No Nets, No Shocks, No Problem: Assessing Replicability and Disturbance Effects in Fish Monitoring Using Remote Video Cameras in Low Order Streams
Abstract
1. Introduction
2. Methods
3. Results and Discussion
3.1. Reproducibility of Estimating Fish Abundance Using RUV Surveys
3.2. Researcher and Naturally Occurring Disturbances
3.3. Camera-Induced Bias
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ellis, T.R.; Linnansaari, T.; Cunjak, R.A. Passive Integrated Transponder (PIT) Tracking versus Snorkeling: Quantification of Fright Bias and Comparison of Techniques in Habitat Use Studies. Trans. Am. Fish. Soc. 2013, 142, 660–670. [Google Scholar] [CrossRef]
- Radinger, J.; Britton, J.R.; Carlson, S.M.; Magurran, A.E.; Alcaraz-Hernández, J.D.; Almodóvar, A.; Benejam, L.; Fernández-Delgado, C.; Nicola, G.G.; Oliva-Paterna, F.J.; et al. Effective Monitoring of Freshwater Fish. Fish Fish. 2019, 20, 729–747. [Google Scholar] [CrossRef]
- Wohl, E. The Significance of Small Streams. Front. Earth Sci. 2017, 11, 447–456. [Google Scholar] [CrossRef]
- Linnansaari, T.; Keskinen, A.; Romakkaniemi, A.; Erkinaro, J.; Orell, P. Deep Habitats Are Important for Juvenile Atlantic Salmon Salmo salar L. in Large Rivers. Ecol. Freshw. Fish 2010, 19, 618–626. [Google Scholar] [CrossRef]
- Pereira, P.H.C.; Leal, I.C.S.; De Araújo, M.E. Observer Presence May Alter the Behaviour of Reef Fishes Associated with Coral Colonies. Mar. Ecol. 2016, 37, 760–769. [Google Scholar] [CrossRef]
- Yao, M.; Zhang, S.; Lu, Q.; Chen, X.; Zhang, S.; Kong, Y.; Zhao, J. Fishing for Fish Environmental DNA: Ecological Applications, Methodological Considerations, Surveying Designs, and Ways Forward. Mol. Ecol. 2022, 31, 5132–5164. [Google Scholar] [CrossRef] [PubMed]
- Snyder, D.E. Invited Overview: Conclusions from a Review of Electrofishing and Its Harmful Effects on Fish. Rev. Fish. Biol. Fish. 2003, 13, 445–453. [Google Scholar] [CrossRef]
- Davis, L.; Cockburn, J.; Villard, P.V. Deploying Action Cameras to Observe Fish in Shallow, Ice-Covered Streams. J. Freshw. Ecol. 2017, 32, 193–198. [Google Scholar] [CrossRef]
- Ebner, B.C.; Morgan, D.L. Using Remote Underwater Video to Estimate Freshwater Fish Species Richness: Video-Based Survey of Freshwater Fishes. J. Fish Biol. 2013, 82, 1592–1612. [Google Scholar] [CrossRef] [PubMed]
- Mueller, R.P.; Brown, R.S.; Hop, H.; Moulton, L. Video and Acoustic Camera Techniques for Studying Fish under Ice: A Review and Comparison. Rev. Fish Biol. Fish. 2006, 16, 213–226. [Google Scholar] [CrossRef]
- Tweedie, J.B.; Cockburn, J.M.H.; Villard, P.V. The Potential Use of Remote Underwater Video (RUV) to Evaluate Small-Bodied Fish Assemblages. Hydrobiology 2023, 2, 507–520. [Google Scholar] [CrossRef]
- Schmid, K.; Keppeler, F.W.; da Silva, F.R.M.; da Silva Santos, J.H.; Franceschini, S.; Brodersen, J.; Russo, T.; Harvey, E.; Reis-Filho, J.A.; Giarrizzo, T. Use of Long-Term Underwater Camera Surveillance to Assess the Effects of the Largest Amazonian Hydroelectric Dam on Fish Communities. Sci. Rep. 2024, 14, 22366. [Google Scholar] [CrossRef] [PubMed]
- Struthers, D.P.; Danylchuk, A.J.; Wilson, A.D.M.; Cooke, S.J. Action Cameras: Bringing Aquatic and Fisheries Research into View. Fisheries 2015, 40, 502–512. [Google Scholar] [CrossRef]
- Castañeda, R.A.; Van Nynatten, A.; Crookes, S.; Ellender, B.R.; Heath, D.D.; MacIsaac, H.J.; Mandrak, N.E.; Weyl, O.L.F. Detecting Native Freshwater Fishes Using Novel Non-Invasive Methods. Front. Environ. Sci. 2020, 8, 29. [Google Scholar] [CrossRef]
- Branigan, P.R.; Quist, M.C.; Shepard, B.B.; Ireland, S.C. Comparison of a Prepositioned Areal Electrofishing Device and Fixed Underwater Videography for Sampling Riverine Fishes. West. N. Am. Nat. 2018, 78, 65. [Google Scholar] [CrossRef]
- Frid, A.; McGreer, M.; Frid, T. Chasing the Light: Positive Bias in Camera-Based Surveys of Groundfish Examined as Risk-Foraging Trade-Offs. Biol. Conserv. 2019, 231, 133–138. [Google Scholar] [CrossRef]
- Smith, A. Seasonal Microhabitat Preference For Minnows In Low Order Streams. MSc. Thesis, University of Guelph, Guelph, ON, Canada, 2022. [Google Scholar]
- Holm, E.; Mandrak, N.E.; Burridge, M.E. The ROM Field Guide to Freshwater Fishes of Ontario; Royal Ontario Museum: Toronto, ON, Canada, 2009; ISBN 978-0-88854-459-9. [Google Scholar]
- Cudmore, B.; Mandrak, N.E. The Baitfish Primer. Available online: https://publications.gc.ca/site/eng/9.861647/publication.html (accessed on 26 May 2025).
