Barriers and Challenges in the Implementation of Decentralized Solar Water Disinfection Treatment Systems—A Case of Ghana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Data Collection and Sampling Procedure
2.3. Measures
2.3.1. Response Variable
2.3.2. Key Predictor/Explanatory Variables
2.3.3. Compositional and Contextual Factors
2.4. Data and Statistical Analyses
Multivariate Regression
2.5. Ethical Statement
3. Results
3.1. Descriptive Statistics for the Qualitative Data
3.2. Participants’ Opinions About Water Quality
3.2.1. Knowledge of Water Quality
3.2.2. Water Treatment at Home
3.2.3. Sources of Water Contamination
3.3. Enablers of Effective Implementation of DSODIS
3.3.1. Willingness to Pay for DSODIS
3.3.2. Household and Community Participation
3.3.3. Willingness to Use Water from DSODIS
3.4. Barriers to Effective Implementation of DSODIS
3.4.1. Environmental Barriers
3.4.2. Technological Barriers
3.4.3. Political and Legal Barriers
3.4.4. Economic Barriers
3.5. Descriptive Statistics for Quantitative Data
3.6. Multivariate Analyses
4. Discussion
5. Limitations of the Study
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eichelberger, L.; Hickel, K.; Thomas, T.K. A community approach to promote household water security: Combining centralized and decentralized access in remote Alaskan communities. Water Secur. 2020, 10, 100066. [Google Scholar] [CrossRef]
- Bitew, B.D.; Gete, Y.K.; Biks, G.A.; Adafrie, T.T. Barriers and Enabling Factors Associated with the Implementation of Household Solar Water Disinfection: A Qualitative Study in Northwest Ethiopia. Am. J. Trop. Med. Hyg. 2020, 102, 458–467. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization; UNICEF. Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines; World Health Organization: Geneva, Switzerland, 2017; ISBN 978-92-4-151289-3. Available online: https://www.who.int/publications/i/item/9789241512893 (accessed on 19 March 2025).
- Afitiri, A.-R. Assessing Surface Water Quality in the Birim North District of Ghana Using Spatial Modelling. MPhil Thesis, University of Cape Coast, Cape Coast, Ghana, 2019. Available online: https://ir.ucc.edu.gh/xmlui/handle/123456789/4568 (accessed on 30 July 2024).
- Ojomo, E.; Elliott, M.; Goodyear, L.; Forson, M.; Bartram, J. Sustainability and scale-up of household water treatment and safe storage practices: Enablers and barriers to effective implementation. Int. J. Hyg. Environ. Health 2015, 218, 704–713. [Google Scholar] [CrossRef] [PubMed]
- Afitiri, A.-R.; Armah, F.A.; Afrifa, E.K.A.; Ekumah, B. The joint effect of natural and human-induced environmental factors on surface water quality in the Birim North District of Ghana. Water Pract. Technol. 2020, 15, 605–618. [Google Scholar] [CrossRef]
- Nyarko, K.B. Drinking Water Sector in Ghana: Drivers for Performance; Taylor & Francis: Leiden, The Netherlands, 2007; Available online: http://cdm21063.contentdm.oclc.org/cdm/ref/collection/phd1/id/41798 (accessed on 21 August 2022).
- CWSA. Annual Reports—Community Water and Sanitation Agency. Available online: https://www.cwsa.gov.gh/publications/annual-reports/ (accessed on 2 December 2024).
- Okofo, L.B. Hydrogeological Assessment for Evaluating the Feasibility of Managed Aquifer Recharge in Northeastern Ghana. Ph.D. Thesis, BTU Cottbus-Senftenberg, Brandenburg, Germany, 2023. Available online: https://opus4.kobv.de/opus4-btu/frontdoor/index/index/docId/6244 (accessed on 26 July 2024).
- Cobbinah, P.B.; Okyere, D.K.; Gaisie, E. Population Growth and Water Supply: The Future of Ghanaian Cities; IGI Global Scientific Publishing: Pennsylvania, PA, USA, 2020; pp. 96–117. Available online: https://www.igi-global.com/gateway/chapter/231298 (accessed on 19 March 2025).
