A Predictive Tool Based on DNA Methylation Data for Personalized Weight Loss through Different Dietary Strategies †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Nutritional Intervention
2.3. DNA Isolation and Bisulfite Conversion
2.4. Array Analysis
2.5. Design of the BMI Percentage Loss Prediction Model Based on MHP and LF Diet Methylation Data
- Selection of CpG sites for prediction model obtained in the “Illumina” methylation array;
- Weighted sub-score and total CpG site methylation score for prediction model;
- Design of a linear mixed effect model for the prediction of percentage loss of BMI in which the interaction between diet and total Score is analyzed;
- Information on the CpG sites obtained from the “Illumina” methylation array of each diet to characterize the CpG sites.
2.6. Statistical Analysis for the Prediction Model
3. Results
3.1. Selection of CpG Sites for the Prediction Model
3.2. Design of Weighted Sub-Scores That Contain the CpG Sites of Each Diet and the Calculation of the Total Methylation Score for the Prediction Model
3.3. Representation of the Prediction Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, F.Y.; Yin, R.X. Recent progress in epigenetics of obesity. Diabetol. Metab. Syndr. 2022, 14, 171. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Heianza, Y.; Li, X.; Shang, X.; Smith, S.R.; Bray, G.A.; Sacks, F.M.; Qi, L. Genetic, epigenetic and transcriptional variations at NFATC2IP locus with weight loss in response to diet interventions: The POUNDS Lost Trial. Diabetes Obes. Metab. 2018, 20, 2298–2303. [Google Scholar] [CrossRef] [PubMed]
- Samblas, M.; Milagro, F.I.; Martínez, A. DNA methylation markers in obesity, metabolic syndrome, and weight loss. Epigenetics 2019, 14, 421–444. [Google Scholar] [CrossRef] [PubMed]
- Fuso, A.; Raia, T.; Orticello, M.; Lucarelli, M. The complex interplay between DNA methylation and miRNAs in gene expression regulation. Biochimie 2020, 173, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Czogała, W.; Strojny, W.; Schab, M.; Grabowska, A.; Miklusiak, K.; Kowalczyk, W.; Łazarczyk, A.; Tomasik, P.; Skoczeń, S. Fto and plag1 genes expression and fto methylation predict changes in circulating levels of adipokines and gastrointestinal peptides in children. Nutrients 2021, 13, 3585. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, K.M.; Ramos-Lopez, O.; Pérusse, L.; Kato, H.; Ordovas, J.M.; Martínez, J.A. Precision nutrition: A review of current approaches and future endeavors. Trends Food Sci. Technol. 2022, 128, 253–264. [Google Scholar] [CrossRef]
- World Medical Association declaration of Helsinki. Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed]
- Houseman, E.A.; Accomando, W.P.; Koestler, D.C.; Christensen, B.C.; Marsit, C.J.; Nelson, H.H.; Wiencke, J.K.; Kelsey, K.T. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinform. 2012, 13, 86. [Google Scholar] [CrossRef]
- Lindsey, C. Stat Softw Components. Boston College Department of Economics. VSELECT: Stata Module to Perform Linear Regression Variable Selection. Available online: https://ideas.repec.org/c/boc/bocode/s457808.html (accessed on 23 August 2023).
- Thibault, R.; Abbasoglu, O.; Ioannou, E.; Meija, L.; Ottens-Oussoren, K.; Pichard, C.; Rothenberg, E.; Rubin, D.; Siljamäki-Ojansuu, U.; Vaillant, M.F.; et al. ESPEN guideline on hospital nutrition. Clin. Nutr. 2021, 40, 5684–5709. [Google Scholar] [CrossRef] [PubMed]
- Pomar, M.D.; García, N.V.; Herrera, M.Á.; Barahona, M.J.; Bueno, M.; Caixàs, A.; Continente, A.C.; Ciudin, A.; Cordido, F.; de Hollanda, A.; et al. Abordaje clínico integral SEEN de la obesidad en la edad adulta. Endocrinol. Diabetes Nutr. (Engl. Ed). 2021, 68, 130–136. [Google Scholar]
- Do, W.L.; Sun, D.; Meeks, K.; Dugué, P.A.; Demerath, E.; Guan, W.; Li, S.; Chen, W.; Milne, R.; Adeyemo, A.; et al. Epigenome-wide meta-analysis of BMI in nine cohorts: Examining the utility of epigenetically predicted BMI. Am. J. Hum. Genet. 2023, 110, 273–283. [Google Scholar] [CrossRef] [PubMed]
Score | Calculating Formula |
---|---|
Sub-score MHP Diet | (cg22355889x9.82) + (cg24433124x −5.81) + (cg14317533x −7.58) + (cg07104639x6.25) + (cg19148731x −7.88) + (cg01097406x5.98) + (cg15263617x8.97) + (cg23377942x −4.19) + (cg25340688x −5.79) + (cg19053046x5.08) + (cg11460778x4.22) + (cg03447554x −4.08) + (cg09768983x3.98) + (cg20684491x4.80) + (cg20315590x −6.71) |
Sub-score LF Diet | (cg15572235x7.57) + (cg19424457x −8.04) + (cg18493115x −6.26) + (cg00481382x5.78) + (cg16600909x5.38) + (cg15837280x5.83) + (cg03188948x −4.30) + (cg16078649x −4.16) + (cg15011943x4.64) + (cg07167872x3.98) + (cg14222729x −3.40) |
Total Methylation Score | Sub-score MHP − Sub-Score LF |
Prob > chi2 = < 0.001 | Percentage of BMI Loss | |
---|---|---|
Independent Variable | Beta Coefficient ± SEM | p Values Z Test |
Age | −0.1 ± <0.001 | 0.943 |
Sex | −0.1 ± 0.1 | 0.954 |
Diet (MHP or LF) | −1.21 ± 0.1 | <0.001 |
Total methylation score | 0.2 ± 0.01 | <0.001 |
Diet## total methylation score | −0.2 ± 0.02 | <0.001 |
Cons | −7.9 ± 0.6 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Álvarez, N.C.; Riezu-Boj, J.I.; Martínez, J.A.; García-Calzón, S.; Milagro, F.I. A Predictive Tool Based on DNA Methylation Data for Personalized Weight Loss through Different Dietary Strategies. Biol. Life Sci. Forum 2023, 29, 12. https://doi.org/10.3390/IECN2023-16335
García-Álvarez NC, Riezu-Boj JI, Martínez JA, García-Calzón S, Milagro FI. A Predictive Tool Based on DNA Methylation Data for Personalized Weight Loss through Different Dietary Strategies. Biology and Life Sciences Forum. 2023; 29(1):12. https://doi.org/10.3390/IECN2023-16335
Chicago/Turabian StyleGarcía-Álvarez, Nereyda Carolina, José Ignacio Riezu-Boj, José Alfredo Martínez, Sonia García-Calzón, and Fermín I. Milagro. 2023. "A Predictive Tool Based on DNA Methylation Data for Personalized Weight Loss through Different Dietary Strategies" Biology and Life Sciences Forum 29, no. 1: 12. https://doi.org/10.3390/IECN2023-16335
APA StyleGarcía-Álvarez, N. C., Riezu-Boj, J. I., Martínez, J. A., García-Calzón, S., & Milagro, F. I. (2023). A Predictive Tool Based on DNA Methylation Data for Personalized Weight Loss through Different Dietary Strategies. Biology and Life Sciences Forum, 29(1), 12. https://doi.org/10.3390/IECN2023-16335