Potential Induced Degradation in Photovoltaic Modules: A Review of the Latest Research and Developments
Abstract
:1. Introduction
2. PID Mechanism
3. Areas of PID Research and Development
4. Improved PID Testing Methods
4.1. Temperature and Humidity Cycling
4.2. Direct Current Bias Test
4.3. Accelerated Aging Test
5. New Materials and Designs for PV Modules, Especially Designed to Prevent PID
- Start by preparing the substrate material for the IBC. This typically involves cleaning and etching the surface of the substrate to create a rough texture that will help to promote adhesion between the substrate and the IBC layers.
- Next, apply a layer of metal to the substrate using a process such as sputtering or evaporation. This layer will form the bottom electrode of the IBC.
- Apply a layer of passivation material to the substrate, using a process such as plasma-enhanced chemical vapor deposition (PECVD) [41]. This layer helps to reduce the recombination of electrons and holes at the surface of the cell, which improves the efficiency of the cell.
- Repeat steps 2 and 3 to create additional layers of metal and passivation material, building up the IBC structure as desired. The thickness and number of layers can be varied to suit the specific requirements of the PV cell.
- Once the IBC has been built up to the desired thickness, the PV cell is typically passivated and sealed to protect it from the environment. This typically involves applying a layer of encapsulant material to the cell to seal it and prevent moisture or other contaminants from entering the cell.
6. PID Mitigating Strategies
6.1. Sealing the Edges of PV Modules to Prevent Moisture Ingress
- Clean the edges of the PV module to remove any dirt, debris, or other contaminants that may interfere with the sealing process.
- Inspect the edges to identify any gaps or seams that may allow moisture to enter the module.
- Apply a sealant material to the edges of the PV module, using a sealant gun or other suitable applicator. The sealant should be applied in a continuous bead around the edges of the module, taking care to fill in any gaps or seams that may allow moisture to enter the module.
- Allow the sealant to cure according to the manufacturer’s instructions. This may involve waiting for a specified amount of time or exposing the sealant to heat or other conditions to accelerate the curing process.
- Inspect the sealed edges of the PV module to ensure that the sealant has been applied correctly and that there are no gaps or seams that may allow moisture to enter the module.
6.2. PV Installation Grounding Techniques
6.3. PV Maintenance and Faul Detection Strategy
- Current and voltage waveform analysis: techniques such as fast Fourier transforms (FFTs) [49] can be used to analyze the waveforms of current and voltage in PV inverters and identify deviations that may be caused by a fault.
7. Factors That Contribute to PID in PV Modules
7.1. PV Hotspots
7.2. PV Shading
7.3. PV Cracks
8. Discussion
8.1. More Accurate Diagnosis and Testing Methods
8.2. Improved Understanding of the Causes of PID
8.3. Development of New Materials and Techniques for Preventing PID
8.4. Long-Term Testing and Performance Evaluation
8.5. Standardisation of Testing Methods and Performance Metricsroved Understanding of the Causes of PID
8.6. PV Hotspots and Cracks Preventions
8.7. Overall Assessment of Power Loss Caused by PID
9. Conclusions
- Standardized Testing Methods: Develop standardized testing methods and performance metrics for PID to enable accurate diagnosis and evaluation of PID in PV modules.
- Research and Development: Increase research efforts to improve our understanding of the causes of PID and to develop new materials and techniques for preventing PID.
- Long-term Testing: Conduct long-term testing and performance evaluation of PV modules to better understand the impact of PID on their lifespan and reliability.
- Industry Partnerships: Promote partnerships and collaborations between researchers and industry to accelerate the development and deployment of PID-resistant PV technologies.