- Cappo, M.; Speare, P.; De’ath, G. Comparison of Baited Remote Underwater Video Stations (BRUVS) and Prawn (Shrimp) Trawls for Assessments of Fish Biodiversity in Inter-Reefal Areas of the Great Barrier Reef Marine Park. J. Exp. Mar. Biol. Ecol. 2004, 302, 123–152. [Google Scholar] [CrossRef]
- Ellender, B.R.; Becker, A.; Weyl, O.L.F.; Swartz, E.R. Underwater Video Analysis as a Non-Destructive Alternative to Electrofishing for Sampling Imperilled Headwater Stream Fishes. Aquat. Conserv. Mar. Freshw. Ecosyst. 2012, 22, 58–65. [Google Scholar] [CrossRef]
- Carlson, L.D.; Quinn, M.S. Evaluating the Effectiveness of Instream Habitat Structures for Overwintering Stream Salmonids: A Test of Underwater Video. N. Am. J. Fish. Manag. 2005, 25, 130–137. [Google Scholar] [CrossRef]
Shadows | Sounds | Surface Disruptions | Animal Disruptions | |
---|---|---|---|---|
Sample size | 21 | 14 | 9 | 4 |
Time to arrival post-disturbance (seconds) | 1.3 (0–8) ± 2.6 | 30 (17–52) ± 14.2 | 45 (7–79) ± 25.0 | 160 (120–200) ± 40.4 |
Time to pre-disturbance abundance (seconds) | 5 (0–21) ± 3.2 | 60 (28–70) ± 13.8 | 180 (21–200) ± 37.4 | 215 (140–300) ± 80.4 |
MaxN pre-disturbance | 13.9 (4–26) ± 8.4 | 19 (2–33) ± 10.1 | 22.4 (5–44) ± 10.7 | 7.3 (1–15) ± 7.1 |
MaxN post-disturbance | 13.6 (4–25) ± 8.0 | 16 (5–24) ± 5.5 | 17 (7–28) ± 8.1 | 5.3 (1–13) ± 6.7 |
Mann–Whitney U | 247.31 | 100.73 | 42.25 | n/a |
Effect Size (r) | 0.104 (small) | 0.127 (small) | 0.159 (small) | n/a |
p-value | 0.50 | 0.298 | 0.189 | n/a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Archi, A.; Cockburn, J.M.H.; Villard, P.V. No Nets, No Shocks, No Problem: Assessing Replicability and Disturbance Effects in Fish Monitoring Using Remote Video Cameras in Low Order Streams. Hydrobiology 2025, 4, 25. https://doi.org/10.3390/hydrobiology4040025
Archi A, Cockburn JMH, Villard PV. No Nets, No Shocks, No Problem: Assessing Replicability and Disturbance Effects in Fish Monitoring Using Remote Video Cameras in Low Order Streams. Hydrobiology. 2025; 4(4):25. https://doi.org/10.3390/hydrobiology4040025
Chicago/Turabian StyleArchi, Abigail, Jaclyn M. H. Cockburn, and Paul V. Villard. 2025. "No Nets, No Shocks, No Problem: Assessing Replicability and Disturbance Effects in Fish Monitoring Using Remote Video Cameras in Low Order Streams" Hydrobiology 4, no. 4: 25. https://doi.org/10.3390/hydrobiology4040025
APA StyleArchi, A., Cockburn, J. M. H., & Villard, P. V. (2025). No Nets, No Shocks, No Problem: Assessing Replicability and Disturbance Effects in Fish Monitoring Using Remote Video Cameras in Low Order Streams. Hydrobiology, 4(4), 25. https://doi.org/10.3390/hydrobiology4040025