Electron Born Self-Energy Model for Dark Energy †
Abstract
:1. Introduction
2. Results
- The magnitude of the DE listed in Table 1, specifically,
- The DE to Ordinary Matter (OM) mass ratio given in Table 1. Specifically,
- The equation of state for DE is expected to be [9]
- There must be a transition from a decelerating to an accelerating Universe. This transition is readily observed in Figure 1 which consists of “WM456” binned data taken from [11]. In this figure , the velocity scale factor, which arises from Hubble’s law, , together with . When the ΛCDM model is fitted to such binned data a deceleration-acceleration transition is found at a redshift of [11]
3. Discussion
3.1. Born Self-Energy for the Electron
3.2. The Electron: A Revised View
4. Conclusions
Acknowledgments
Conflicts of Interest
Abbreviations
CMB | Cosmic Microwave Background |
DE | Dark Energy |
DM | Dark Matter |
OM | Ordinary Matter |
QED | Quantum Electrodynamics |
WHIM | Warm-Hot Intergalactic Medium |
References
- Peebles, P.J.E.; Page, L.A., Jr.; Partridge, R.B. Finding the Big Bang; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating Universe and a cosmological constant. Astron. J. 1998, 16, 1009. [Google Scholar] [CrossRef] [Green Version]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 1999, 517, 565. [Google Scholar] [CrossRef]
- Carroll, S.M. The cosmological constant. Living Rev. Relativ. 2001, 4, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Law, B.M. Cosmological consequences of a classical finite-sized electron model. Astrophys. Space Sci. 2020, 365, 64. [Google Scholar] [CrossRef]
- Dave, R.; Cen, R.; Ostriker, J.P.; Bryan, G.L.; Hernquist, L.; Katz, N.; Weinberg, D.H.; Norman, M.L.; O’Shea, B. Baryons in the warm-hot intergalactic medium. Astrophys. J. 2001, 552, 473–483. [Google Scholar] [CrossRef] [Green Version]
- Cen, R.; Ostriker, J.P. Where are the baryons? II. Feedback effects. Astrophys. J. 2006, 650, 560–572. [Google Scholar] [CrossRef] [Green Version]
- PlanckCollaboration. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2018, arXiv:1807.06209. [Google Scholar]
- Frieman, J.A.; Turner, M.S.; Huterer, D. Dark Energy and the Accelerating Universe. Annu. Rev. Astron. Astrophys. 2008, 46, 385–432. [Google Scholar] [CrossRef] [Green Version]
- Liddle, A.R.; Lyth, D.H. Cosmological Inflation and Large-Scale Structure; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Farooq, O.; Madiyar, F.R.; Crandall, S.; Ratra, B. Hubble parameter measurement constraints on the redshift of the deceleration-acceleration transition, dynamical Dark Energy, and space curvature. Astrophys. J. 2017, 835, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Law, B.M. Metastable wetting layers. Phys. Rev. E 1993, 48, 2760–2765. [Google Scholar] [CrossRef] [PubMed]
- Law, B.M. Nucleated wetting films: The late-time behavior. Phys. Rev. E 1994, 50, 2827–2833. [Google Scholar] [CrossRef]
- Mahanty, J.; Ninham, B.W. Dispersion Forces; Academic Press: London, UK, 1976. [Google Scholar]
- Feynman, R.P.; Leighton, R.; Sands, M. The Feynman Lectures on Physics; Addison-Wesley: Reading, MA, USA, 1964; Volume II. [Google Scholar]
- Israelachvili, J.N. Intermolecular and Surface Forces, 3rd ed.; Academic Press: London, UK, 2011. [Google Scholar]
- Bourilkov, D. Hint for axial-vector contact interactions in the data on e+e− →e+e−(γ) at center-of-mass energies 192–208 GeV. Phys. Rev. D 2001, 64, 071701R. [Google Scholar] [CrossRef] [Green Version]
