An Overview of Nonstandard Signals in Cosmological Data †
Abstract
:1. Introduction
- What are the current cosmological and astrophysical datasets that include such non-standard signals?
- What is the statistical significance of each signal?
- Is there a common theoretical framework that may explain these non-standard signals if they are of physical origin?
2. A Collection of Non-Standard Signals
2.1. Signals in SnIa Data
2.2. Signals in the CMB Data
- The Planck CMB anisotropy power spectrum data appear to favor a universe with mildly positive curvature (a closed universe) at a level. This trend is connected with the lensing anomaly and the high-low l tension discussed below and may represent a particular interpretation of the same signal in the CMB data [30,31,32].
- The CMB Cold Spot is a region of the CMB sky with scale of about which is unexpectedly large and cold relative in the context of the expected Gaussian CMB fluctuations. The Cold spot is approximately 70 K colder than the average CMB temperature, while the typical rms temperature variation is only 18 K [35].
- The hemispherical temperature variance asymmetry [36,37,38]: The CMB full-sky temperature pixels manifest a hemispherical asymmetry in power with pole axis nearly aligned with the Ecliptic. The northern ecliptic hemisphere is has abnormaly low variance compared to the predictions of Gaussian CDM fluctuations while the southern hemisphere is well consistent with the expected level of variance. The possible extension of this effect in polarization pixels is expected to be tested by the CMB-S4 mission [39].
- The lack of large-angle CMB temperature correlations [40]: The magnitude of the two-point angular-correlation function of the CMB temperature anisotropies is anomalously low for angular scales larger than about 60 degrees. Physical mechanisms operating close to the time of recombination are expected to play a role in the explanation of this observed lack of large-angle CMB temperature correlations.
- The lensing anomaly [41]: Oscillatory residuals between the Planck temperature power spectra and the best-fit CDM model in the multipole range in opposite phase compared to the CMB and thus phenomenologically similar to the effects of gravitational lensing. This smoothing of the acoustic peaks in the temperature power spectrum could be induced by an oscillatory feature, generated during inflation [42].
- The preference for odd parity correlations [43,44]: There is an anomalous power excess of odd l multipoles compared to even l multipoles in the CMB anisotropy spectrum. The odd-parity preference at low multipoles could be a phenomenological origin of the lack of large-scale CMB temperature correlation.
- The high-low l tension [45]. The CDM parameter values derived by the high l part of the CMB anisotropy spectrum () are in tension with the corresponding values of these parameters derived from the low l part of the spectrum (). This anomaly is probably related to the lensing anomaly and the indications for a closed universe discussed above.
2.3. Signal in the Weak Leansing—RSD Data
2.4. Age of the Universe
2.5. Cosmic Dipoles
- The fine structure constant dipole. Spectra from quasars indicate a spatially dependent value of the fine structure constant at a level of significance. This signal indicates both the violation of the cosmological principle and variation of the fundamental constants [57,58]. This dipole is also anomalously aligned with others [59,60].
- The quasar density dipole, which is a statistically significant () dipole in the density of quasars with direction close to the CMB dipole [63].
2.6. Signal in BAO Data
2.7. Parity Violating Rotation of CMB Linear Polarization
2.8. The Lithium Problem
2.9. Quasar Hubble Diagram
2.10. Oscillating Force Signals in Short Range Gravity Experiments
3. Conclusions and Discussion
- Tuning of current missions towards the verification or rejection of non-standard signals.
- Identification of favored parametrizations of , , , assuming that at least some of the non-standard signals are physical.
- Identification of the theoretical models (field Lagrangians) that are consistent with these parametrizations. Interestingly, for example only a small subset of modified gravity models is consistent with the weak gravity in the context of a CDM background [74,75,76,77] suggested in the context of the tension.