- Afitiri, A.-R.; Appah Aram, S.; Martienssen, M. Systematic review of the effects of advanced oxidation processes integration with solar water disinfection for improved drinking water production. Waste Manag. Bull. 2024, 1, 52–59. [Google Scholar] [CrossRef]
- Afitiri, A.-R.; Afrifa, E.K.A. Households’ willingness to use water from a solar water disinfection treatment system for household purposes. World 2024, 5, 1181–1193. [Google Scholar] [CrossRef]
- Hendrickson, C.; Oremo, J.; Akello, O.O.; Bunde, S.; Rayola, I.; Akello, D.; Akwiri, D.; Park, S.-J.; Dorevitch, S. Decentralized solar-powered drinking water ozonation in Western Kenya: An evaluation of disinfection efficacy. Gates Open Res. 2020, 4, 56. [Google Scholar] [CrossRef]
- Chaúque, B.J.M.; Rott, M.B. Solar disinfection (SODIS) technologies as alternative for large-scale public drinking water supply: Advances and challenges. Chemosphere 2021, 281, 130754. [Google Scholar] [CrossRef]
- Cook, S.; Tjandraatmadja, G.; Ho, A.; Sharma, A. Definition of Decentralised Systems in the South East Queensland Context; Urban Water Security Research Alliance Brisbane: Brisbane, Australia, 2008; Available online: https://sswm.info/sites/default/files/reference_attachments/COOK%20et%20al%202009%20Definition%20of%20Decentralised%20Systems%20in%20the%20South%20East%20Queensland%20Context.pdf (accessed on 20 August 2024).
- World Bank Monitoring Global Poverty: Report of the Commission on Global Poverty; The World Bank: Washington, DC, USA, 2016; ISBN 978-1-4648-0961-3.
- Afitiri, A.-R.; Armah, F.A.; Ekumah, B.; Nyieku, F.E.; Yawson, D.O.; Odoi, J.O. Cumulative effects of environmental factors on household childhood diarrhoea in Ghana. Water Pract. Technol. 2020, 15, 1032–1049. [Google Scholar] [CrossRef]
- Ahadzi, D.F.; Afitiri, A.-R.; Ahadzi, E. Organizational safety culture perceptions of healthcare workers in Ghana: A cross-sectional interview study. Int. J. Nurs. Stud. Adv. 2021, 3, 100020. [Google Scholar] [CrossRef]
- Armah, F.A.; Ekumah, B.; Yawson, D.O.; Odoi, J.O.; Afitiri, A.-R.; Nyieku, F.E. Access to improved water and sanitation in sub-Saharan Africa in a quarter century. Heliyon 2018, 4, e00931. [Google Scholar] [CrossRef] [PubMed]
- Pol, L.G.; Thomas, R.K. The Demography of Health and Health Care; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Armah, F.A.; Ung, M.; Boamah, S.A.; Luginaah, I.; Campbell, G. Out of the frying pan into the fire? Urban penalty of the poor and multiple barriers to climate change adaptation in Cambodia and Tanzania. J. Environ. Stud. Sci. 2017, 7, 69–86. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; WHO: Geneva, Switzerland, 2024; Available online: https://www.who.int/publications/i/item/9789241548151 (accessed on 4 December 2024).
