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Abstract: Yield forecasting is of immeasurable value in modern viticulture to optimize harvest
scheduling and quality management. Traditionally, this task is carried out through manual and
destructive sampling of production components and their accurate assessment is expensive, time-
consuming, and error-prone, resulting in erroneous projections. The number of inflorescences and
flowers per vine is one of the main components and serves as an early predictor. The adoption of new
non-invasive technologies can automate this task and drive viticulture yield forecasting to higher
levels of accuracy. In this study, different Single Stage Instance Segmentation models from the state-
of-the-art You Only Look Once (YOLO) family, such as YOLOv5 and YOLOv8, were benchmarked
on a dataset of RGB images for grapevine inflorescence detection and segmentation, with the aim of
validating and subsequently implementing the solution for counting the number of inflorescences and
flowers. All models obtained promising results, with the YOLOv8s and the YOLOv5s models standing
out with an F1-Score of 95.1% and 97.7% for the detection and segmentation tasks, respectively.
Moreover, the low inference times obtained demonstrate the models’ ability to be deployed in
real-time applications, allowing for non-destructive predictions in uncontrolled environments.

Keywords: computer vision; digital phenotyping; object segmentation; precision viticulture; yield
forecasting

1. Introduction

The world wine sector is a multi-billion dollar industry with a wide range of economic
activities, representing a vital part of the global economy growth [1]. One crucial aspect
of achieving optimal results in viticulture is the yield assessment—the anticipation of the
quantity and quality of grapes that a vineyard will produce in a given season. Traditionally,
it is carried out by measuring three main yield components, the number of bunches per
vine, the number of berries per bunch and the mass of a berry, each one partly responsible
for the season-to-season spatial yield variability [2]. One of the earliest assessments can
be conducted during spring growth, as the formation of inflorescence primordia (flower
buds) determines the potential number of bunches that the vine will produce, while the
number of flowers formed on an inflorescence determines the potential number of berries
on that bunch [3]. However, as these tasks are carried out manually and assessed by visual
inspection, they end up becoming expensive, time-consuming and error-prone, as they are
repetitive and meticulous, ultimately becoming fatiguing and overly dependent on the
operator’s training and skills.
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The synergy between viticulture and cutting-edge technology has given rise to trans-
formative advancements, leading to more pragmatic and modern approaches, reshaping
the sector landscape [4]. The most powerful and widely used technology in this area is
computer vision (CV), employed to extract meaningful information of physical objects from
images or videos [5]. The first approaches were based on more classic image processing and
analysis techniques, focusing on counting the number of flowers per inflorescence [6–11].
It was therefore common to acquire images in controlled environments with artificial
backgrounds, where the inflorescences were already detached from the plant. Thus, con-
ventional methods are primarily constrained by the necessity to meticulously choose
suitable algorithms for tasks like feature extraction, shape identification and categorization,
and often require a degree of control over the environment [12]. Recently, Deep Learning
(DL) models have emerged as potent tools, having a massive impact on the development
of CV algorithms, due to their capacity to unravel and deal with complex scenarios [13].
Regarding viticulture, the accessibility and visibility of different yield components are
two major challenges that CV-endowed systems face. The rates of occlusion for both in-
florescence and bunch exceed 50% by a significant margin [14]. DL models have made it
possible to achieve non-destructive predictive models that can be used in uncontrolled
environments, not only in terms of detecting and counting flowers per inflorescence, but
also inflorescences per vine, since these are more robust, with better responses to occlusion
and overlapping problems [15–24].

The agricultural sector’s inherently complex and unstructured environment poses
significant challenges that can hinder the performance of these solutions. While DL models
have demonstrated great promise, the existing literature still exhibits notable weaknesses
that warrant attention [12], related to poor dataset quality and size, and the methodologies
and detection frameworks employed may not be optimized for the unique challenges
posed by agricultural settings. Therefore, this research aims to analyze the performance of
different state-of-the-art YOLO model versions to detect and segment grapevine inflores-
cences. The implementation of these models can be beneficial, as they can perform feature
extraction and object detection in a single step, consuming less time and enabling their
potential use in real-time applications, as well as providing support for future tasks, such
as counting flowers per inflorescence. The main contributions of this study are as follows:
(i) Acquire and make publicly available datasets of labeled grapevine inflorescences images.
(ii) Benchmark the results of DL models for the detection and segmentation of inflorescences
in different grape varieties and phenological stages.