Funding
References
- Ade, P.A.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 2016, 594, A13. [Google Scholar] [CrossRef] [Green Version]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar] [CrossRef] [Green Version]
- Betoule, M.E.A.; Kessler, R.; Guy, J.; Mosher, J.; Hardin, D.; Biswas, R.; Astier, P.; El-Hage, P.; Konig, M.; Kuhlmann, S.; et al. Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples. Astron. Astrophys. 2014, 568, A22. [Google Scholar] [CrossRef]
- Scolnic, D.M.; Jones, D.O.; Rest, A.; Pan, Y.C.; Chornock, R.; Foley, R.J.; Huber, M.E.; Kessler, R.; Narayan, G.; Riess, A.G. The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample. Astrophys. J. 2018, 859, 101. [Google Scholar] [CrossRef]
- Gómez-Valent, A.; Amendola, L. H0 from cosmic chronometers and Type Ia supernovae, with Gaussian Processes and the novel Weighted Polynomial Regression method. JCAP 2018, 04, 051. [Google Scholar] [CrossRef] [Green Version]
- Alam, S.; Ata, M.; Bailey, S.; Beutler, F.; Bizyaev, D.; Blazek, J.A.; Bolton, A.S.; Brownstein, J.R.; Burden, A.; Chuang, C.-H.; et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological analysis of the DR12 galaxy sample. Mon. Not. R. Astron. Soc. 2017, 470, 2617–2652. [Google Scholar] [CrossRef] [Green Version]
- Aubourg, É.; Bailey, S.; Bautista, J.E.; Beutler, F.; Bhardwaj, V.; Bizyaev, D.; Blanton, M.; Blomqvist, M.; Bolton, A.S.; Bovy, J.; et al. Cosmological implications of baryon acoustic oscillation measurements. Phys. Rev. D 2015, 92, 123516. [Google Scholar] [CrossRef] [Green Version]
- Baxter, E.; Clampitt, J.; Giannantonio, T.; Dodelson, S.; Jain, B.; Huterer, D.; Bleem, L.; Crawford, T.; Efstathiou, G.; Fosalba, P.; et al. Joint measurement of lensing–galaxy correlations using SPT and DES SV data. Mon. Not. R. Astron. Soc. 2016, 461, 4099–4114. [Google Scholar] [CrossRef] [Green Version]
- Efstathiou, G.; Lemos, P. Statistical inconsistencies in the KiDS-450 data set. Mon. Not. R. Astron. Soc. 2018, 476, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Rozo, E.; Wechsler, R.; Rykoff, E.S.; Annis, J.T.; Becker, M.; Evrard, A.E.; Frieman, J.A.; Hansen, S.M.; Hao, J.; Johnston, D.E.; et al. Cosmological Constraints from the SDSS maxBCG Cluster Catalog. Astrophys. J. 2010, 708, 645–660. [Google Scholar] [CrossRef]
- Basilakos, S.; Nesseris, S. Testing Einstein’s gravity and dark energy with growth of matter perturbations: Indications for new physics? Phys. Rev. D 2016, 94, 123525. [Google Scholar] [CrossRef]
- Quelle, A.; Maroto, A.L. On the tension between growth rate and CMB data. Eur. Phys. J. C 2020, 80, 369. [Google Scholar] [CrossRef]
- Perivolaropoulos, L. Six Puzzles for LCDM Cosmology. arXiv 2008, arXiv:0811.4684. [Google Scholar]
- Perivolaropoulos, L. LCDM: Triumphs, Puzzles and Remedies. J. Cosmol. 2011, 15, 6054. [Google Scholar]
- Riess, A.G.; Macri, L.M.; Hoffmann, S.L.; Scolnic, D.; Casertano, S.; Filippenko, A.V.; Tucker, B.E.; Reid, M.J.; Jones, D.O.; Silverman, J.M.; et al. A 2.4% Determination of the Local Value of the Hubble Constant. Astrophys. J. 2016, 826, 56. [Google Scholar] [CrossRef]
- Riess, A.G.; Yuan, W.; Casertano, S.; Macri, L.M.; Scolnic, D. The Accuracy of the Hubble Constant Measurement Verified through Cepheid Amplitudes. Astrophys. J. Lett. 2020, 896, L43. [Google Scholar] [CrossRef]
