Electron Born Self-Energy Model for Dark Energy †
Abstract
1. Introduction
2. Results
- The magnitude of the DE listed in Table 1, specifically,where subscript is to denote that this quantity arises from the Planck collaboration.
- The DE to Ordinary Matter (OM) mass ratio given in Table 1. Specifically,
- The equation of state for DE is expected to be [9]where is the pressure. The in Equation (3) implies that DE is a form of repulsive gravity which causes the Universe to expand at an accelerating rate. This is most readily seen using the Friedmann acceleration equation [10]where is the scale factor, is the acceleration of the scale factor, and is Newton’s gravitational constant. The second line in Equation (4) arises from Equation (3) with the assumption that DE is the dominant contribution to the scale factor acceleration. Normally gravity is thought of as an attractive force when applied to ordinary matter and, under such circumstances, the expansion of the Universe should be decelerating (). This leads to the fourth observation that a theory for DE must be able to account for.
- There must be a transition from a decelerating to an accelerating Universe. This transition is readily observed in Figure 1 which consists of “WM456” binned data taken from [11]. In this figure , the velocity scale factor, which arises from Hubble’s law, , together with . When the ΛCDM model is fitted to such binned data a deceleration-acceleration transition is found at a redshift of [11]
3. Discussion
3.1. Born Self-Energy for the Electron
3.2. The Electron: A Revised View
4. Conclusions
Acknowledgments
Conflicts of Interest
Abbreviations
| CMB | Cosmic Microwave Background |
| DE | Dark Energy |
| DM | Dark Matter |
| OM | Ordinary Matter |
| QED | Quantum Electrodynamics |
| WHIM | Warm-Hot Intergalactic Medium |
References
- Peebles, P.J.E.; Page, L.A., Jr.; Partridge, R.B. Finding the Big Bang; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating Universe and a cosmological constant. Astron. J. 1998, 16, 1009. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 1999, 517, 565. [Google Scholar] [CrossRef]
- Carroll, S.M. The cosmological constant. Living Rev. Relativ. 2001, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Law, B.M. Cosmological consequences of a classical finite-sized electron model. Astrophys. Space Sci. 2020, 365, 64. [Google Scholar] [CrossRef]
- Dave, R.; Cen, R.; Ostriker, J.P.; Bryan, G.L.; Hernquist, L.; Katz, N.; Weinberg, D.H.; Norman, M.L.; O’Shea, B. Baryons in the warm-hot intergalactic medium. Astrophys. J. 2001, 552, 473–483. [Google Scholar] [CrossRef]
- Cen, R.; Ostriker, J.P. Where are the baryons? II. Feedback effects. Astrophys. J. 2006, 650, 560–572. [Google Scholar] [CrossRef]
- PlanckCollaboration. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2018, arXiv:1807.06209. [Google Scholar]
- Frieman, J.A.; Turner, M.S.; Huterer, D. Dark Energy and the Accelerating Universe. Annu. Rev. Astron. Astrophys. 2008, 46, 385–432. [Google Scholar] [CrossRef]
- Liddle, A.R.; Lyth, D.H. Cosmological Inflation and Large-Scale Structure; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Farooq, O.; Madiyar, F.R.; Crandall, S.; Ratra, B. Hubble parameter measurement constraints on the redshift of the deceleration-acceleration transition, dynamical Dark Energy, and space curvature. Astrophys. J. 2017, 835, 1–11. [Google Scholar] [CrossRef]
- Law, B.M. Metastable wetting layers. Phys. Rev. E 1993, 48, 2760–2765. [Google Scholar] [CrossRef] [PubMed]
- Law, B.M. Nucleated wetting films: The late-time behavior. Phys. Rev. E 1994, 50, 2827–2833. [Google Scholar] [CrossRef]
- Mahanty, J.; Ninham, B.W. Dispersion Forces; Academic Press: London, UK, 1976. [Google Scholar]
