] [CrossRef] [Green Version]
- Kraus, M. Metriplectic Integrators for Dissipative Fluids. In Geometric Science of Information; Nielsen, F., Barbaresco, F., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 292–301. [Google Scholar]
- Coquinot, B.; Morrison, P.J. A general metriplectic framework with application to dissipative extended magnetohydrodynamics. J. Plasma Phys. 2020, 86, 835860302. [Google Scholar] [CrossRef]
- Luesink, E.; Ephrati, S.; Cifani, P.; Geurts, B. Casimir preserving stochastic Lie-Poisson integrators. arXiv 2021, arXiv:2111.13143. [Google Scholar]
- Zhu, A.; Jin, P.; Tang, Y. Deep Hamiltonian networks based on symplectic integrators. arXiv 2020, arXiv:2004.13830. [Google Scholar]
- Dorodnitsyn, V. Finite Difference Models Entirely Inheriting Symmetry of Original Differential Equations. Int. J. Mod. Phys. C 1994, 5, 723–734. [Google Scholar] [CrossRef]
- Shokin, I.; Shokin, J.; Shokin, Y.; Šokin, Û.; Roesner, K. The Method of Differential Approximation; Computational Physics Series; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Olver, P.J. Geometric Foundations of Numerical Algorithms and Symmetry. Appl. Algebra Eng. Commun. Comput. 2001, 11, 417–436. [Google Scholar] [CrossRef] [Green Version]
- Marx, C.; Aziz, H. Lie Symmetry Preservation by Finite Difference Schemes for the Burgers Equation. Symmetry 2010, 2, 868. [Google Scholar] [CrossRef]
- Razafindralandy, D.; Hamdouni, A. Subgrid models preserving the symmetry group of the Navier–Stokes equations. C. R. Méc. 2005, 333, 481–486. [Google Scholar] [CrossRef]
- Brandstetter, J.; Welling, M.; Worrall, D.E. Lie Point Symmetry Data Augmentation for Neural PDE Solvers. arXiv 2022, arXiv:2202.07643. [Google Scholar]
- Bronstein, M.M.; Bruna, J.; Cohen, T.; Veličković, P. Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges. arXiv 2021, arXiv:2104.13478. [Google Scholar]
- Gerken, J.E.; Aronsson, J.; Carlsson, O.; Linander, H.; Ohlsson, F.; Petersson, C.; Persson, D. Geometric Deep Learning and Equivariant Neural Networks. arXiv 2021, arXiv:2105.13926. [Google Scholar]
- Cohen, T.; Welling, M. Group Equivariant Convolutional Networks. In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 20–22 June 2016; Balcan, M.F., Weinberger, K.Q., Eds.; PMLR: New York, NY, USA, 2016; Volume 48, pp. 2990–2999. [Google Scholar]
- Cohen, T.S.; Geiger, M.; Weiler, M. A General Theory of Equivariant CNNs on Homogeneous Spaces. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2019; Volume 32, pp. 9145–9156. [Google Scholar]
- Weiler, M.; Cesa, G. General E(2)-Equivariant Steerable CNNs. arXiv 2019, arXiv:1911.08251. [Google Scholar]
- Worrall, D.; Welling, M. Deep Scale-spaces: Equivariance Over Scale. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2019; Volume 32. [Google Scholar]
- Kondor, R.; Trivedi, S. On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; Dy, J., Krause, A., Eds.; PMLR: Stockholm, Sweden, 2018; Volume 80, pp. 2747–2755. [Google Scholar]
- Elesedy, B.; Zaidi, S. Provably Strict Generalisation Benefit for Equivariant Models. arXiv 2021, arXiv:2102.10333. [Google Scholar]
- Gerken, J.E.; Carlsson, O.; Linander, H.; Ohlsson, F.; Petersson, C.; Persson, D. Equivariance versus Augmentation for Spherical Images. arXiv 2022, arXiv:2202.03990. [Google Scholar]
- Wang, R.; Walters, R.; Yu, R. Incorporating Symmetry into Deep Dynamics Models for Improved Generalization. arXiv 2020, arXiv:2002.03061. [Google Scholar]
- Finzi, M.; Stanton, S.; Izmailov, P.; Wilson, A.G. Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data. arXiv 2020, arXiv:2002.12880. [Google Scholar]
- Cohen, T.S.; Welling, M. Steerable CNNs. arXiv 2016, arXiv:1612.08498. [Google Scholar]
- Lang, L.; Weiler, M. A Wigner-Eckart Theorem for Group Equivariant Convolution Kernels. arXiv 2020, arXiv:2010.10952. [Google Scholar]
- Cohen, T.S.; Weiler, M.; Kicanaoglu, B.; Welling, M. Gauge Equivariant Convolutional Networks and the Icosahedral CNN. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019. [Google Scholar]
- Cohen, T.S.; Welling, M. Group Equivariant Convolutional Networks. arXiv 2016, arXiv:1602.07576. [Google Scholar]
- Cohen, T.S.; Geiger, M.; Weiler, M. Intertwiners between Induced Representations (with Applications to the Theory of Equivariant Neural Networks). arXiv 2018, arXiv:1803.10743. [Google Scholar]
- Kondor, R.; Trivedi, S. On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups. arXiv 2018, arXiv:1802.03690. [Google Scholar]
- Cohen, T.; Geiger, M.; Weiler, M. A General Theory of Equivariant CNNs on Homogeneous Spaces. arXiv 2018, arXiv:1811.02017. [Google Scholar]
- Wang, R.; Kashinath, K.; Mustafa, M.; Albert, A.; Yu, R. Towards Physics-informed Deep Learning for Turbulent Flow Prediction. arXiv 2019, arXiv:1911.08655. [Google Scholar]
input layer: | , | |
convolution layers: | , | with , , for . |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lagrave, P.-Y.; Tron, E. Equivariant Neural Networks and Differential Invariants Theory for Solving Partial Differential Equations. Phys. Sci. Forum 2022, 5, 13. https://doi.org/10.3390/psf2022005013
Lagrave P-Y, Tron E. Equivariant Neural Networks and Differential Invariants Theory for Solving Partial Differential Equations. Physical Sciences Forum. 2022; 5(1):13. https://doi.org/10.3390/psf2022005013
Chicago/Turabian StyleLagrave, Pierre-Yves, and Eliot Tron. 2022. "Equivariant Neural Networks and Differential Invariants Theory for Solving Partial Differential Equations" Physical Sciences Forum 5, no. 1: 13. https://doi.org/10.3390/psf2022005013
APA StyleLagrave, P. -Y., & Tron, E. (2022). Equivariant Neural Networks and Differential Invariants Theory for Solving Partial Differential Equations. Physical Sciences Forum, 5(1), 13. https://doi.org/10.3390/psf2022005013