- Verde, L.; Treu, T.; Riess, A.G. Tensions between the Early and the Late Universe. Nat. Astron. 2019, 3, 891. [Google Scholar] [CrossRef]
- Di Valentino, E.; Melchiorri, A.; Silk, J. Cosmological constraints in extended parameter space from the Planck 2018 Legacy release. JCAP 2020, 01, 013. [Google Scholar] [CrossRef] [Green Version]
- Renzi, F.; Silvestri, A. A look at the Hubble speed from first principles. arXiv 2020, arXiv:2011.10559. [Google Scholar]
- Chudaykin, A.; Gorbunov, D.; Nedelko, N. Combined analysis of Planck and SPTPol data favors the early dark energy models. JCAP 2020, 08, 013. [Google Scholar] [CrossRef]
- Alestas, G.; Kazantzidis, L.; Perivolaropoulos, L. H0 tension, phantom dark energy, and cosmological parameter degeneracies. Phys. Rev. D 2020, 101, 123516. [Google Scholar] [CrossRef]
- Alestas, G.; Kazantzidis, L.; Perivolaropoulos, L. A w phantom transition at zt<0.1 as a resolution of the Hubble tension. Phys. Rev. D 2021, 103, 083517. [Google Scholar]
- Riess, A.G.; Rodney, S.A.; Scolnic, D.M.; Shafer, D.L.; Strolger, L.-G.; Ferguson, H.C.; Postman, M.; Graur, O.; Maoz, D.; Jha, S.W.; et al. Type Ia Supernova Distances at Redshift > 1.5 from the Hubble Space Telescope Multi-cycle Treasury Programs: The Early Expansion Rate. Astrophys. J. 2018, 853, 126. [Google Scholar] [CrossRef] [Green Version]
- Colgáin, E.O. A hint of matter underdensity at low z? JCAP 2019, 09, 006. [Google Scholar] [CrossRef] [Green Version]
- Camarena, D.; Marra, V. Local determination of the Hubble constant and the deceleration parameter. Phys. Rev. Res. 2020, 2, 013028. [Google Scholar] [CrossRef] [Green Version]
- Kazantzidis, L.; Koo, H.; Nesseris, S.; Perivolaropoulos, L.; Shafieloo, A. Hints for possible low redshift oscillation around the best fit ΛCDM model in the expansion history of the universe. Mon. Not. R. Astron. Soc. 2021, 501, 3421–3426. [Google Scholar] [CrossRef]
- Kazantzidis, L.; Perivolaropoulos, L. Hints of a Local Matter Underdensity or Modified Gravity in the Low z Pantheon data. Phys. Rev. D 2020, 102, 023520. [Google Scholar] [CrossRef]
- Shanks, T.; Hogarth, L.; Metcalfe, N. Gaia Cepheid parallaxes and ‘Local Hole’ relieve H0 tension. Mon. Not. R. Astron. Soc. 2019, 484, L64–L68. [Google Scholar] [CrossRef] [Green Version]
- Grande, J.; Perivolaropoulos, L. Generalized LTB model with Inhomogeneous Isotropic Dark Energy: Observational Constraints. Phys. Rev. D 2011, 84, 023514. [Google Scholar] [CrossRef] [Green Version]
- Di Valentino, E.; Anchordoqui, L.A.; Akarsu, Ö; Ali-Haimoud, Y.; Amendola, L.; Arendse, N.; Asgari, M.; Ballardini, M.; Basilakos, S.; Battistelli, E.; et al. Cosmology Intertwined IV: The Age of the Universe and its Curvature. Astropart. Phys. 2021, 131, 102607. [Google Scholar] [CrossRef]
- Handley, W. Curvature tension: Evidence for a closed universe. Phys. Rev. D 2021, 103, L041301. [Google Scholar] [CrossRef]
- Vagnozzi, S.; Di Valentino, E.; Gariazzo, S.; Melchiorri, A.; Mena, O.; Silk, J. Listening to the BOSS: The galaxy power spectrum take on spatial curvature and cosmic concordance. arXiv 2020, arXiv:2010.02230. [Google Scholar]
- Granett, B.R.; Neyrinck, M.C.; Szapudi, I. An Imprint of Super-Structures on the Microwave Background due to the Integrated Sachs-Wolfe Effect. Astrophys. J. Lett. 2008, 683, L99–L102. [Google Scholar] [CrossRef] [Green Version]