- Williams, H.A.; Gaines, J.; Patrick, M.; Berendes, D.; Fitter, D.; Handzel, T. Perceptions of health communication, water treatment and sanitation in Artibonite Department, Haiti, March-April 2012. PLoS ONE 2015, 10, e0142778. [Google Scholar] [CrossRef] [PubMed]
- Acharya, D.; Singh, J.K.; Adhikari, M.; Gautam, S.; Pandey, P.; Dayal, V. Association of water handling and child feeding practice with childhood diarrhoea in rural community of Southern Nepal. J. Infect. Public Health 2018, 11, 69–74. [Google Scholar] [CrossRef]
- Ballesteros, M.; Brindley, C.; Sánchez-Pérez, J.A.; Fernández-Ibañez, P. Worldwide Research Trends on Solar-Driven Water Disinfection. Int. J. Environ. Res. Public Health 2021, 18, 9396. [Google Scholar] [CrossRef]
- Coetzee, H.; Nell, W.; Bezuidenhout, C. An assessment of perceptions, sources and uses of water among six African communities in the North West Province of South Africa. Water SA 2016, 42, 432–441. [Google Scholar] [CrossRef]
- Rojas, L.F.R.; Megerle, A. Perception of water quality and health risks in the rural area of Medellín. Am. J. Rural Dev. 2013, 1, 106–115. [Google Scholar] [CrossRef]
- Rothstein, J.D.; Leontsini, E.; Olortegui, M.P.; Yori, P.P.; Surkan, P.J.; Kosek, M. Determinants of caregivers’ use and adoption of household water chlorination: A qualitative study with peri-urban communities in the Peruvian Amazon. Am. J. Trop. Med. Hyg. 2015, 93, 626–635. [Google Scholar] [CrossRef]
- Rosa, G.; Huaylinos, M.L.; Gil, A.; Lanata, C.; Clasen, T. Assessing the Consistency and Microbiological Effectiveness of Household Water Treatment Practices by Urban and Rural Populations Claiming to Treat Their Water at Home: A Case Study in Peru. PLoS ONE 2014, 9, e114997. [Google Scholar] [CrossRef]
- Christen, A.; Duran Pacheco, G.; Hattendorf, J.; Arnold, B.F.; Cevallos, M.; Indergand, S.; Colford, J.M.; Mäusezahl, D. Factors associated with compliance among users of solar water disinfection in rural Bolivia. BMC Public Health 2011, 11, 210. [Google Scholar] [CrossRef]
- Alvear-Daza, J.J.; Sanabria, J.; Gutiérrez-Zapata, H.M.; Rengifo-Herrera, J.A. An integrated drinking water production system to remove chemical and microbiological pollution from natural groundwater by a coupled prototype helio-photochemical/H2O2/rapid sand filtration/chlorination powered by photovoltaic cell. Sol. Energy 2018, 176, 581–588. [Google Scholar] [CrossRef]
- Wolf, J.; Prüss-Ustün, A.; Cumming, O.; Bartram, J.; Bonjour, S.; Cairncross, S.; Clasen, T.; Colford, J.M., Jr.; Curtis, V.; De France, J.; et al. Systematic review: Assessing the impact of drinking water and sanitation on diarrhoeal disease in low- and middle-income settings: Systematic review and meta-regression. Trop. Med. Int. Health 2014, 19, 928–942. [Google Scholar] [CrossRef] [PubMed]
- Kondo Nakada, L.Y.; Urban, R.C. Priority areas for the use of solar water disinfection (SODIS) in Brazil: A spatial approach. J. Water Sanit. Hyg. Dev. 2024, 14, 950–962. [Google Scholar] [CrossRef]
- Orgill, J.; Shaheed, A.; Brown, J.; Jeuland, M. Water quality perceptions and willingness to pay for clean water in peri-urban Cambodian communities. J. Water Health 2013, 11, 489–506. [Google Scholar] [CrossRef] [PubMed]
- Rufener, S.; Mäusezahl, D.; Mosler, H.-J.; Weingartner, R. Quality of drinking-water at source and point-of-consumption—Drinking cup as a high potential recontamination risk: A field study in Bolivia. J. Health Popul. Nutr. 2010, 28, 34–41. [Google Scholar] [CrossRef]
- McGuigan, K.G.; Samaiyar, P.; du Preez, M.; Conroy, R.M. High compliance randomized controlled field trial of solar disinfection of drinking water and its impact on childhood diarrhea in rural Cambodia. Environ. Sci. Technol. 2011, 45, 7862–7867. [Google Scholar] [CrossRef]
- Rainey, R.C.; Harding, A.K. Acceptability of solar disinfection of drinking water treatment in Kathmandu Valley, Nepal. Int. J. Environ. Health Res. 2005, 15, 361–372. [Google Scholar] [CrossRef]
- Borde, P.; Elmusharaf, K.; McGuigan, K.G.; Keogh, M.B. Community challenges when using large plastic bottles for Solar Energy Disinfection of Water (SODIS). BMC Public Health 2016, 16, 931. [Google Scholar] [CrossRef]
- Brockliss, S.; Luwe, K.; Ferrero, G.; Morse, T. Assessment of the 20L SODIS bucket household water treatment technology under field conditions in rural Malawi. Int. J. Hyg. Environ. Health 2022, 240, 113913. [Google Scholar] [CrossRef]
- Kraemer, S.M.; Mosler, H.-J. Persuasion factors influencing the decision to use sustainable household water treatment. Int. J. Environ. Health Res. 2010, 20, 61–79. [Google Scholar] [CrossRef]
- Mosler, H.-J.; Kraemer, S.M.; Johnston, R.B. Achieving long-term use of solar water disinfection in Zimbabwe. Public Health 2013, 127, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Meierhofer, R.; Landolt, G. Factors supporting the sustained use of solar water disinfection—Experiences from a global promotion and dissemination programme. Desalination 2009, 248, 144–151. [Google Scholar] [CrossRef]
- Tamas, A.; Mosler, H.-J. Why do people stop treating contaminated drinking water with Solar Water Disinfection (SODIS)? Health Educ. Behav. Off. Publ. Soc. Public Health Educ. 2011, 38, 357–366. [Google Scholar] [CrossRef] [PubMed]
- GSS. 2010 Population & Housing Census: Demographic, Social, Economic & Housing Characteristics; Ghana Statistical Service: Accra, Ghana, 2013.