2. Methods
2.1. Data Acquisition and Processing

A new RGB images dataset of grapevine inflorescences was collected throughout three
grapevine phenological stages, according to the extended Biologische Bundesanstalt, Bun-
dessortenamt und CHemische Industrie (BBCH) scale [25]: (i) BBCH Code 53—Inflorescences
clearly visible; (ii) BBCH Code 55—Inflorescences swelling, flowers closely pressed together;
and (iii) BBCH Code 57—Inflorescences fully developed, flowers separating. The images
were acquired in an experimental vineyard of the Agrarian Campus of Vairão, of the
Faculty of Sciences of the University of Porto (41°24′12.2′′ N 2°10′26.5′′ W), using a dual
camera Xiaomi Redmi Note 7 smartphone with a resolution of 8000 × 6000 pixels. The
dataset includes images of the following national and international grapevine varieties:
Touriga Nacional (VIVC-12594); Barroca (VIVC-12462); Tinta Roriz (VIVC-12350); Cabernet
Sauvignon (VIVC-1929); Viosinho (VIVC-13109); and Trajadura (VIVC-12629). Although
color is not a differentiating feature at this phenological stage, red and white grapevine
varieties were considered mainly due to the differences they exhibit in terms of size and
shape of the inflorescences. In addition, the images were collected in various lighting
and perspective conditions, often presenting scenarios of occlusion and overlap of inflo-
rescences by different structures, inherent to the plant (i.e., leaves, stems, trunks or other
inflorescences) or to the vineyard trellis and training system itself (i.e., cordon or foliage

https://www.vivc.de/index.php?r=passport%2Fview&id=12594
https://www.vivc.de/index.php?r=passport/viewtree&id=12462
https://www.vivc.de/index.php?r=passport%2Fview&id=12350
https://www.vivc.de/index.php?r=passport%2Fview&id=1929
https://www.vivc.de/index.php?r=passport%2Fview&id=13109
https://www.vivc.de/index.php?r=passport%2Fview&id=12629
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wires), adding complex and varied visual information. A total of 539 images compose
the dataset, which is publicly available on the open-access digital repository Zenodo:
https://doi.org/10.5281/zenodo.8332171 (accessed on 10 September 2023).

The high resolution of the images translates into a large amount of data to be processed
by the DL models. Thus, the resolution of the images was decreased to 1254 × 1672 pixels,
retaining the same aspect ratio without losing an excessive amount of relevant information
for the models’ learning. Following this procedure, the images were manually annotated
using the open-source Computer Vision Annotation Tool (see https://cvat.org/, accessed
on 1 August 2023). Since it involves image segmentation, each annotation contains a bound-
ing box around each object, representing its area, position and class, and a segmentation
mask that makes it possible to associate each pixel within the bounding box to a particular
class. The generated masks were used to produce YOLO format annotations.

To train and validate the different models, the images were divided into 3 sets: (i) Train
(60%); (ii) Validation (20%); and (iii) Test (20%). Train and Validation sets were artificially
increase through Albumentations [26], a Python library for image augmentation, gener-
ating new data points from the existing dataset. The image transform operations were
carefully chosen to only generate realistic vineyard images, such as: (i) CLAHE, (ii) Emboss,
(iii) Sharpen, (iv) ISO Noise, (v) Random Fog, (vi) Spatter, (vii) Random Brightness Contrast,
(viii) Blur, (ix) Gaussian Noise, (x) Horizontal Flip, and (xi) Shift Scale Rotate. These opera-
tions were not only applied individually, but combinations were also made, thus totaling
59 transforms applied to each image of the two sets. After the augmentation procedure, the
dataset’s size increased to 26,027 images. The training and validation sets contained 19,500
and 6420 images, respectively, while the test set was composed of 107 images.

2.2. Models’ Training and Inference

To correctly identify grapevine inflorescences, four YOLO models were benchmarked,
since they have a strong reputation for its accuracy and speed, which is beneficial for live
inference tasks and real-time applications: (i) YOLOv5n; (ii) YOLOv5s; (iii) YOLOv8n; and
(iv) YOLOv8s. The models were pre-trained with Microsoft’s COCO (Common Objects in
Context) dataset [27] and through transfer learning, a fine-tune was performed to detect
and segment grapevine inflorescences. Training sessions ran for 20 epochs, with a batch size
of 16. PyTorch [28] was employed for the training and inference tasks, using an NVIDIA
GeForce RTX 4060 graphics processing unit (GPU) with 8 GBs of available memory.

In segmentation tasks, a mask is predicted. A successful prediction is one which
maximizes the overlap between the predicted and true objects. The two main metrics
used to assess a “correct prediction” are the Intersection over Union (IoU) and F1-Score.
Additionally, the metrics used by the Pascal VOC challenge [29], Precision × Recall curve
and Average Precision (AP) were chosen to better benchmark the DL models. A key step in
the models’ inference is the optimization of the confidence threshold. For this purpose, a
cross-validation technique was used. The F1-Score was computed for all of the confidence
thresholds in the validation set, from 0% to 100%, into steps of 1%. The confidence threshold
that optimizes the F1-Score was selected and then the models were evaluated on the test
set, considering an IoU ≥ 90%.

