Automated Infield Grapevine Inflorescence Segmentation Based on Deep Learning Models †
Abstract
:1. Introduction
2. Methods
2.1. Data Acquisition and Processing
2.2. Models’ Training and Inference
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mekouar, M.A. Food and Agriculture Organization of the United Nations (FAO). Yearb. Int. Environ. Law 2020, 31, 326–340. [Google Scholar] [CrossRef]
- Carrillo, E.; Matese, A.; Rousseau, J.; Tisseyre, B. Use of multi-spectral airborne imagery to improve yield sampling in viticulture. Precis. Agric. 2016, 17, 74–92. [Google Scholar] [CrossRef]
- Clingeleffer, P.R.; Martin, S.; Dunn, G.; Krstic, M. Crop Development, Crop Estimation and Crop Control to Secure Quality and Production of Major Wine Grape Varieties: A National Approach: Final Report to Grape and Wine Research; Grape and Wine Research and Development Corporation: Adelaide, Australia, 2001. [Google Scholar]
- Arnó, J.; Casasnovas, M.; Ribes-Dasi, M.; Rosell-Polo, J. Review. Precision Viticulture. Research topics, challenges and opportunities in site-specific vineyard management. Span. J. Agric. Res. 2009, 7, 779–790. [Google Scholar] [CrossRef]
- Tardaguila, J.; Stoll, M.; Gutiérrez, S.; Proffitt, T.; Diago, M.P. Smart applications and digital technologies in viticulture: A review. Smart Agric. Technol. 2021, 1, 100005. [Google Scholar] [CrossRef]
- Diago, M.P.; Sanz García, A.; Millan, B.; Blasco, J.; Tardaguila, J. Assessment of Flower Number Per Inflorescence in Grapevine by Image Analysis Under Field Conditions. J. Sci. Food Agric. 2014, 94, 1981–1987. [Google Scholar] [CrossRef]
- Millan, B.; Aquino, A.; Diago, M.P.; Tardaguila, J. Image analysis-based modelling for flower number estimation in grapevine. J. Sci. Food Agric. 2017, 97, 784–792. [Google Scholar] [CrossRef]
- Aquino, A.; Millan, B.; Gaston, D.; Diago, M.P.; Tardaguila, J. vitisFlower®: Development and Testing of a Novel Android-Smartphone Application for Assessing the Number of Grapevine Flowers per Inflorescence Using Artificial Vision Techniques. Sensors 2015, 15, 21204–21218. [Google Scholar] [CrossRef]
- Aquino, A.; Millan, B.; Gutiérrez, S.; Tardáguila, J. Grapevine flower estimation by applying artificial vision techniques on images with uncontrolled scene and multi-model analysis. Comput. Electron. Agric. 2015, 119, 92–104. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Wu, H.; Xin, B.; Tang, J.; Petrie, P.R.; Whitty, M. A robust automated flower estimation system for grape vines. Biosyst. Eng. 2018, 172, 110–123. [Google Scholar] [CrossRef]
- Tello, J.; Herzog, K.; Rist, F.; This, P.; Doligez, A. Automatic Flower Number Evaluation in Grapevine Inflorescences Using RGB Images. Am. J. Enol. Vitic. 2019, 71, 10–16. [Google Scholar] [CrossRef]
- Mohimont, L.; Alin, F.; Rondeau, M.; Gaveau, N.; Steffenel, L.A. Computer Vision and Deep Learning for Precision Viticulture. Agronomy 2022, 12, 2463. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef]
- Victorino, G.; Braga, R.; Santos-Victor, J.; Lopes, C.M. Yield components detection and image-based indicators for non-invasive grapevine yield prediction at different phenological phases. Oeno One 2020, 54, 833–848. [Google Scholar] [CrossRef]
- Grimm, J.; Herzog, K.; Rist, F.; Kicherer, A.; Töpfer, R.; Steinhage, V. An adaptable approach to automated visual detection of plant organs with applications in grapevine breeding. Biosyst. Eng. 2019, 183, 170–183. [Google Scholar] [CrossRef]
- Rudolph, R.; Herzog, K.; Toepfer, R.; Steinhage, V. Efficient identification, localization and quantification of grapevine inflorescences and flowers in unprepared field images using Fully Convolutional Networks. Vitis 2019, 58, 95–104. [Google Scholar] [CrossRef]
- Khokher, M.R.; Liao, Q.; Smith, A.L.; Sun, C.; Mackenzie, D.; Thomas, M.R.; Wang, D.; Edwards, E.J. Early Yield Estimation in Viticulture Based on Grapevine Inflorescence Detection and Counting in Videos. IEEE Access 2023, 11, 37790–37808. [Google Scholar] [CrossRef]
- Pahalawatta, K.; Fourie, J.; Parker, A.; Carey, P.; Werner, A. Detection and classification of opened and closed flowers in grape inflorescences using Mask R-CNN. In Proceedings of the 2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ), Wellington, New Zealand, 25–27 November 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Rahim, U.F.; Mineno, H.; Tomoyoshi, U. Comparison of Grape Flower Counting Using Patch-Based Instance Segmentation and Density-Based Estimation with Convolutional Neural Networks Comparison of Grape Flower Counting Using Patch-Based Instance Segmentation and Density-Based Estimation with Convolutional Neural Networks. 2021. Available online: https://easychair.org/publications/preprint/37ln (accessed on 19 September 2023).