- Funding: Provide funding for research and development projects related to PID in PV modules to support the development of new solutions and innovations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- López-Escalante, M.C.; Caballero, L.J.; Martín, F.; Gabás, M.; Cuevas, A.; Ramos-Barrado, J.R. Polyolefin as PID-resistant encapsulant material in PV modules. Sol. Energy Mater. Sol. Cells 2016, 144, 691–699. [Google Scholar] [CrossRef]
- Hara, K.; Jonai, S.; Masuda, A. Potential-induced degradation in photovoltaic modules based on n-type single crystalline Si solar cells. Sol. Energy Mater. Sol. Cells 2015, 140, 361–365. [Google Scholar] [CrossRef]
- Hacke, P.; Spataru, S.; Terwilliger, K.; Perrin, G.; Glick, S.; Kurtz, S.; Wohlgemuth, J. Accelerated testing and modeling of potential-induced degradation as a function of temperature and relative humidity. IEEE J. Photovolt. 2015, 5, 1549–1553. [Google Scholar] [CrossRef]
- Hacke, P.; Terwilliger, K.; Smith, R.; Glick, S.; Pankow, J.; Kempe, M.; Kloos, M. System voltage potential-induced degradation mechanisms in PV modules and methods for test. In Proceedings of the 2011 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, USA, 19–24 June 2011; pp. 814–820. [Google Scholar]
- Oh, J.; Bowden, S.; TamizhMani, G. Potential-induced degradation (PID): Incomplete recovery of shunt resistance and quantum efficiency losses. IEEE J. Photovolt. 2015, 5, 1540–1548. [Google Scholar] [CrossRef]
- Pingel, S.; Frank, O.; Winkler, M.; Daryan, S.; Geipel, T.; Hoehne, H.; Berghold, J. Potential induced degradation of solar cells and panels. In Proceedings of the 2010 35th IEEE Photovoltaic Specialists Conference, Honolulu, HI, USA, 20–25 June 2010; pp. 2817–2822. [Google Scholar]
- Razzaq, A.; Allen, T.G.; Liu, W.; Liu, Z.; De Wolf, S. Silicon heterojunction solar cells: Techno-economic assessment and opportunities. Joule 2022, 6, 514–542. [Google Scholar] [CrossRef]
- Xu, L.; Liu, J.; Luo, W.; Wehbe, N.; Seitkhan, A.; Babics, M.; Kang, J.; De Bastiani, M.; Aydin, E.; Allen, T.G.; et al. Potential-induced degradation in perovskite/silicon tandem photovoltaic modules. Cell Rep. Phys. Sci. 2022, 3, 101026. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Jonai, S.; Hara, K.; Komaki, H.; Shimizu-Kamikawa, Y.; Shibata, H.; Niki, S.; Kawakami, Y.; Masuda, A. Potential-induced degradation of Cu (In, Ga) Se2 photovoltaic modules. Jpn. J. Appl. Phys. 2015, 54, 08KC13. [Google Scholar] [CrossRef]
- Luo, W.; Hacke, P.; Hsian, S.M.; Wang, Y.; Aberle, A.G.; Ramakrishna, S.; Khoo, Y.S. Investigation of the impact of illumination on the polarization-type potential-induced degradation of crystalline silicon photovoltaic modules. IEEE J. Photovolt. 2018, 8, 1168–1173. [Google Scholar] [CrossRef]
- Luo, W.; Hacke, P.; Terwilliger, K.; Liang, T.S.; Wang, Y.; Ramakrishna, S.; Aberle, A.G.; Khoo, Y.S. Elucidating potential-induced degradation in bifacial PERC silicon photovoltaic modules. Prog. Photovolt. Res. Appl. 2018, 26, 859–867. [Google Scholar] [CrossRef]
- Lausch, D.; Naumann, V.; Breitenstein, O.; Bauer, J.; Graff, A.; Bagdahn, J.; Hagendorf, C. Potential-induced degradation (PID): Introduction of a novel test approach and explanation of increased depletion region recombination. IEEE J. Photovolt. 2014, 4, 516–523. [Google Scholar] [CrossRef]
- Dhimish, M.; Hu, Y.; Schofield, N.; Vieira, R.G. Mitigating potential-induced degradation (PID) using SiO2 ARC layer. Energies 2020, 13, 5139. [Google Scholar] [CrossRef]
- Lausch, D.; Naumann, V.; Graff, A.; Hähnel, A.; Breitenstein, O.; Hagendorf, C.; Bagdahn, J. Sodium outdiffusion from stacking faults as root cause for the recovery process of potential-induced degradation (PID). Energy Procedia 2014, 55, 486–493. [Google Scholar] [CrossRef]