- Gabrielse, G.; Hanneke, D.; Kinoshita, T.; Nio, M.; Odom, B. New determination of the fine structure constant from the electron g value and QED. Phys. Rev. Lett. 2006, 97, 030802. [Google Scholar] [CrossRef] [Green Version]
- Bykov, A.M.; Paerels, F.B.S.; Petrosian, V. Equilibration processes in the Warm-Hot Intergalactic Medium. Space Sci. Rev. 2008, 134, 141. [Google Scholar] [CrossRef] [Green Version]
- Reif, F. Fundamental of Statistical and Thermal Physics; Mc-Graw Hill: New York, NY, USA, 1965. [Google Scholar]
- Jackson, J.D. Classical Electrodynamics; John Wiley & Sons, Inc.: New York, NY, USA, 1962. [Google Scholar]
- Riess, A.G.; Macri, L.M.; Hoffmann, S.L.; Scolnic, D.; Casertano, S.; Filippenko, A.V.; Tucker, B.E.; Reid, M.J.; Jones, D.O.; Silverman, J.M.; et al. A 2.6% determination of the local value of the Hubble constant. Astrophys. J. 2016, 826, 1–31. [Google Scholar] [CrossRef]
- Hill, J.C.; Ferraro, S.; Battaglia, N.; Liu, J.; Spergel, D.N. Kinematic Sunyaev-Zel’dovich effect with projected fields: A novel probe of the baryon distribution with Planck, WMAP, and WISE data. Phys. Rev. Lett. 2016, 117, 051301. [Google Scholar] [CrossRef] [Green Version]
- Wise, J.H. Cosmic reionisation. Contemp. Phys. 2019, 60, 145–163. [Google Scholar] [CrossRef] [Green Version]
- Bjorken, J.D.; Drell, S.D. Relativistic Quantum Mechanics; McGraw-Hill: New York, NY, USA, 1964. [Google Scholar]
- Sakurai, J.J. Advanced Quantum Mechanics; Benjamin/Cummings: Menlo Park, CA, USA, 1967. [Google Scholar]
- Weisskopf, V.F. The development of field theory in the last 50 years. Phys. Today 1981, 34, 69–85. [Google Scholar] [CrossRef]
- Odom, B.; Hanneke, D.; D’Urso, B.; Gabrielse, G. New measurement of the electron magnetic moment using a one-electron quantum cyclotron. Phys. Rev. Lett. 2006, 97, 030801. [Google Scholar] [CrossRef] [Green Version]
- Dirac, P.A.M. The evolution of the physicist’s picture of nature. Sci. Am. 1963, 208, 45. [Google Scholar] [CrossRef]
- Bethe, H.A. The electromagnetic shift of energy levels. Phys. Rev. 1947, 72, 339–341. [Google Scholar] [CrossRef]
- Heitler, W. The Quantum Theory of Radiation, 3rd ed.; Dover: New York, NY, USA, 1984. [Google Scholar]
- Feynman, R.P. QED: The Strange Theory of Light and Matter; Princeton University Press: Princeton, NJ, USA, 1985. [Google Scholar]
- Ninham, B.W.; Australian National University, Canberra, Australia; Boström, M.; University of Oslo, Oslo, Norway. Personal communication, 2020.
- Boyer, T.H. Quantum electromagnetic zero-point energy of a conducting spherical shell and the Casimir model for a charged particle. Phys. Rev. 1968, 174, 1764. [Google Scholar] [CrossRef]
Mass Fraction Ω | Volume per Baryon (m3) | Energy Density Π (J/m3) | |
---|---|---|---|
Dark Energy | |||
Dark Matter | |||
Ordinary Matter (Intergalactic diffuse gas/plasma) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Law, B.M. Electron Born Self-Energy Model for Dark Energy. Phys. Sci. Forum 2021, 2, 9. https://doi.org/10.3390/ECU2021-09300
Law BM. Electron Born Self-Energy Model for Dark Energy. Physical Sciences Forum. 2021; 2(1):9. https://doi.org/10.3390/ECU2021-09300
Chicago/Turabian StyleLaw, Bruce M. 2021. "Electron Born Self-Energy Model for Dark Energy" Physical Sciences Forum 2, no. 1: 9. https://doi.org/10.3390/ECU2021-09300
APA StyleLaw, B. M. (2021). Electron Born Self-Energy Model for Dark Energy. Physical Sciences Forum, 2(1), 9. https://doi.org/10.3390/ECU2021-09300