Ontogenetic Phase Shifts in Metabolism and Intraspecific Scaling in a Non-Teleost Fish, the Sterlet Sturgeon (Acipenser ruthenus)
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement and the ARRIVE Guidelines
2.2. Fish Used
2.3. Metabolic Measurement
2.4. Data Analysis
3. Results
Group | N | Range of Body Mass (g) | Scaling Constant | Scaling Exponent (Mean ± S.E.M.) | p | R2 |
---|---|---|---|---|---|---|
1 a | 5 | 0.0241–0.1051 | 2.38 | 0.638 ± 0.077 | 1.85 × 10−2 | 0.958 |
2 a | 10 | 0.2884–0.6131 | 2.25 | 0.540 ± 0.096 | 1.35 × 10−3 | 0.799 |
3 a | 14 | 0.6438–2.6368 | 3.77 | 0.609 ± 0.106 | 3.04 × 10−3 | 0.735 |
1–3 b | 29 | 0.0241–2.6368 | α = 3.33 | = 0.791 ± 0.022 | 3.18 × 10−10 | 0.980 |
1–3 c | 29 | 0.0241–2.6368 | 3.27 | 0.768 ± 0.031 | 6.13 × 10−8 | 0.957 |
Total | 30 | 0.0241–2.6368 | 3.23 | 0.763 ± 0.031 | 2.16 × 10−8 | 0.956 |
Term | Sum of Squares | Degrees of Freedom | Mean Square | Mean Square Ratio | p |
---|---|---|---|---|---|
log α | 2.267 | 1 | 2.267 | 578 | 8.39 × 10−19 |
µi | 0.0917 | 1 | 0.0917 | 23.4 | 5.68 × 10−5 |
i | 0.0305 | 1 | 0.0305 | 7.78 | 9.95 × 10−3 |
xij | 4.863 | 1 | 4.863 | 1240 | 7.92 × 10−23 |
εij | 0.0980 | 25 | 0.00392 | ||
Total (approximate mean) | 5.083 | 28 | |||
Total (about zero) | 7.350 | 29 |
4. Discussion
4.1. Investigation of Ontogenetic Phase Shift in Metabolism
4.2. Relationship Between Changes in Metabolic Scaling and Developmental Trajectory
4.3. Relationship Between Changes in Metabolic Scaling and Eco-Physiological Traits
4.4. Metabolic Scaling of Fish During Early Developmental Stages
4.5. Evaluation of the Metabolic Scaling Measuring Technique
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Czarnołęski, M.; Kozłowski, J.; Stańczykowska, A.; Lewandowski, K. Optimal resource allocation explains growth curve diversity in zebra mussels. Evol. Ecol. Res. 2003, 5, 571–587. [Google Scholar]
- Hou, C.; Zuo, W.; Moses, M.E.; Woodruff, W.H.; Brown, J.H.; West, G.B. Energy uptake and allocation during ontogeny. Science 2008, 322, 736–739. [Google Scholar] [CrossRef] [PubMed]
- Yagi, M.; Kanda, T.; Takeda, T.; Ishimatsu, A.; Oikawa, S. Ontogenetic phase shifts in metabolism: Links to development and anti-predator adaptation. Proc. R. Soc. B Biol. Sci. 2010, 277, 2793–2801. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, J.; Van Leeuwen, T.; Richards, J.; Allen, D. Relationship between growth and standard metabolic rate: Measurement artefacts and implications for habitat use and life-history adaptation in salmonids. J. Anim. Ecol. 2015, 84, 4–20. [Google Scholar] [CrossRef]
- Krogh, A. The Respiratory Exchange of Animals and Man; Longmans, Green: London, UK, 1916. [Google Scholar]
- Kleiber, M. Body size and metabolism. Hilgardia 1932, 6, 315–353. [Google Scholar] [CrossRef]
- Kozlowski, J.; Konarzewski, M.; Gawelczyk, A.T. Cell size as a link between noncoding DNA and metabolic rate scaling. Proc. Natl. Acad. Sci. USA 2003, 100, 14080–14085. [Google Scholar] [CrossRef]
- Glazier, D.S. Beyond the ‘3/4-power law’: Variation in the intra-and interspecific scaling of metabolic rate in animals. Biol. Rev. 2005, 80, 611–662. [Google Scholar] [CrossRef]
- White, C.R.; Phillips, N.F.; Seymour, R.S. The scaling and temperature dependence of vertebrate metabolism. Biol. Lett. 2006, 2, 125–127. [Google Scholar] [CrossRef]
- Glazier, D.S. A unifying explanation for diverse metabolic scaling in animals and plants. Biol. Rev. 2010, 85, 111–138. [Google Scholar] [CrossRef]