- Dhimish, M.; Holmes, V. Solar cells micro crack detection technique using state-of-the-art electroluminescence imaging. J. Sci. Adv. Mater. Dev. 2019, 4, 499–508. [Google Scholar] [CrossRef]
- Dhimish, M.; Badran, G. Investigating defects and annual degradation in UK solar PV installations through thermographic and electroluminescent surveys. npj Mater. Degrad. 2023, 7, 14. [Google Scholar] [CrossRef]
- Dhimish, M.; Holmes, V.; Mather, P.; Aissa, C.; Sibley, M. Development of 3D graph-based model to examine photovoltaic micro cracks. J. Sci. Adv. Mater. Dev. 2018, 3, 380–388. [Google Scholar] [CrossRef]
- Dhimish, M.; Holmes, V.; Mather, P. Novel photovoltaic micro crack detection technique. IEEE Trans. Device Mater. Reliab. 2019, 19, 304–312. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Maheshwari, P. Advanced analytics on IV curves and electroluminescence images of photovoltaic modules using machine learning algorithms. Prog. Photovolt. Res. Appl. 2022, 30, 880–888. [Google Scholar] [CrossRef]
- Dhere, N.G.; Shiradkar, N.S.; Schneller, E. Evolution of leakage current paths in MC-Si PV modules from leading manufacturers undergoing high-voltage bias testing. IEEE J. Photovolt. 2014, 4, 654–658. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Van Aken, B.B.; Stodolny, M.K.; Löffler, J.; Masuda, A.; Ohdaira, K. Effects of passivation configuration and emitter surface doping concentration on polarization-type potential-induced degradation in n-type crystalline-silicon photovoltaic modules. Sol. Energy Mater. Sol. Cells 2021, 226, 111074. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Van Aken, B.B.; Masuda, A.; Ohdaira, K. Potential-Induced Degradation in High-Efficiency n-Type Crystalline-Silicon Photovoltaic Modules: A Literature Review. Solar RRL 2021, 5, 2100708. [Google Scholar] [CrossRef]
- Karg, F.; Calwer, H.; Rimmasch, J.; Probst, V.; Riedl, W.; Stetter, W.N.; Vogt, H.; Lampert, M. Development of stable thin film solar modules based on CuInSe2. In Ternary and Multinary Compounds; CRC Press: Boca Raton, FL, USA, 2020; pp. 909–913. [Google Scholar]
- Shi, L.; Young, T.L.; Kim, J.; Sheng, Y.; Wang, L.; Chen, Y.; Feng, Z.; Keevers, M.J.; Hao, X.; Verlinden, P.J.; et al. Accelerated lifetime testing of organic–inorganic perovskite solar cells encapsulated by polyisobutylene. ACS Appl. Mater. Interfaces 2017, 9, 25073–25081. [Google Scholar] [CrossRef] [PubMed]
- Dhimish, M.; Tyrrell, A.M. Monocrystalline silicon photovoltaic mitigation of potential-induced degradation using SiO2 thin film and+ 1000 V biasing. Optik 2022, 255, 168732. [Google Scholar] [CrossRef]
- Dhimish, M.; Badran, G. Recovery of photovoltaic potential-induced degradation utilizing automatic indirect voltage source. IEEE Trans. Instrum. Meas. 2022, 71, 2000209. [Google Scholar] [CrossRef]
- Mansour, D.E.; Barretta, C.; Pitta Bauermann, L.; Oreski, G.; Schueler, A.; Philipp, D.; Gebhardt, P. Effect of backsheet properties on PV encapsulant degradation during combined accelerated aging tests. Sustainability 2020, 12, 5208. [Google Scholar] [CrossRef]
- Oreski, G.; Omazic, A.; Eder, G.C.; Voronko, Y.; Neumaier, L.; Mühleisen, W.; Hirschl, C.; Újvári, G.; Ebner, R.; Edler, M. Properties and degradation behaviour of polyolefin encapsulants for photovoltaic modules. Prog. Photovolt. Res. Appl. 2020, 28, 1277–1288. [Google Scholar] [CrossRef]
- Eder, G.C.; Voronko, Y.; Dimitriadis, S.; Knöbl, K.; Újvári, G.; Berger, K.A.; Halwachs, M.; Neumaier, L.; Hirschl, C. Climate specific accelerated ageing tests and evaluation of ageing induced electrical, physical, and chemical changes. Prog. Photovolt. Res. Appl. 2019, 27, 934–949. [Google Scholar] [CrossRef] [Green Version]
- Koo, B.R.; Bae, J.W.; Ahn, H.J. Optoelectronic multifunctionality of combustion-activated fluorine-doped tin oxide films with high optical transparency. Ceram. Int. 2019, 45, 10260–10268. [Google Scholar] [CrossRef]