- García-Gil, Á.; García-Muñoz, R.A.; McGuigan, K.G.; Marugán, J. Solar water disinfection to produce safe drinking water: A review of parameters, enhancements, and modelling approaches to make sodis faster and safer. Molecules 2021, 26, 3431. [Google Scholar] [CrossRef]
- McGuigan, K.G.; Conroy, R.M.; Mosler, H.-J.; du Preez, M.; Ubomba-Jaswa, E.; Fernandez-Ibañez, P. Solar water disinfection (SODIS): A review from bench-top to roof-top. J. Hazard. Mater. 2012, 235–236, 29–46. [Google Scholar] [CrossRef]
- Chaúque, B.J.M.; Brandão, F.G.; Rott, M.B. Development of solar water disinfection systems for large-scale public supply, state of the art, improvements and paths to the future—A systematic review. J. Environ. Chem. Eng. 2022, 10, 107887. [Google Scholar] [CrossRef]
- Dawney, B.; Cheng, C.; Winkler, R.; Pearce, J.M. Evaluating the geographic viability of the solar water disinfection (SODIS) method by decreasing turbidity with NaCl: A case study of South Sudan. Appl. Clay Sci. 2014, 99, 194–200. [Google Scholar] [CrossRef]
- Dessie, A.; Alemayehu, E.; Mekonen, S.; Legesse, W.; Kloos, H.; Ambelu, A. Solar disinfection: An approach for low-cost household water treatment technology in Southwestern Ethiopia. J. Environ. Health Sci. Eng. 2014, 12, 25. [Google Scholar] [CrossRef]
- Contzen, N.; Kollmann, J.; Mosler, H.-J. The importance of user acceptance, support, and behaviour change for the implementation of decentralized water technologies. Nat. Water 2023, 1, 138–150. [Google Scholar] [CrossRef]
- Hoffmann, S.; Feldmann, U.; Bach, P.M.; Binz, C.; Farrelly, M.; Frantzeskaki, N.; Hiessl, H.; Inauen, J.; Larsen, T.A.; Lienert, J.; et al. A research agenda for the future of urban water management: Exploring the potential of nongrid, small-grid, and hybrid solutions. Environ. Sci. Technol. 2020, 54, 5312–5322. [Google Scholar] [CrossRef]
- Pickering, A.J.; Crider, Y.; Amin, N.; Bauza, V.; Unicomb, L.; Davis, J.; Luby, S.P. Differences in field effectiveness and adoption between a novel automated chlorination system and household manual chlorination of drinking water in Dhaka, Bangladesh: A randomized controlled trial. PLoS ONE 2015, 10, e0118397. [Google Scholar] [CrossRef] [PubMed]
- Marston, L.; Cai, X. An overview of water reallocation and the barriers to its implementation. WIREs Water 2016, 3, 658–677. [Google Scholar] [CrossRef]
- Hulland, K.; Martin, N.; Dreibelbis, R.; Valliant, J.; Winch, P. What Factors Affect Sustained Adoption of Safe Water, Hygiene and Sanitation Technologies? A Systematic Review of Literature; University College London: London, UK, 2015. [Google Scholar]