- White, C.R.; Frappell, P.B.; Chown, S.L. An information-theoretic approach to evaluating the size and temperature dependence of metabolic rate. Proc. R. Soc. B Biol. Sci. 2012, 279, 3616–3621. [Google Scholar] [CrossRef]
- Glazier, D.S. The 3/4-power law is not universal: Evolution of isometric, ontogenetic metabolic scaling in pelagic animals. Bioscience 2006, 56, 325–332. [Google Scholar] [CrossRef]
- Packard, G.C.; Birchard, G.F. Traditional allometric analysis fails to provide a valid predictive model for mammalian metabolic rates. J. Exp. Biol. 2008, 211, 3581–3587. [Google Scholar] [CrossRef]
- Kolokotrones, T.; Savage, V.; Deeds, E.J.; Fontana, W. Curvature in metabolic scaling. Nature 2010, 464, 753–756. [Google Scholar] [CrossRef]
- Mori, S.; Yamaji, K.; Ishida, A.; Prokushkin, S.G.; Masyagina, O.V.; Hagihara, A.; Hoque, A.T.; Suwa, R.; Osawa, A.; Nishizono, T.; et al. Mixed-power scaling of whole-plant respiration from seedlings to giant trees. Proc. Natl. Acad. Sci. USA 2010, 107, 1447–1451. [Google Scholar] [CrossRef] [PubMed]
- Yagi, M.; Oikawa, S. Ontogenetic phase shifts in metabolism in a flounder Paralichthys olivaceus. Sci. Rep. 2014, 4, 7135. [Google Scholar] [CrossRef]
- Wieser, W. A distribution must be made between the ontogeny and the phylogeny of metabolism in order to understand the mass exponent of energy metabolism. Respir. Physiol. 1984, 55, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Czarnoleski, M.; Kozlowski, J.; Dumiot, G.; Bonnet, J.C.; Mallard, J.; Dupont-Nivet, M. Scaling of metabolism in Helix aspersa snails: Changes through ontogeny and response to selection for increased size. J. Exp. Biol. 2008, 211, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.I. Ontogeny of the respiratory area in relation to body mass with reference to resting metabolism in the Japanese flounder, Paralichthys olivaceus (Temminck & Schlegel, 1846). Fishes 2022, 7, 39. [Google Scholar] [CrossRef]
- Shokri, M.; Cozzoli, F.; Vignes, F.; Bertoli, M.; Pizzul, E.; Basset, A. Metabolic rate and climate change across latitudes: Evidence of mass-dependent responses in aquatic amphipods. J. Exp. Biol. 2022, 225, jeb244842. [Google Scholar] [CrossRef]
- Shokri, M.; Cozzoli, F.; Basset, A. Metabolic rate and foraging behaviour: A mechanistic link across body size and temperature gradients. Oikos 2025, 2025, e10817. [Google Scholar] [CrossRef]
- Warburton, S.J.; Burggren, W.W.; Pelster, B.; Reiber, C.L.; Spicer, J. Comparative Developmental Physiology: Contributions, Tools, and Trends; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Killen, S.S.; Costa, I.; Brown, J.A.; Gamperl, A.K. Little left in the tank: Metabolic scaling in marine teleosts and its implications for aerobic scope. Proc. R. Soc. B Biol. Sci. 2007, 274, 431–438. [Google Scholar] [CrossRef]
- Moran, D.; Wells, R.M. Ontogenetic scaling of fish metabolism in the mouse-to-elephant mass magnitude range. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2007, 148, 611–620. [Google Scholar] [CrossRef]
- Glazier, D.S. Metabolic scaling in complex living systems. Systems 2014, 2, 451–540. [Google Scholar] [CrossRef]
- Glazier, D.S.; Hirst, A.G.; Atkinson, D. Shape shifting predicts ontogenetic changes in metabolic scaling in diverse aquatic invertebrates. Proc. R. Soc. B Biol. Sci. 2015, 282, 20142302. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Hirst, A.G.; Glazier, D.S.; Atkinson, D. Ecological pressures and the contrasting scaling of metabolism and body shape in coexisting taxa: Cephalopods versus teleost fish. Philos. Trans. R. Soc. B 2019, 374, 20180543. [Google Scholar] [CrossRef] [PubMed]