- Krýsová, H.; Neumann-Spallart, M.; Tarabkova, H.; Paušová, Š.; Janda, P.; Maixner, J.; Kavan, L.; Krýsa, J. Reconstruction of SnO2 after cathodic polarization of FTO films-A simple way of fabricating orthorhombic SnO2. Mater. Chem. Phys. 2021, 273, 125038. [Google Scholar] [CrossRef]
- Yu, J.; Li, J.; Zhao, Y.; Lambertz, A.; Chen, T.; Duan, W.; Liu, W.; Yang, X.; Huang, Y.; Ding, K. Copper metallization of electrodes for silicon heterojunction solar cells: Process, reliability and challenges. Sol. Energy Mater. Sol. Cells 2021, 224, 110993. [Google Scholar] [CrossRef]
- Blakers, A. Development of the PERC solar cell. IEEE J. Photovolt. 2019, 9, 629–635. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, X.; Yang, H. Temperature coefficients and operating temperature verification for passivated emitter and rear cell bifacial silicon solar module. IEEE J. Photovolt. 2020, 10, 729–739. [Google Scholar] [CrossRef]
- Luo, W.; Chen, N.; Shanmugam, V.; Yan, X.; Duttagupta, S.; Wang, Y.; Aberle, A.G.; Khoo, Y.S. Investigation of Potential-Induced Degradation in Bifacial n-PERL Modules. IEEE J. Photovolt. 2020, 10, 935–939. [Google Scholar] [CrossRef]
- Oh, K.S.; Cho, S.H.; Choi, J.Y.; Lee, K.J.; Chan, S.I. Improved reliability PERC PV modules with moth-eye nanostructured optical films using nano imprint lithography. Microelectron. Reliab. 2021, 126, 114320. [Google Scholar] [CrossRef]
- Gao, B.; Shao, Y.; Liu, W.; Xiang, H.; Yu, Y.; Liu, Z. Out-door reliability and degradation of HIT, CIGS, n-type multi-busbar, PERC, and CdTe modules in Shanghai, China. Sol. Energy Mater. Sol. Cells 2022, 236, 111490. [Google Scholar] [CrossRef]
- Haase, F.; Hollemann, C.; Wehmeier, N.; Bothe, K.; Min, B.; Schulte-Huxel, H.; Brendel, R.; Peibst, R. Design of Large Poly-Si on Oxide Interdigitated Back Contact (POLO IBC) Silicon Solar Cells with Local Al-p+ Contacts in the Constraints of Measurement and Module Integration. Solar RRL 2022, 6, 2200583. [Google Scholar] [CrossRef]
- Chen, N.; Buchholz, F.; Tune, D.D.; Isabella, O.; Mihailetchi, V.D. Mitigating cut losses in interdigitated back contact solar cells. IEEE J. Photovolt. 2022, 12, 1386–1392. [Google Scholar] [CrossRef]
- Ma, J.; Song, Y.; Qiao, S.; Liu, D.; Ding, Z.; Kopecek, R.; Chen, J.; Zhang, C.; Chen, M. Design, realization and loss analysis of efficient low-cost large-area bifacial interdigitated-back-contact solar cells with front floating emitter. Sol. Energy Mater. Sol. Cells 2022, 235, 111466. [Google Scholar] [CrossRef]
- Miyajima, S.; Irikawa, J.; Yamada, A.; Konagai, M. High quality aluminum oxide passivation layer for crystalline silicon solar cells deposited by parallel-plate plasma-enhanced chemical vapor deposition. Appl. Express 2009, 3, 12301. [Google Scholar] [CrossRef]
- Virtuani, A.; Annigoni, E.; Ballif, C. One-type-fits-all-systems: Strategies for preventing potential-induced degradation in crystalline silicon solar photovoltaic modules. Prog. Photovolt. Res. Appl. 2019, 27, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Arruti, O.A.; Gnocchi, L.; Lisco, F.; Virtuani, A.; Ballif, C. Optimized module packaging for silicon heterojunction solar cells and increased PID resistance. EUPVSEC 2020, 789–791. [Google Scholar] [CrossRef]
- Pervez, I.; Antoniadis, C.; Massoud, Y. A reduced search space exploration metaheuristic algorithm for MPPT. IEEE Access 2022, 10, 26090–26100. [Google Scholar] [CrossRef]
- Millah, I.S.; Chang, P.C.; Teshome, D.F.; Subroto, R.K.; Lian, K.L.; Lin, J.F. An enhanced grey wolf optimization algorithm for photovoltaic maximum power point tracking control under partial shading conditions. IEEE Open J. Ind. Electron. Soc. 2022, 3, 392–408. [Google Scholar] [CrossRef]