- Murray, A.L.; Napotnik, J.A.; Rayner, J.S.; Mendoza, A.; Mitro, B.; Norville, J.; Faith, S.H.; Eleveld, A.; Jellison, K.L.; Lantagne, D.S. Evaluation of consistent use, barriers to use, and microbiological effectiveness of three prototype household water treatment technologies in Haiti, Kenya, and Nicaragua. Sci. Total Environ. 2020, 718, 134685. [Google Scholar] [CrossRef] [PubMed]
- Mulenga, J.N.; Bwalya, B.B.; Kaliba-Chishimba, K. Determinants and inequalities in access to improved water sources and sanitation among the Zambian households. Int. J. Dev. Sustain. 2017, 6, 746–762. [Google Scholar]
- Tuyet-Hanh, T.T.; Lee, J.-K.; Oh, J.; Van Minh, H.; Ou Lee, C.; Hoan, L.T.; Nam, Y.-S.; Long, T.K. Household trends in access to improved water sources and sanitation facilities in Vietnam and associated factors: Findings from the Multiple Indicator Cluster Surveys, 2000–2011. Glob. Health Action 2016, 9, 29434. [Google Scholar] [CrossRef]
- Pullan, R.L.; Freeman, M.C.; Gething, P.W.; Brooker, S.J. Geographical Inequalities in Use of Improved Drinking Water Supply and Sanitation across Sub-Saharan Africa: Mapping and Spatial Analysis of Cross-sectional Survey Data. PLoS Med. 2014, 11, e1001626. [Google Scholar] [CrossRef]
Variable | Frequency | Proportion (%) |
---|---|---|
Gender | ||
Male | 13 | 50 |
Female | 13 | 50 |
Marital status | ||
Single | 03 | 12 |
Married | 22 | 85 |
Widow/widower | 01 | 04 |
Educational attainment | ||
No formal education | 17 | 65 |
Primary | 02 | 08 |
JHS/middle | 04 | 15 |
Tertiary | 03 | 12 |
Occupation | ||
Civil servant | 01 | 04 |
Farmer | 19 | 73 |
Student | 01 | 04 |
Trader | 05 | 19 |
Household type | ||
Female-centered | 02 | 08 |
Nuclear | 06 | 23 |
Extended | 15 | 58 |
Polygamous | 03 | 12 |
Number of infants in the household (>5 years) | ||
No infants | 05 | 19 |
1 | 07 | 07 |
2 | 06 | 23 |
3 | 04 | 15 |
4 | 02 | 08 |
6 | 02 | 08 |
Variable | Number of Reported Barrier Perceptions | |||||||
---|---|---|---|---|---|---|---|---|
Zero (%) | One (%) | Two (%) | Three (%) | Four (%) | Five (%) | Six (%) | Inferential Statistics | |
Main water source and income | ||||||||
Unimproved low income | 08 | 17 | 27 | 35 | 07 | 05 | 01 | χ2 = 208.1646 (p = 0.000; Cramér’s V = 0.2451) |
Unimproved high income | 01 | 03 | 08 | 28 | 58 | 01 | 00 | |
Improved low income | 06 | 21 | 19 | 33 | 16 | 04 | 01 | |
Improved high income | 01 | 12 | 15 | 26 | 45 | 01 | 01 | |
Gender | ||||||||
Male | 05 | 17 | 18 | 28 | 30 | 02 | 01 | χ2 = 5.3804 (p = 0.496; Cramér’s V = −0.0683) |
Female | 04 | 15 | 18 | 33 | 27 | 03 | 01 | |
Born in this community (born) | ||||||||
No | 04 | 09 | 16 | 26 | 40 | 03 | 02 | χ2 = 31.6394 (p = 0.000; Cramér’s V = 0.1655) |
Yes | 04 | 17 | 18 | 32 | 26 | 03 | 00 | |
Age group (years) | ||||||||
24 and below | 06 | 23 | 20 | 45 | 05 | 01 | 00 | χ2 = 108.6041 (p = 0.000; Cramér’s V = 0.1371) |
25–30 | 02 | 18 | 19 | 39 | 20 | 01 | 00 | |
31–37 | 03 | 18 | 19 | 25 | 33 | 01 | 00 | |
38–44 | 06 | 13 | 15 | 25 | 37 | 03 | 01 | |