- Clarke, A.; Johnston, N.M. Scaling of metabolic rate with body mass and temperature in teleost fish. J. Anim. Ecol. 1999, 68, 893–905. [Google Scholar] [CrossRef]
- Bokma, F. Evidence against universal metabolic allometry. Funct. Ecol. 2004, 18, 184–187. [Google Scholar] [CrossRef]
- Killen, S.S.; Atkinson, D.; Glazier, D.S. The intraspecific scaling of metabolic rate with body mass in fishes depends on lifestyle and temperature. Ecol. Lett. 2010, 13, 184–193. [Google Scholar] [CrossRef]
- Oikawa, S.; Itazawa, Y.; Gotoh, M. Ontogenetic change in the relationship between metabolic rate and body mass in a sea bream Pagrus major (Temminck & Schlegel). J. Fish Biol. 1991, 38, 483–496. [Google Scholar] [CrossRef]
- Post, J.R.; Lee, J.A. Metabolic ontogeny of teleost fishes. Can. J. Fish. Aquat. Sci. 1996, 53, 910–923. [Google Scholar] [CrossRef]
- Bochdansky, A.B.; Leggett, W.C. Winberg revisited: Convergence of routine metabolism in larval and juvenile fish. Can. J. Fish. Aquat. Sci. 2001, 58, 220–230. [Google Scholar] [CrossRef]
- Gao, S.; He, Y.; Du, B.; Li, X.; Jing, Y.; Luo, Y. Mass scaling of standard metabolic rate within and among individuals in Western mosquitofish (Gambusia affinis). J. Comp. Physiol. B 2025, 195, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Lu, L.; Jiang, M.; Jia, J.; Li, W.; Wu, H.; Liao, Y.; Li, J. Metabolic scaling: Individual versus intraspecific scaling of Nile tilapia (Oreochromis niloticus). J. Comp. Physiol. B 2021, 191, 721–729. [Google Scholar] [CrossRef]
- Norin, T.; Malte, H.; Clark, T.D. Differential plasticity of metabolic rate phenotypes in a tropical fish facing environmental change. Funct. Ecol. 2016, 30, 369–378. [Google Scholar] [CrossRef]
- Norin, T.; Gamperl, A.K. Metabolic scaling of individuals vs. populations: Evidence for variation in scaling exponents at different hierarchical levels. Funct. Ecol. 2018, 32, 379–388. [Google Scholar] [CrossRef]
- Billard, R.; Lecointre, G. Biology and conservation of sturgeon and paddlefish. Rev. Fish Biol. Fish. 2000, 10, 355–392. [Google Scholar] [CrossRef]
- Wegner, A.; Ostaszewska, T.; Rożek, W. The ontogenetic development of the digestive tract and accessory glands of sterlet (Acipenser ruthenus L.) larvae during endogenous feeding. Rev. Fish Biol. Fish. 2009, 19, 431–444. [Google Scholar] [CrossRef]
- Berg, L.S.; Bogdanov, A.S.; Kozhin, N.I.; Rass, T.S. Commercial Fishes of the USSR, Pshchepromizdat; VNIRO Atlas Tsvetnykhrisunkovryb: Mockva, Russia, 1949; p. 787. [Google Scholar]
- Rybnikár, J.; Prokeš, M.; Mareš, J.; Cileček, M. Early development and growth of sterlet (Acipenser ruthenus) in the Czech Republic. Acta Univ. Agric. Silvic. Mendel. Brun. 2014, 59, 217–226. [Google Scholar] [CrossRef]
- Prokeš, M.; Baruš, V.; Mareš, J.; Peňáz, M.; Baránek, V. Growth of sterlet Acipenser ruthenus under experimental and farm conditions of the Czech Republic, with remarks on other sturgeons. Acta Univ. Agric. Silvic. Mendel. Brun. 2014, 59, 281–290. [Google Scholar] [CrossRef]
- LeBreton, G.; Beamish, F.W. Growth, bioenergetics and age. In Sturgeons and Paddlefish of North America; Springer: New York, NY, USA, 2004; pp. 195–216. [Google Scholar]
- Doroshov, S.I. Biology and culture of sturgeon Acipenseriformes. In Recent Advances in Aquaculture; Springer: New York, NY, USA, 1985; pp. 251–274. [Google Scholar]
- Cech, J.J., Jr. Respirometry. In Methods in Fish Biology; American Fisheries Society: Bethesda, MD, USA, 1990; pp. 335–362. [Google Scholar]