- Seo, H.C. Development of New Protection Scheme in DC Microgrid Using Wavelet Transform. Energies 2022, 15, 283. [Google Scholar] [CrossRef]
- Nsaif, Y.M.; Hossain Lipu, M.S.; Hussain, A.; Ayob, A.; Yusof, Y.; Zainuri, M.A.A. A New Voltage Based Fault Detection Technique for Distribution Network Connected to Photovoltaic Sources Using Variational Mode Decomposition Integrated Ensemble Bagged Trees Approach. Energies 2022, 15, 7762. [Google Scholar] [CrossRef]
- Nsaif, Y.M.; Hossain Lipu, M.S.; Hussain, A.; Ayob, A.; Yusof, Y.; Zainuri, M.A.A. A Novel Fault Detection and Classification Strategy for Photovoltaic Distribution Network Using Improved Hilbert-Huang Transform and Ensemble Learning Technique. Sustainability 2022, 14, 11749. [Google Scholar] [CrossRef]
- Et-taleby, A.; Chaibi, Y.; Boussetta, M.; Allouhi, A.; Benslimane, M. A Novel Fault Detection Technique for PV Systems Based on the K-means Algorithm, Coded Wireless Orthogonal Frequency Division Multiplexing and Thermal Image Processing Techniques. Solar Energy 2022, 237, 365–376. [Google Scholar] [CrossRef]
- Vieira, R.G.; Dhimish, M.; de Araújo, F.M.U.; da Silva Guerra, M.I. Comparing Multilayer Perceptron and Probabilistic Neural Network for PV Systems Fault Detection. Expert Syst. Appl. 2022, 201, 117248. [Google Scholar] [CrossRef]
- Hong, Y.Y.; Pula, R.A. Methods of photovoltaic fault detection and classification: A review. Energy Rep. 2022, 8, 100276. [Google Scholar] [CrossRef]
- Jaen-Cuellar, A.Y.; Elvira-Ortiz, D.A.; Osornio-Rios, R.A.; Antonino-Daviu, J.A. Advances in fault condition monitoring for solar photovoltaic and wind turbine energy generation: A review. Energies 2022, 15, 5404. [Google Scholar] [CrossRef]
- Essam, Y.; Huang, Y.F.; Ng, J.L.; Birima, A.H.; Ahmed, A.N.; El-Shafie, A. Predicting streamflow in Peninsular Malaysia using support vector machine and deep learning algorithms. Sci. Rep. 2022, 12, 1248. [Google Scholar] [CrossRef]
- Yang, N.C.; Ismail, H. Voting-based ensemble learning algorithm for fault detection in photovoltaic systems under different weather conditions. Mathematics 2022, 10, 285. [Google Scholar] [CrossRef]
- Gaviria, J.F.; Narváez, G.; Guillen, C.; Giraldo, L.F.; Bressan, M. Machine learning in photovoltaic systems: A review. Renew. Energy 2022, 179, 1282–1301. [Google Scholar] [CrossRef]
- Yang, N.C.; Ismail, H. Robust Intelligent Learning Algorithm Using Random Forest and Modified-Independent Component Analysis for PV Fault Detection: In Case of Imbalanced Data. IEEE Access 2022, 10, 41119–41130. [Google Scholar] [CrossRef]
- Upadhyaya, S.; Bhende, C.N.; Mohanty, S.; Pati, R. Evaluation of Power Quality Disturbance in PV-Connected IEEE-14 Bus System Using Lifting-Based Wavelet Transform and Random Forest. Electr. Eng. 2022, 10, 2345–2354. [Google Scholar] [CrossRef]
- El Mrabet, Z.; Sugunaraj, N.; Ranganathan, P.; Abhyankar, S. Random Forest Regressor-Based Approach for Detecting Fault Location and Duration in Power Systems. Sensors 2022, 22, 458. [Google Scholar] [CrossRef]
- Swarna, K.S.V.; Vinayagam, A.; Ananth, M.B.J.; Kumar, P.V.; Veerasamy, V.; Radhakrishnan, P. A KNN Based Random Subspace Ensemble Classifier for Detection and Discrimination of High Impedance Fault in PV Integrated Power Network. Measurement 2022, 187, 110333. [Google Scholar] [CrossRef]
- Behzadi, M.; Amirahmadi, M.; Tolou Askari, M.; Babaeinik, M. Identification of Combined Power Quality Disturbances in the Presence of Distributed Generations Using Variational Mode Decomposition and K-Nearest Neighbors Classifier. Int. J. Eng. 2022, 35, 657–674. [Google Scholar]
- Tripathy, D.S.; Prusty, B.R.; Bingi, K. A k-Nearest Neighbor-Based Averaging Model for Probabilistic PV Generation Forecasting. Int. J. Numer. Modell. Electron. Netw. Devices Fields 2022, 35, e2983. [Google Scholar]