45–54 | 04 | 08 | 19 | 29 | 31 | 07 | 01 | |
55 and above | 10 | 18 | 15 | 38 | 18 | 03 | 00 | |
Highest educational attainment | ||||||||
No education | 05 | 15 | 20 | 31 | 25 | 03 | 01 | χ2 = 52.1189 (p = 0.000; Cramér’s V = 0.1226) |
Primary | 02 | 15 | 17 | 22 | 43 | 00 | 01 | |
Secondary | 01 | 22 | 14 | 33 | 28 | 01 | 00 | |
Higher | 02 | 12 | 10 | 36 | 33 | 06 | 02 | |
Marital status | ||||||||
Single | 05 | 20 | 18 | 36 | 20 | 01 | 00 | χ2 = 26.2437 (p = 0.010; Cramér’s V = 0.1066) |
Married | 04 | 14 | 18 | 30 | 31 | 03 | 01 | |
Divorced/widow/widower | 12 | 22 | 16 | 25 | 22 | 04 | 00 | |
Household size | ||||||||
Low household size (0–5) | 04 | 21 | 21 | 35 | 17 | 01 | 01 | χ2 = 93.2434 (p = 0.000; Cramér’s V = 0.2019) |
Medium household size (6–10) | 04 | 12 | 17 | 27 | 36 | 04 | 00 | |
High household size (>11) | 05 | 07 | 13 | 29 | 42 | 02 | 02 | |
Lived in the community (years) | ||||||||
0–19 | 04 | 08 | 16 | 28 | 38 | 04 | 01 | χ2 = 40.7603 (p = 0.002; Cramér’s V = 0.1085) |
20–29 | 04 | 21 | 16 | 36 | 21 | 02 | 01 | |
30–39 | 03 | 16 | 19 | 29 | 30 | 03 | 00 | |
40 or more | 06 | 12 | 20 | 29 | 30 | 03 | 00 | |
Community zones | ||||||||
Sawla | 03 | 16 | 17 | 34 | 26 | 04 | 01 | χ2 = 26.8762 (p = 0.081; Cramér’s V = 0.0881) |
Gindabuo | 04 | 14 | 17 | 27 | 35 | 02 | 01 | |
Kalba | 03 | 12 | 20 | 33 | 31 | 01 | 00 | |
Tuna/Sanyeri | 07 | 19 | 19 | 27 | 24 | 02 | 01 | |
n | 1155 |
Variable | Water Income + Biosocial Factors | +Sociocultural Factors | +Contextual Factors | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IRR | SE | p Value | Conf. Interval | IRR | SE | p Value | Conf. Interval | IRR | SE | p Value | Conf. Interval | ||||
Model 1 | Model 2 | Model 3 | |||||||||||||
Main water source and income (ref: unimproved low income) | |||||||||||||||
Unimproved high income | 1.457 | 0.072 | 0.000 | 1.323 | 1.605 | 1.427 | 0.073 | 0.000 | 1.290 | 1.578 | 1.432 | 0.073 | 0.000 | 1.295 | 1.583 |
Improved low income | 1.053 | 0.051 | 0.286 | 0.958 | 1.158 | 1.035 | 0.052 | 0.491 | 0.939 | 1.141 | 1.063 | 0.054 | 0.232 | 0.962 | 1.174 |
Improved high income | 1.304 | 0.062 | 0.000 | 1.188 | 1.432 | 1.247 | 0.065 | 0.001 | 1.127 | 1.380 | 1.295 | 0.068 | 0.000 | 1.168 | 1.436 |
Age group (ref: <25 years) | |||||||||||||||
25–30 | 1.100 | 0.057 | 0.066 | 0.994 | 1.219 | 1.084 | 0.069 | 0.208 | 0.956 | 1.228 | 1.076 | 0.068 | 0.244 | 0.951 | 1.218 |
31–37 | 1.084 | 0.056 | 0.117 | 0.980 | 1.198 | 1.063 | 0.078 | 0.406 | 0.920 | 1.228 | 1.036 | 0.077 | 0.638 | 0.895 | 1.198 |
38–44 | 1.163 | 0.060 | 0.003 | 1.051 | 1.288 | 1.128 | 0.088 | 0.123 | 0.968 | 1.314 | 1.129 | 0.090 | 0.130 | 0.965 | 1.320 |
45–54 | 1.249 | 0.067 | 0.000 | 1.125 | 1.387 | 1.179 | 0.095 | 0.041 | 1.007 | 1.380 | 1.198 | 0.101 | 0.032 | 1.016 | 1.413 |