- Kovács, A.; Sánchez, C.; Garcia-Bellido, J.; Elvin-Poole, J.; Hamaus, N.; Miranda, V.; Nadathur, S.; Abbott, T.; Abdalla, F.B.; Annis, J.; et al. More out of less: An excess integrated Sachs-Wolfe signal from supervoids mapped out by the Dark Energy Survey. Mon. Not. R. Astron. Soc. 2019, 484, 5267–5277. [Google Scholar] [CrossRef]
- Cruz, M.; Cayon, L.; Martinez-Gonzalez, E.; Vielva, P.; Jin, J. The non-gaussian cold spot in the 3-year wmap data. Astrophys. J. 2007, 655, 11–20. [Google Scholar] [CrossRef]
- Monteserin, C.; Barreiro, R.B.B.; Vielva, P.; Martinez-Gonzalez, E.; Hobson, M.P.; Lasenby, A.N. A low CMB variance in the WMAP data. Mon. Not. R. Astron. Soc. 2008, 387, 209–219. [Google Scholar] [CrossRef] [Green Version]
- Planck Collaboration; Ade, P.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Battaner, E.; Benabed, K.; et al. Planck 2013 results. XXXI. Consistency of the Planck data. Astron. Astrophys. 2014, 571, A31. [Google Scholar] [CrossRef] [Green Version]
- O’Dwyer, M.; Copi, C.J.; Nagy, J.M.; Netterfield, C.B.; Ruhl, J.; Starkman, G.D. Hemispherical variance anomaly and reionization optical depth. Mon. Not. R. Astron. Soc. 2020, 499, 3563–3570. [Google Scholar] [CrossRef]
- O’Dwyer, M.; Copi, C.J.; Knox, L.; Starkman, G.D. CMB-S4 and the Hemispherical Variance Anomaly. Mon. Not. R. Astron. Soc. 2017, 470, 372–378. [Google Scholar] [CrossRef] [Green Version]
- Copi, C.J.; Huterer, D.; Schwarz, D.J.; Starkman, G.D. Lack of large-angle TT correlations persists in WMAP and Planck. Mon. Not. R. Astron. Soc. 2015, 451, 2978–2985. [Google Scholar] [CrossRef] [Green Version]
- Motloch, P.; Hu, W. Lensinglike tensions in the Planck legacy release. Phys. Rev. D 2020, 101, 083515. [Google Scholar] [CrossRef] [Green Version]
- Domènech, G.; Kamionkowski, M. Lensing anomaly and oscillations in the primordial power spectrum. JCAP 2019, 11, 040. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Naselsky, P. Anomalous parity asymmetry of WMAP power spectrum data at low multpoles: Is it cosmological or systematics? Phys. Rev. D 2010, 82, 063002. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Naselsky, P. Lack of angular correlation and odd-parity preference in cosmic microwave background data. Astrophys. J. 2011, 739, 79. [Google Scholar] [CrossRef] [Green Version]
- Addison, G.E.; Huang, Y.; Watts, D.J.; Bennett, C.L.; Halpern, M.; Hinshaw, G.; Weiland, J.L. Quantifying discordance in the 2015 Planck CMB spectrum. Astrophys. J. 2016, 818, 132. [Google Scholar] [CrossRef] [Green Version]
- Asgari, M.; Tröster, T.; Heymans, C.; Hildebrandt, H.; Busch, J.L.V.D.; Wright, A.H.; Choi, A.; Erben, T.; Joachimi, B.; Joudaki, S.; et al. KiDS+VIKING-450 and DES-Y1 combined: Mitigating baryon feedback uncertainty with COSEBIs. Astron. Astrophys. 2020, 634, A127. [Google Scholar] [CrossRef]
- Abbott, T.M.C.; Aguena, M.; Alarcon, A.; Allam, S.; Allen, S.; Annis, J.; Avila, S.; Bacon, D.; Bechtol, K.; Bermeo, A.; et al. Dark Energy Survey Year 1 Results: Cosmological constraints from cluster abundances and weak lensing. Phys. Rev. D 2020, 102, 023509. [Google Scholar] [CrossRef]
- Macaulay, E.; Wehus, I.K.; Eriksen, H.K. Lower Growth Rate from Recent Redshift Space Distortion Measurements than Expected from Planck. Phys. Rev. Lett. 2013, 111, 161301. [Google Scholar] [CrossRef]