- Chahboun, S.; Maaroufi, M. Performance Comparison of K-Nearest Neighbor, Random Forest, and Multiple Linear Regression to Predict Photovoltaic Panels’ Power Output. In Advances on Smart and Soft Computing; Springer: Singapore, 2022; pp. 301–311. [Google Scholar]
- Goudelis, G.; Lazaridis, P.I.; Dhimish, M. A Review of Models for Photovoltaic Crack and Hotspot Prediction. Energies 2022, 15, 4303. [Google Scholar] [CrossRef]
- Ge, Q.; Li, Z.; Sun, Z.; Xu, J.; Long, H.; Sun, T. Low Resistance Hot-Spot Diagnosis and Suppression of Photovoltaic Module Based on IU Characteristic Analysis. Energies 2022, 15, 3950. [Google Scholar] [CrossRef]
- Dhimish, M.; Hu, Y. Rapid testing on the effect of cracks on solar cells output power performance and thermal operation. Sci. Rep. 2022, 12, 12168. [Google Scholar] [CrossRef] [PubMed]
- Afridi, M.; Kumar, A.; ibne Mahmood, F.; Tamizhmani, G. Hotspot testing of glass/backsheet and glass/glass PV modules pre-stressed in extended thermal cycling. Solar Energy 2023, 249, 467–475. [Google Scholar] [CrossRef]
- Abdelrazik, A.S.; Shboul, B.; Elwardany, M.; Zohny, R.N.; Osama, A. The recent advancements in the building integrated photovoltaic/thermal (BIPV/T) systems: An updated review. Renew. Sustain. Energy Rev. 2022, 170, 112988. [Google Scholar] [CrossRef]
- Stalin, P.M.J.; Prasad, K.S.; Kumar, K.P.; Hemadri, G.; Rajesh, M.; Kumar, K.P. Performance improvement of solar PV through the thermal management using a nano-PCM. Mater. Today Proc. 2022, 50, 1553–1558. [Google Scholar] [CrossRef]
- Kolamroudi, M.K.; Ilkan, M.; Egelioglu, F.; Safaei, B. Maximization of the output power of low concentrating photovoltaic systems by the application of reflecting mirrors. Renew. Energy 2022, 189, 822–835. [Google Scholar] [CrossRef]
- Dhimish, M.; Badran, G. Field Study of Photovoltaic Systems with Anti-Potential-Induced-Degradation Mechanism: UVF, EL, and Performance Ratio Investigations. Photonics 2023, 10, 225. [Google Scholar] [CrossRef]
- Zhao, Y.; Gong, S.; Zhang, C.; Ge, M.; Xie, L. Performance analysis of a solar photovoltaic power generation system with spray cooling. Case Stud. Therm. Eng. 2022, 29, 101723. [Google Scholar] [CrossRef]
- Li, C.; Yang, Y.; Fan, F.; Xia, L.; Peng, P.; Wang, Y.; Wei, H. A Novel Methodology for Partial Shading Diagnosis Using the Electrical Parameters of Photovoltaic Strings. IEEE J. Photovolt. 2022, 12, 1027–1035. [Google Scholar] [CrossRef]
- Murtaza, A.F.; Sher, H.A.; Khan, F.U.; Nasir, A.; Spertino, F. Efficient mpp tracking of photovoltaic (pv) array through modified boost converter with simple smc voltage regulator. IEEE Trans. Sustain. Energy 2022, 13, 1790–1801. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, Y.; Meng, F.; Liu, Z. Experimental investigation of the shading and mismatch effects on the performance of bifacial photovoltaic modules. IEEE J. Photovolt. 2019, 10, 296–305. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Mahela, O.P.; Sharma, A.; Bai, J.; Chauhan, Y.K.; Khan, B.; Alhelou, H.H. Impact of partial shading on various PV array configurations and different modeling approaches: A comprehensive review. IEEE Access 2022, 8, 181375–181403. [Google Scholar] [CrossRef]
- Arekar, K.; Puranik, V.E.; Gupta, R. Performance Analysis of PID Affected Crystalline Silicon PV Module under Partial Shading Condition. In Proceedings of the 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), Fort Lauderdale, FL, USA, 20–25 June 2021; pp. 2415–2420. [Google Scholar]
- Sporleder, K.; Naumann, V.; Bauer, J.; Richter, S.; Hähnel, A.; Großer, S.; Turek, M.; Hagendorf, C. Root cause analysis on corrosive potential-induced degradation effects at the rear side of bifacial silicon PERC solar cells. Sol. Energy Mater. Sol. Cells 2019, 201, 110062. [Google Scholar] [CrossRef]
