In-Field Hyperspectral Proximal Sensing for Estimating Grapevine Water Status to Support Smart Precision Viticulture †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Site
2.2. Predawn Leaf Water Potential and Spectroscopy Methodology
2.3. Statistical and Principal Component Analysis
2.4. Data Processing and Modelling
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, G.V.; Alves, F. Impacts of Climate Change on Wine Production: A Global Overview and Regional Assessment in the Douro Valley of Portugal. Int. J. Glob. Warm. 2012, 4, 383–406. [Google Scholar] [CrossRef]
- Costa, J.M.; Vaz, M.; Escalona, J.; Egipto, R.; Lopes, C.; Medrano, H.; Chaves, M.M. Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity. Agric. Water Manag. 2016, 164, 5–18. [Google Scholar] [CrossRef]
- Finco, A.; Bentivoglio, D.; Chiaraluce, G.; Alberi, M.; Chiarelli, E.; Maino, A.; Mantovani, F.; Montuschi, M.; Raptis, K.G.C.; Semenza, F.; et al. Combining Precision Viticulture Technologies and Economic Indices to Sustainable Water Use Management. Water 2022, 14, 1493. [Google Scholar] [CrossRef]
- Pôças, I.; Tosin, R.; Gonçalves, I.; Cunha, M. Toward a generalized predictive model of grapevine water status in Douro region from hyperspectral data. Agric. For. Meteorol. 2020, 280, 107793. [Google Scholar] [CrossRef]
- Tosin, R.; Pôças, I.; Gonçalves, I.; Cunha, M. Estimation of grapevine predawn leaf water potential based on hyperspectral reflectance data in Douro wine region. Vitis 2020, 59, 9–18. [Google Scholar] [CrossRef]
- Romero, M.; Luo, Y.; Sud, B.; Fuentes, S. Vineyard water status estimation using multispectral imagery from an UAV platform and machine learning algorithms for irrigation scheduling management. Comput. Electron. Agric. 2018, 147, 109–117. [Google Scholar] [CrossRef]
- Tosin, R.; Martins, R.; Pôças, I.; Cunha, M. Canopy VIS-NIR spectroscopy and self-learning artificial intelligence for a generalised model of predawn leaf water potential in Vitis vinifera. Biosyst. Eng. 2022, 219, 235–258. [Google Scholar] [CrossRef]
- Mirás-Avalos, J.; Araujo, E. Optimization of Vineyard Water Management: Challenges, Strategies, and Perspectives. Water 2021, 13, 746. [Google Scholar] [CrossRef]
- Scholander, P.F.; Bradstreet, E.D.; Hemmingsen, E.A.; Hammel, H.T. Sap Pressure in Vascular Plants: Negative hydrostatic pressure can be measured in plants. Science 1965, 148, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Martins, R.C.; Barroso, T.G.; Jorge, P.; Cunha, M.; Santos, F. Unscrambling spectral interference and matrix effects in Vitis vinifera vis-nir spectroscopy: Towards analytical grade ‘in vivo’ sugars and acids quantification. Comput. Electron. Agric. 2022, 194, 106710. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013; Volume 26. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Maimaitiyiming, M.; Ghulam, A.; Bozzolo, A.; Wilkins, J.L.; Kwasniewski, M.T. Early Detection of Plant Physiological Responses to Different Levels of Water Stress Using Reflectance Spectroscopy. Remote Sens. 2017, 9, 745. [Google Scholar] [CrossRef]
- Gonçalves, I. Impactes das Alterações Climáticas na Vitivinicultura da Região Demarcada do Douro e Medidas de Adaptação; Universidade de Trás-os-Montes e Alto Douro: Vila Real, Portugal, 2021. [Google Scholar]
- Fernandes de Oliveira, A.; Mameli, M.G.; Lo Cascio, M.; Sirca, C.; Satta, D. An Index for User-Friendly Proximal Detection of Water Requirements to Optimized Irrigation Management in Vineyards. Agronomy 2021, 11, 323. [Google Scholar] [CrossRef]
Evaluation Date | Non-Irrigated | 30% Etc | 60% Etc | ANOVA F |
---|---|---|---|---|
28 July | −1.263 ± 0.226 bA | −0.560 ± 0.072 dB | −0.469 ± 0.119 bB | 5.72 × 10−14 *** |
4 August | −1.294 ± 0.185 bA | −1.096 ± 0.231 aB | −0.575 ± 0.020 aC | 7.12 × 10−11 *** |
11 August | −1.475 ± 0.116 aA | −0.729 ± 0.090 cB | −0.650 ± 0.122 aB | <2 × 10−16 *** |
19 August | −1.490 ± 0.123 aA | −0.717 ± 0.095 cB | −0.433 ± 0.087 bC | <2 × 10−16 *** |
25 August | −1.558 ± 0.095 aA | −0.752 ± 0.155 cB | −0.446 ± 0.075 bC | <2 × 10−16 *** |
1 September | −1.538 ± 0.124 aA | −0.958 ± 0.146 bB | −0.390 ± 0.120 bC | <2 × 10−16 *** |
Mean | −1.436 A | −0.802 B | −0.494 C | <2 × 10−16 *** |
ANOVA F | 1.08 × 10−5 *** | 4.04 × 10−12 *** | 7.48 × 10−8 *** |
Training Dataset | Validation Dataset | Total | |
---|---|---|---|
R2 | 1 | 0.89 | 0.95 |
RMSE (MPa) | 0.00 | 0.32 | 0.23 |
MAPE (%) | 0.09 | 33.36 | 16.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
David, E.; Tosin, R.; Gonçalves, I.; Rodrigues, L.; Barbosa, C.; Santos, F.; Pinheiro, H.; Martins, R.; Cunha, M. In-Field Hyperspectral Proximal Sensing for Estimating Grapevine Water Status to Support Smart Precision Viticulture. Biol. Life Sci. Forum 2023, 27, 54. https://doi.org/10.3390/IECAG2023-15871
David E, Tosin R, Gonçalves I, Rodrigues L, Barbosa C, Santos F, Pinheiro H, Martins R, Cunha M. In-Field Hyperspectral Proximal Sensing for Estimating Grapevine Water Status to Support Smart Precision Viticulture. Biology and Life Sciences Forum. 2023; 27(1):54. https://doi.org/10.3390/IECAG2023-15871
Chicago/Turabian StyleDavid, Erica, Renan Tosin, Igor Gonçalves, Leandro Rodrigues, Catarina Barbosa, Filipe Santos, Hugo Pinheiro, Rui Martins, and Mario Cunha. 2023. "In-Field Hyperspectral Proximal Sensing for Estimating Grapevine Water Status to Support Smart Precision Viticulture" Biology and Life Sciences Forum 27, no. 1: 54. https://doi.org/10.3390/IECAG2023-15871
APA StyleDavid, E., Tosin, R., Gonçalves, I., Rodrigues, L., Barbosa, C., Santos, F., Pinheiro, H., Martins, R., & Cunha, M. (2023). In-Field Hyperspectral Proximal Sensing for Estimating Grapevine Water Status to Support Smart Precision Viticulture. Biology and Life Sciences Forum, 27(1), 54. https://doi.org/10.3390/IECAG2023-15871