- Skara, F.; Perivolaropoulos, L. Tension of the EG statistic and redshift space distortion data with the Planck—ΛCDM model and implications for weakening gravity. Phys. Rev. D 2020, 101, 063521. [Google Scholar] [CrossRef] [Green Version]
- Kazantzidis, L.; Perivolaropoulos, L. Is gravity getting weaker at low z? Observational evidence and theoretical implications. arXiv 2019, arXiv:1907.03176. [Google Scholar]
- Bull, P.; Akrami, Y.; Adamek, J.; Baker, T.; Bellini, E.; Jiménez, J.B.; Bentivegna, E.; Camera, S.; Clesse, S.; Davis, J.; et al. Beyond ΛCDM: Problems, solutions, and the road ahead. Phys. Dark Univ. 2016, 12, 56–99. [Google Scholar] [CrossRef] [Green Version]
- Kazantzidis, L.; Perivolaropoulos, L. Evolution of the fσ8 tension with the Planck15/ΛCDM determination and implications for modified gravity theories. Phys. Rev. D 2018, 97, 103503. [Google Scholar] [CrossRef] [Green Version]
- Nesseris, S.; Pantazis, G.; Perivolaropoulos, L. Tension and constraints on modified gravity parametrizations of Geff(z) from growth rate and Planck data. Phys. Rev. D 2017, 96, 023542. [Google Scholar] [CrossRef] [Green Version]
- Luri, X.; Brown, A.G.A.; Sarro, L.M.; Arenou, F.; Bailer-Jones, C.A.L.; Castro-Ginard, A.; de Bruijne, J.; Prusti, T.; Babusiaux, C.; Delgado, H.E. Gaia Data Release 2—Using Gaia parallaxes. Astron. Astrophys. 2018, 616, A9. [Google Scholar] [CrossRef] [Green Version]
- Verde, L.; Protopapas, P.; Jimenez, R. Planck and the local Universe: Quantifying the tension. Phys. Dark Univ. 2013, 2, 166–175. [Google Scholar] [CrossRef] [Green Version]
- Bueno Sanchez, J.C.; Perivolaropoulos, L. Topological Quintessence. Phys. Rev. D 2011, 84, 123516. [Google Scholar] [CrossRef] [Green Version]
- Dumont, V.; Webb, J.K. Modelling long-range wavelength distortions in quasar absorption echelle spectra. Mon. Not. R. Astron. Soc. 2017, 468, 1568–1574. [Google Scholar] [CrossRef] [Green Version]
- Webb, J.K.; King, J.A.; Murphy, M.T.; Flambaum, V.V.; Carswell, R.F.; Bainbridge, M.B. Indications of a spatial variation of the fine structure constant. Phys. Rev. Lett. 2011, 107, 191101. [Google Scholar] [CrossRef] [Green Version]
- Mariano, A.; Perivolaropoulos, L. Is there correlation between Fine Structure and Dark Energy Cosmic Dipoles? Phys. Rev. D 2012, 86, 083517. [Google Scholar] [CrossRef] [Green Version]
- Mariano, A.; Perivolaropoulos, L. CMB Maximum temperature asymmetry Axis: Alignment with other cosmic asymmetries. Phys. Rev. D 2013, 87, 043511. [Google Scholar] [CrossRef] [Green Version]
- Wiltshire, D.L.; Smale, P.R.; Mattsson, T.; Watkins, R. Hubble flow variance and the cosmic rest frame. Phys. Rev. D 2013, 88, 083529. [Google Scholar] [CrossRef] [Green Version]
- Bengaly, C.A.P.; Maartens, R.; Santos, M.G. Probing the Cosmological Principle in the counts of radio galaxies at different frequencies. JCAP 2018, 04, 031. [Google Scholar] [CrossRef] [Green Version]
- Secrest, N.J.; von Hausegger, S.; Rameez, M.; Mohayaee, R.; Sarkar, S.; Colin, J. A Test of the Cosmological Principle with Quasars. Astrophys. J. 2021, 908, L51. [Google Scholar] [CrossRef]
- Cuceu, A.; Farr, J.; Lemos, P.; Font-Ribera, A. Baryon Acoustic Oscillations and the Hubble Constant: Past, Present and Future. JCAP 2019, 10, 044. [Google Scholar] [CrossRef] [Green Version]