- Seok, M.G.; Kim, J.; Lee, Y.; Kim, Y.; Kim, Y.; Kim, S.M. Treatment of Light-Induced Degradation for Solar Cells in a p-PERC Solar Module via Induction Heating. Energies 2021, 14, 6352. [Google Scholar] [CrossRef]
- Dhimish, M.; Chen, Z. Novel open-circuit photovoltaic bypass diode fault detection algorithm. IEEE J. Photovolt. 2019, 9, 1819–1827. [Google Scholar] [CrossRef] [Green Version]
- Premchander, A.; Amin, I.; Oterkus, S.; Oterkus, E.; Elminshawy, N.A.S. Peridynamic modelling of propagation of cracks in photovoltaic panels. Procedia Struct. Integr. 2022, 41, 305–316. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhao, C. Attention classification-and-segmentation network for micro-crack anomaly detection of photovoltaic module cells. Solar Energy 2022, 238, 291–304. [Google Scholar] [CrossRef]
- Dhimish, M.; Ahmad, A.; Tyrrell, A.M. Inequalities in photovoltaics modules reliability: From packaging to PV installation site. Renew. Energy 2022, 192, 805–814. [Google Scholar] [CrossRef]
- Abdellatif, B.; Chakir, E.; Abdellatif, G.; Elminor, H.; Messaoudi, C. Propagation of Cracks in Standard Cell and Half-Cell Photovoltaic Technology. In Proceedings of the 2020 2nd International Conference on Photovoltaic Science and Technologies (PVCon), Ankara, Turkey, 30 November–2 December 2020; pp. 1–4. [Google Scholar]
- Aghaei, M.; Fairbrother, A.; Gok, A.; Ahmad, S.; Kazim, S.; Lobato, K.; Oreski, G.; Reinders, A.; Schmitz, J.; Theelen, M.; et al. Review of degradation and failure phenomena in photovoltaic modules. Renew. Sustain. Energy Rev. 2022, 159, 112160. [Google Scholar] [CrossRef]
- Tao, W.; Bao, G.; Liu, J.; Zhang, M.; Wang, L.; Dai, J.; Huang, Y.; Du, Y.; Zhang, Z.; Jin, H. Thermo-mechanical stress modeling and experimental investigation on micro-cracks in tilling ribbon photovoltaic modules during lamination and mechanical load test. Solar Energy 2023, 249, 521–531. [Google Scholar] [CrossRef]
- Dhimish, M.; Kettle, J. Impact of Solar Cell Cracks Caused During Potential-Induced Degradation (PID) Tests. IEEE Trans. Electron Devices 2022, 69, 604–612. [Google Scholar] [CrossRef]
- Naikwadi, A.T.; Samui, A.B.; Mahanwar, P.A. Melamine-formaldehyde microencapsulated n-Tetracosane phase change material for solar thermal energy storage in coating. Sol. Energy Mater. Sol. Cells 2020, 215, 110676. [Google Scholar] [CrossRef]
- Dong, Q.; Chen, M.; Liu, Y.; Eickemeyer, F.T.; Zhao, W.; Dai, Z.; Yin, Y.; Jiang, C.; Feng, J.; Jin, S.; et al. Flexible perovskite solar cells with simultaneously improved efficiency, operational stability, and mechanical reliability. Joule 2021, 5, 1587–1601. [Google Scholar] [CrossRef]
- Sutherland, L.J.; Weerasinghe, H.C.; Simon, G.P. A Review on Emerging Barrier Materials and Encapsulation Strategies for Flexible Perovskite and Organic Photovoltaics. Adv. Energy Mater. 2021, 11, 2101383. [Google Scholar] [CrossRef]
- Vasudevan, D.P.; Bhatt, P.; Kottantharayil, A. Impact of transportation on Indian roads, on PV modules. In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019; pp. 1529–1532. [Google Scholar]
- Boulhidja, S.; Mellit, A.; Voswinckel, S.; Lughi, V.; Ciocia, A.; Spertino, F.; Massi Pavan, A. Experimental evidence of PID effect on CIGS photovoltaic modules. Energies 2020, 13, 537. [Google Scholar] [CrossRef] [Green Version]
- Sporleder, K.; Turek, M.; Schüler, N.; Naumann, V.; Hevisov, D.; Pöblau, C.; Großer, S.; Schulte-Huxel, H.; Bauer, J.; Hagendorf, C. Quick test for reversible and irreversible PID of bifacial perc solar cells. Sol. Energy Mater. Sol. Cells 2021, 219, 110755. [Google Scholar] [CrossRef]
- Bouaichi, A.; Merrouni, A.A.; El Amrani, A.; Jaeckel, B.; Hajjaj, C.; Naimi, Z.; Messaoudi, C. Long-term experiment on P-type crystalline PV module with potential induced degradation: Impact on power performance and evaluation of Recovery Mode. Renew. Energy 2022, 183, 472–479. [Google Scholar] [CrossRef]