- Feynman, R.P.; Leighton, R.; Sands, M. The Feynman Lectures on Physics; Addison-Wesley: Reading, MA, USA, 1964; Volume II. [Google Scholar]
- Israelachvili, J.N. Intermolecular and Surface Forces, 3rd ed.; Academic Press: London, UK, 2011. [Google Scholar]
- Bourilkov, D. Hint for axial-vector contact interactions in the data on e+e− →e+e−(γ) at center-of-mass energies 192–208 GeV. Phys. Rev. D 2001, 64, 071701R. [Google Scholar] [CrossRef]
- Gabrielse, G.; Hanneke, D.; Kinoshita, T.; Nio, M.; Odom, B. New determination of the fine structure constant from the electron g value and QED. Phys. Rev. Lett. 2006, 97, 030802. [Google Scholar] [CrossRef]
- Bykov, A.M.; Paerels, F.B.S.; Petrosian, V. Equilibration processes in the Warm-Hot Intergalactic Medium. Space Sci. Rev. 2008, 134, 141. [Google Scholar] [CrossRef][Green Version]
- Reif, F. Fundamental of Statistical and Thermal Physics; Mc-Graw Hill: New York, NY, USA, 1965. [Google Scholar]
- Jackson, J.D. Classical Electrodynamics; John Wiley & Sons, Inc.: New York, NY, USA, 1962. [Google Scholar]
- Riess, A.G.; Macri, L.M.; Hoffmann, S.L.; Scolnic, D.; Casertano, S.; Filippenko, A.V.; Tucker, B.E.; Reid, M.J.; Jones, D.O.; Silverman, J.M.; et al. A 2.6% determination of the local value of the Hubble constant. Astrophys. J. 2016, 826, 1–31. [Google Scholar] [CrossRef]
- Hill, J.C.; Ferraro, S.; Battaglia, N.; Liu, J.; Spergel, D.N. Kinematic Sunyaev-Zel’dovich effect with projected fields: A novel probe of the baryon distribution with Planck, WMAP, and WISE data. Phys. Rev. Lett. 2016, 117, 051301. [Google Scholar] [CrossRef]
- Wise, J.H. Cosmic reionisation. Contemp. Phys. 2019, 60, 145–163. [Google Scholar] [CrossRef]
- Bjorken, J.D.; Drell, S.D. Relativistic Quantum Mechanics; McGraw-Hill: New York, NY, USA, 1964. [Google Scholar]
- Sakurai, J.J. Advanced Quantum Mechanics; Benjamin/Cummings: Menlo Park, CA, USA, 1967. [Google Scholar]
- Weisskopf, V.F. The development of field theory in the last 50 years. Phys. Today 1981, 34, 69–85. [Google Scholar] [CrossRef]
- Odom, B.; Hanneke, D.; D’Urso, B.; Gabrielse, G. New measurement of the electron magnetic moment using a one-electron quantum cyclotron. Phys. Rev. Lett. 2006, 97, 030801. [Google Scholar] [CrossRef]
- Dirac, P.A.M. The evolution of the physicist’s picture of nature. Sci. Am. 1963, 208, 45. [Google Scholar] [CrossRef]
- Bethe, H.A. The electromagnetic shift of energy levels. Phys. Rev. 1947, 72, 339–341. [Google Scholar] [CrossRef]
- Heitler, W. The Quantum Theory of Radiation, 3rd ed.; Dover: New York, NY, USA, 1984. [Google Scholar]
- Feynman, R.P. QED: The Strange Theory of Light and Matter; Princeton University Press: Princeton, NJ, USA, 1985. [Google Scholar]
- Ninham, B.W. (Australian National University, Canberra, Australia); Boström, M. (University of Oslo, Oslo, Norway). Personal communication, 2020.
- Boyer, T.H. Quantum electromagnetic zero-point energy of a conducting spherical shell and the Casimir model for a charged particle. Phys. Rev. 1968, 174, 1764. [Google Scholar] [CrossRef]


| Mass Fraction Ω | Volume per Baryon (m3) | Energy Density Π (J/m3) | |
|---|---|---|---|
| Dark Energy | |||
| Dark Matter | |||
| Ordinary Matter (Intergalactic diffuse gas/plasma) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Law, B.M. Electron Born Self-Energy Model for Dark Energy. Phys. Sci. Forum 2021, 2, 9. https://doi.org/10.3390/ECU2021-09300
Law BM. Electron Born Self-Energy Model for Dark Energy. Physical Sciences Forum. 2021; 2(1):9. https://doi.org/10.3390/ECU2021-09300
Chicago/Turabian StyleLaw, Bruce M. 2021. "Electron Born Self-Energy Model for Dark Energy" Physical Sciences Forum 2, no. 1: 9. https://doi.org/10.3390/ECU2021-09300
APA StyleLaw, B. M. (2021). Electron Born Self-Energy Model for Dark Energy. Physical Sciences Forum, 2(1), 9. https://doi.org/10.3390/ECU2021-09300