- Evslin, J. Isolating the Lyman Alpha Forest BAO Anomaly. JCAP 2017, 04, 024. [Google Scholar] [CrossRef] [Green Version]
- Minami, Y.; Komatsu, E. New Extraction of the Cosmic Birefringence from the Planck 2018 Polarization Data. Phys. Rev. Lett. 2020, 125, 221301. [Google Scholar] [CrossRef] [PubMed]
- Cyburt, R.H.; Fields, B.D.; Olive, K.A. An Update on the big bang nucleosynthesis prediction for Li-7: The problem worsens. JCAP 2008, 11, 012. [Google Scholar] [CrossRef] [Green Version]
- Clara, M.T.; Martins, C.J.A.P. Primordial nucleosynthesis with varying fundamental constants: Improved constraints and a possible solution to the Lithium problem. Astron. Astrophys. 2020, 633, L11. [Google Scholar] [CrossRef]
- Risaliti, G.; Lusso, E. Cosmological constraints from the Hubble diagram of quasars at high redshifts. Nat. Astron. 2019, 3, 272–277. [Google Scholar] [CrossRef] [Green Version]
- Lusso, E.; Piedipalumbo, E.; Risaliti, G.; Paolillo, M.; Bisogni, S.; Nardini, E.; Amati, L. Tension with the flat ΛCDM model from a high-redshift Hubble diagram of supernovae, quasars, and gamma-ray bursts. Astron. Astrophys. 2019, 628, L4. [Google Scholar] [CrossRef]
- Banerjee, A.; Colgáin, E.O.; Sasaki, M.; Sheikh-Jabbari, M.M.; Yang, T. On cosmography in the cosmic dark ages: Are we still in the dark? arXiv 2020, arXiv:2009.04109. [Google Scholar]
- Perivolaropoulos, L. Submillimeter spatial oscillations of Newton’s constant: Theoretical models and laboratory tests. Phys. Rev. D 2017, 95, 084050. [Google Scholar] [CrossRef] [Green Version]
- Antoniou, I.; Perivolaropoulos, L. Constraints on spatially oscillating sub-mm forces from the Stanford Optically Levitated Microsphere Experiment data. Phys. Rev. D 2017, 96, 104002. [Google Scholar] [CrossRef] [Green Version]
- Wittner, M.; Laverda, G.; Piattella, O.F.; Amendola, L. Transient weak gravity in scalar-tensor theories. JCAP 2020, 07, 019. [Google Scholar] [CrossRef]
- Pizzuti, L.; Saltas, I.D.; Casas, S.; Amendola, L.; Biviano, A. Future constraints on the gravitational slip with the mass profiles of galaxy clusters. Mon. Not. R. Astron. Soc. 2019, 486, 596–607. [Google Scholar] [CrossRef]
- Gannouji, R.; Perivolaropoulos, L.; Polarski, D.; Skara, F. Weak gravity on a ΛCDM background. Phys. Rev. D 2021, 103, 063509. [Google Scholar] [CrossRef]
- Gannouji, R.; Kazantzidis, L.; Perivolaropoulos, L.; Polarski, D. Consistency of modified gravity with a decreasing Geff(z) in a ΛCDM background. Phys. Rev. D 2018, 98, 104044. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alestas, G.; Kraniotis, G.V.; Perivolaropoulos, L. An Overview of Nonstandard Signals in Cosmological Data. Phys. Sci. Forum 2021, 2, 28. https://doi.org/10.3390/ECU2021-09333
Alestas G, Kraniotis GV, Perivolaropoulos L. An Overview of Nonstandard Signals in Cosmological Data. Physical Sciences Forum. 2021; 2(1):28. https://doi.org/10.3390/ECU2021-09333
Chicago/Turabian StyleAlestas, George, George V. Kraniotis, and Leandros Perivolaropoulos. 2021. "An Overview of Nonstandard Signals in Cosmological Data" Physical Sciences Forum 2, no. 1: 28. https://doi.org/10.3390/ECU2021-09333
APA StyleAlestas, G., Kraniotis, G. V., & Perivolaropoulos, L. (2021). An Overview of Nonstandard Signals in Cosmological Data. Physical Sciences Forum, 2(1), 28. https://doi.org/10.3390/ECU2021-09333