- Dhimish, M.; Tyrrell, A.M. Power loss and hotspot analysis for photovoltaic modules affected by potential induced degradation. Npj Mater. Degrad. 2022, 6, 11. [Google Scholar] [CrossRef]
- Badran, G.; Dhimish, M. Field study on the severity of photovoltaic potential induced degradation. Sci. Rep. 2022, 12, 22094. [Google Scholar] [CrossRef]
- Ohdaira, K.; Akitomi, M.; Chiba, Y.; Masuda, A. Potential-induced degradation of N-type front-emitter crystalline silicon photovoltaic modules—Comparison between indoor and outdoor test results. Sol. Energy Mater. Sol. Cells 2023, 249, 112038. [Google Scholar] [CrossRef]
Year of Publication | Reported PV Power Losses | Comments/Observations/PID-Test | |
---|---|---|---|
[91] | 2020 | 35% after 120 h of PID test (or described as PID stress time) | The PV modules were tested in an environmental chamber at 85 °C and 85% humidity with a −1000 V negative voltage bias. After 20 h, the modules were evaluated using a flash tester to record I-V curves and calculate electrical parameters. |
[92] | 2021 | Rear-side PID in the dark and under rear illumination cause power losses of 6.3% and 8.8%, respectively | A PID testing setup, including a high voltage source, temperature-controlled sample holder, light source, and measurement electronics, was used to evaluate the rear side of a bifacial solar cell. The testing lasted two hours, replicating real field conditions and considering light absorption in passivating layers. |
[93] | 2022 | In the three PV modules examined, PID accounts for nearly 10% of the power loss | Researchers assessed PID in a 22.2 kW PV plant with monocrystalline silicon technology located in a hot semi-arid climate. Inspection techniques such as electroluminescence (EL), thermography (IR), and I-V curves were used to evaluate the impact on affected modules. |
[94] | 2022 | The average power loss is 25% for the 28 tested PV modules | A total of 28 PV modules were subjected to damp heat conditions in a test chamber at 85% humidity and 85 °C. A −1000 V negative voltage was applied, and aluminum foil was placed on the front surface. EL images and I-V curves were measured at 0, 48, and 96 h following the IEC62804 standard. |
[95] | 2022 | PID-affected PV modules lose more than 35% of their power | A 1.2 MW installation in Barcelona, Spain, was tested to investigate the development and impact of PIDs on module performance. Data were monitored and logged using the ICONICA inverter at a sampling rate of 1 sample/10 min. |
[96] | 2023 | Depending on the weather, it can range from 10% to 40% outside, and from 10% to 40% indoors | The study compared indoor and outdoor tests on n-type front emitter (n-FE) crystalline silicon PV modules for potential-induced degradation. The indoor temperature of 85 °C showed a higher acceleration factor for polarization-type PIDs (PID-p) compared to outdoor conditions. PID-p declined on rainy days and recovered on sunny days. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badran, G.; Dhimish, M. Potential Induced Degradation in Photovoltaic Modules: A Review of the Latest Research and Developments. Solar 2023, 3, 322-346. https://doi.org/10.3390/solar3020019
Badran G, Dhimish M. Potential Induced Degradation in Photovoltaic Modules: A Review of the Latest Research and Developments. Solar. 2023; 3(2):322-346. https://doi.org/10.3390/solar3020019
Chicago/Turabian StyleBadran, Ghadeer, and Mahmoud Dhimish. 2023. "Potential Induced Degradation in Photovoltaic Modules: A Review of the Latest Research and Developments" Solar 3, no. 2: 322-346. https://doi.org/10.3390/solar3020019
APA StyleBadran, G., & Dhimish, M. (2023). Potential Induced Degradation in Photovoltaic Modules: A Review of the Latest Research and Developments. Solar, 3(2), 322-346. https://doi.org/10.3390/solar3020019