>54 | 1.088 | 0.102 | 0.369 | 0.905 | 1.309 | 1.050 | 0.121 | 0.673 | 0.837 | 1.316 | 1.091 | 0.129 | 0.461 | 0.865 | 1.376 |
Gender (ref: male) | |||||||||||||||
Female | 1.063 | 0.028 | 0.022 | 1.009 | 1.119 | 1.087 | 0.029 | 0.002 | 1.031 | 1.146 | 1.070 | 0.030 | 0.014 | 1.014 | 1.130 |
Born in the community (ref: no) | |||||||||||||||
Yes | 0.910 | 0.030 | 0.004 | 0.853 | 0.971 | 0.922 | 0.031 | 0.015 | 0.863 | 0.984 | 0.945 | 0.040 | 0.184 | 0.870 | 1.027 |
Marital status (ref: single) | |||||||||||||||
Married | 0.997 | 0.054 | 0.962 | 0.898 | 1.108 | 0.995 | 0.053 | 0.918 | 0.896 | 1.104 | |||||
Divorced/widow/widower | 0.848 | 0.085 | 0.099 | 0.697 | 1.031 | 0.865 | 0.088 | 0.152 | 0.709 | 1.055 | |||||
Highest educational (ref: no formal education) | |||||||||||||||
Primary | 1.035 | 0.036 | 0.324 | 0.967 | 1.107 | 1.024 | 0.035 | 0.497 | 0.957 | 1.095 | |||||
JHS/middle | 0.997 | 0.044 | 0.942 | 0.915 | 1.086 | 0.991 | 0.043 | 0.834 | 0.909 | 1.080 | |||||
Higher | 1.151 | 0.049 | 0.001 | 1.059 | 1.252 | 1.152 | 0.049 | 0.001 | 1.061 | 1.252 | |||||
Household size (ref: low household (0–5)) | |||||||||||||||
Medium household (6–10) | 1.110 | 0.034 | 0.001 | 1.045 | 1.180 | 1.110 | 0.034 | 0.001 | 1.045 | 1.179 | |||||
High household (>11) | 1.150 | 0.047 | 0.001 | 1.063 | 1.246 | 1.159 | 0.047 | 0.000 | 1.072 | 1.254 | |||||
Lived in the community (ref: 0–19) years | |||||||||||||||
20–29 | 0.944 | 0.048 | 0.257 | 0.855 | 1.043 | ||||||||||
30–39 | 0.966 | 0.050 | 0.507 | 0.873 | 1.069 | ||||||||||
40 or more | 0.900 | 0.057 | 0.097 | 0.795 | 1.019 | ||||||||||
Communities zone (ref: Sawla) | |||||||||||||||
Gindabuo | 1.068 | 0.038 | 0.063 | 0.996 | 1.146 | ||||||||||
Kalba | 1.003 | 0.033 | 0.921 | 0.940 | 1.071 | ||||||||||
Tuna/Sanyeri | 0.922 | 0.033 | 0.024 | 0.859 | 0.989 | ||||||||||
n | 1155 | 1155 | 1155 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afitiri, A.-R.; Afrifa, E.K.A. Barriers and Challenges in the Implementation of Decentralized Solar Water Disinfection Treatment Systems—A Case of Ghana. Solar 2025, 5, 25. https://doi.org/10.3390/solar5020025
Afitiri A-R, Afrifa EKA. Barriers and Challenges in the Implementation of Decentralized Solar Water Disinfection Treatment Systems—A Case of Ghana. Solar. 2025; 5(2):25. https://doi.org/10.3390/solar5020025
Chicago/Turabian StyleAfitiri, Abdul-Rahaman, and Ernest Kofi Amankwa Afrifa. 2025. "Barriers and Challenges in the Implementation of Decentralized Solar Water Disinfection Treatment Systems—A Case of Ghana" Solar 5, no. 2: 25. https://doi.org/10.3390/solar5020025
APA StyleAfitiri, A.-R., & Afrifa, E. K. A. (2025). Barriers and Challenges in the Implementation of Decentralized Solar Water Disinfection Treatment Systems—A Case of Ghana. Solar, 5(2), 25. https://doi.org/10.3390/solar5020025