- Palacios, F.; Bueno, G.; Salido, J.; Diago, M.P.; Hernández, I.; Tardaguila, J. Automated grapevine flower detection and quantification method based on computer vision and deep learning from on-the-go imaging using a mobile sensing platform under field conditions. Comput. Electron. Agric. 2020, 178, 105796. [Google Scholar] [CrossRef]
- Jaramillo, J.; Vanden Heuvel, J.; Petersen, K.H. Low-Cost, Computer Vision-Based, Prebloom Cluster Count Prediction in Vineyards. Front. Agron. 2021, 3, 648080. [Google Scholar] [CrossRef]
- Rahim, U.; Utsumi, T.; Mineno, H. Deep learning-based accurate grapevine inflorescence and flower quantification in unstructured vineyard images acquired using a mobile sensing platform. Comput. Electron. Agric. 2022, 198, 107088. [Google Scholar] [CrossRef]
- Buayai, P.; Yok-In, K.; Inoue, D.; Leow, C.S.; Nishizaki, H.; Makino, K.; Mao, X. End-to-End Inflorescence Measurement for Supporting Table Grape Trimming with Augmented Reality. In Proceedings of the 2021 International Conference on Cyberworlds (CW), Caen, France, 28–30 September 2021; pp. 101–108. [Google Scholar] [CrossRef]
- Du, W.; Zhu, Y.; Li, S.; Liu, P. Spikelets detection of table grape before thinning based on improved YOLOV5s and Kmeans under the complex environment. Comput. Electron. Agric. 2022, 203, 107432. [Google Scholar] [CrossRef]
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants; Blackwell Wissenschafts-Verlag: Berlin, Germany, 1997. [Google Scholar]
- Buslaev, A.; Iglovikov, V.I.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A.A. Albumentations: Fast and Flexible Image Augmentations. Information 2020, 11, 125. [Google Scholar] [CrossRef]
- Lin, T.Y.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C.L.; Dollár, P. Microsoft COCO: Common Objects in Context. arXiv 2015, arXiv:cs.CV/1405.0312. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv 2019, arXiv:cs.LG/1912.01703. [Google Scholar]
- Everingham, M.; Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef]
Model | Confidence Threshold (%) | P Box (%) | R Box (%) | F1 Box (%) | P Mask (%) | R Mask (%) | F1 Mask (%) | Speed (ms) |
---|---|---|---|---|---|---|---|---|
YOLOv5n | 76.1 | 93.5 | 91.7 | 92.6 | 96.3 | 94.5 | 95.4 | 4.5 |
YOLOv5s | 67.8 | 93.8 | 96.3 | 95.0 | 96.4 | 99.1 | 97.7 | 9.6 |
YOLOv8n | 73.0 | 92.8 | 94.9 | 93.8 | 95.5 | 97.8 | 96.6 | 6.8 |
YOLOv8s | 82.7 | 93.0 | 97.2 | 95.1 | 94.7 | 99.1 | 96.9 | 12.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreira, G.; Magalhães, S.A.; dos Santos, F.N.; Cunha, M. Automated Infield Grapevine Inflorescence Segmentation Based on Deep Learning Models. Biol. Life Sci. Forum 2023, 27, 35. https://doi.org/10.3390/IECAG2023-15387
Moreira G, Magalhães SA, dos Santos FN, Cunha M. Automated Infield Grapevine Inflorescence Segmentation Based on Deep Learning Models. Biology and Life Sciences Forum. 2023; 27(1):35. https://doi.org/10.3390/IECAG2023-15387
Chicago/Turabian StyleMoreira, Germano, Sandro Augusto Magalhães, Filipe Neves dos Santos, and Mário Cunha. 2023. "Automated Infield Grapevine Inflorescence Segmentation Based on Deep Learning Models" Biology and Life Sciences Forum 27, no. 1: 35. https://doi.org/10.3390/IECAG2023-15387
APA StyleMoreira, G., Magalhães, S. A., dos Santos, F. N., & Cunha, M. (2023). Automated Infield Grapevine Inflorescence Segmentation Based on Deep Learning Models. Biology and Life Sciences Forum, 27(1), 35. https://doi.org/10.3390/IECAG2023-15387