3. Results and Discussion

The models required defining the best confidence threshold that maximizes the
F1-Score before evaluating their performance. Usually, higher thresholds increase Pre-
cision, the percentage of correct detections, but decrease Recall, the ability to detect all
relevant objects. Table 1 shows the results across the different metrics. The confidence
threshold values presented lead to the best balance between Precision and Recall and all four
models found their best F1-score above 65%, with the highest belonging to the YOLOv8s
model at 82.7%. Overall, the results for the four models are encouraging and very similar,
being all above 90%. YOLOv8s has the best performance with regard to the location of
objects in the image (F1Box = 95.1%); however, the YOLOv5s outperformed all of the other

https://doi.org/10.5281/zenodo.8332171
https://cvat.org/


Biol. Life Sci. Forum 2023, 27, 35 4 of 6

models in terms of the segmentation mask’s quality (F1Mask = 97.7%). Another important
factor when it comes to real-time applications is the inference time. Both YOLOv5 models
are faster at detecting and segmenting than their YOLOv8 counterparts, which is to be
expected given the size of the models.

Table 1. Detection and Segmentation results with the test set considering optimized confidence
thresholds. (P = Precision; R = Recall; F1 = F1-Score)

Model Confidence
Threshold (%) P Box (%) R Box (%) F1 Box (%) P Mask (%) R Mask (%) F1 Mask (%) Speed (ms)

YOLOv5n 76.1 93.5 91.7 92.6 96.3 94.5 95.4 4.5
YOLOv5s 67.8 93.8 96.3 95.0 96.4 99.1 97.7 9.6
YOLOv8n 73.0 92.8 94.9 93.8 95.5 97.8 96.6 6.8
YOLOv8s 82.7 93.0 97.2 95.1 94.7 99.1 96.9 12.3

To better understand the performance of the models and, above all, identify flaws and
areas of improvement, it is essential to analyze the images from the test set. The strong
performance is evident in all of the models (a), but it is clear whether the results could
have been better had it not been for some errors, such as non-detections (b), detections of
non-annotated inflorescences (c) and multiple detections of the same inflorescence (d), as
Figure 1 illustrates.
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Figure 1. Detection and segmentation of grapevine inflorescence test set samples: (a) correct detec-
tion (YOLOv5n), (b) missed detection (YOLOv5s), (c) detections of non-annotated inflorescences
(YOLOv8n) and (d) multiple detections of the same inflorescence (YOLOv8s). Red bounding boxes
represent the models’ predictions and blue bounding boxes represent the groundtruth annotations.

To understand the relevance of the results obtained, it becomes essential to compare
them with the current literature. To the authors’ knowledge, all of the models evaluated
outperformed the existing literature, as far as inflorescence segmentation is concerned, with
the advantage of using a robust dataset under uncontrolled conditions. Certain studies
have taken the approach of capturing images at night using artificial light, allowing for
greater homogeneity, trying to extract the complexity provided by the background. These
are the cases of Palacios et al. [20] and Rahim et al. [22], who, through the SegNet (VGG19)
and Mask-RCNN models, obtained F1-Scores of 93.0% and 94.3%, respectively. However, it
should be noted that the images were taken at a longer distance, which makes the task of
detection and segmentation more difficult. The scarcity of images is also a problem, with the
majority of works presenting datasets with less than 10,000 images. Rudolph et al. [16], for
example, tested an AlexNet-based FCN on just 10 images, achieving a mean IoU of 76.0%.
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All in all, the results presented are hopeful about the success of detecting and segment-
ing inflorescences, but drawbacks such as the low robustness of the datasets and the poor
specification of the evaluation metrics need to be addressed in order to take the next step
towards automating these tasks.

4. Conclusions

In this paper, four pre-trained YOLO models were benchmarked in grapevine inflores-
cence detection and segmentation. One dataset of inflorescence images was acquired under
uncontrolled conditions for that purpose.

The results obtained were promising, with all models achieving F1-Scores above 90%.
The YOLOv8s and YOLOv5s models stood out, achieving an F1-ScoreBox of 95.1% and an
F1-ScoreMask of 97.7%, for the detection and segmentation tasks, respectively. Allied to this
performance, the low inference times recorded (under 13 ms), where the Yolov5s model
showed the best trade-off, prove the suitability of these models for deployment in real-time
applications and the ability to support algorithms capable of counting flowers in the field
in a non-destructive way, allowing for more accurate and robust sampling and forecasting.

In perspective, future work should go through the following steps: (i) enlarge the
dataset with images from farther distances, to be able to infer the number of inflorescences
per vine; (ii) evaluate the performance of these models in real-time conditions in a vineyard;
and (iii) incorporate these models into a framework that allows the subsequent counting of
the flower number per inflorescence.
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