- Helm, I.; Jalukse, L.; Vilbaste, M.; Leito, I. Micro-Winkler titration method for dissolved oxygen concentration measurement. Anal. Chim. Acta 2009, 648, 167–173. [Google Scholar] [CrossRef]
- Brownlee, K.A. Statistical Theory and Methodology in Science and Engineering; Wiley: New York, NY, USA, 1965. [Google Scholar]
- Feldman, H.A.; McMahon, T.A. The 3/4 mass exponent for energy metabolism is not a statistical artifact. Respir. Physiol. 1983, 52, 149–163. [Google Scholar] [CrossRef]
- Abdali, H.; Eagderi, S. Ontogeny of gill structure in Sterlet, Acipenser ruthenus (Linnaeus, 1758). Iran. J. Ichthyol. 2015, 2, 87–92. [Google Scholar]
- Kalmykov, V.A.; Ruban, G.I.; Pavlov, D.S. Migrations and resources of sterlet Acipenser ruthenus (Acipenseridae) from the lower reaches of the Volga River. J. Ichthyol. 2010, 50, 44–51. [Google Scholar] [CrossRef]
- Djikanovic, V.; Skoric, S.; Lenhardt, M.; Smederevac-Lalic, M.; Visnjic-Jeftic, Z.; Spasic, S.; Mickovic, B. Review of sterlet (Acipenser ruthenus L. 1758) (Actinopterygii: Acipenseridae) feeding habits in the River Danube, 1694–1852 river km. J. Nat. Hist. 2015, 49, 411–417. [Google Scholar] [CrossRef]
- Strel’nikova, A.P. Feeding of juvenile sterlet (Acipenser ruthenus, Acipenseridae) in the Danube River midstream. J. Ichthyol. 2012, 52, 85–90. [Google Scholar] [CrossRef]
- Fieszl, J.; Bogacka-Kapusta, E.; Kapusta, A.; Szymańska, U.; Martyniak, A. Feeding ecology of sterlet Acipenser ruthenus L. in the Hungarian section of the Danube River. Fish. Aquat. Life 2011, 19, 105–111. [Google Scholar] [CrossRef]
- Fukuhara, O. Morphological and functional development of Japanese flounder in early life stage. Bull. Jpn. Soc. Sci. Fish. 1986, 52, 81–91. [Google Scholar] [CrossRef]
- Hillgruber, N.; Kloppmann, M.; Wahl, E.; Von Westernhagen, H. Feeding of larval blue whiting and Atlantic mackerel: A comparison of foraging strategies. J. Fish Biol. 1997, 51, 230–249. [Google Scholar] [CrossRef]
- Hillgruber, N.; Kloppmann, M. Small-scale patterns in distribution and feeding of Atlantic mackerel (Scomber scombrus L.) larvae in the Celtic Sea with special regard to intra-cohort cannibalism. Helgol. Mar. Res. 2001, 55, 135–149. [Google Scholar] [CrossRef]
- Sakakura, Y.; Tsukamoto, K. Onset and development of cannibalistic behaviour in early life stages of yellowtail. J. Fish Biol. 1996, 48, 16–29. [Google Scholar] [CrossRef]
- Khodorevskaya, R.P. Swimming Ability of Acipens erids at Early Stages of Ontogenesis. In Biological Bases of Development of Sturgeon Husbandry in Water Bodies of the USSR; Nauka: Moscow, Russia, 1979; pp. 201–209. [Google Scholar]
- Pavlov, D.S.; Nezdolii, V.K.; Khodorevskaya, R.P.; Ostrovskii, M.P.; Popova, I.K. Downstream Migration of Young Fish in the Volga and Ili Rivers; Nauka: Moscow, Russia, 1981. [Google Scholar]
- Giguère, L.A.; Côté, B.; St-Pierre, J. Metabolic rates scale isometrically in larval fishes. Mar. Ecol. Prog. Ser. 1988, 50, 13–19. [Google Scholar] [CrossRef]
- Finn, R.N.; Rønnestad, I.; van der Meeren, T.; Fyhn, H.J. Fuel and metabolic scaling during the early life stages of Atlantic cod Gadus morhua. Mar. Ecol. Prog. Ser. 2002, 243, 217–234. [Google Scholar] [CrossRef]
- Régnier, T.; Bolliet, V.; Labonne, J.; Gaudin, P. Assessing maternal effects on metabolic rate dynamics along early development in brown trout (Salmo trutta): An individual-based approach. J. Comp. Physiol. B 2010, 180, 25–31. [Google Scholar] [CrossRef]
- Chabot, D.; Steffensen, J.F.; Farrell, A.P. The determination of standard metabolic rate in fishes. J. Fish Biol. 2016, 88, 81–121. [Google Scholar] [CrossRef]
- Peck, M.A.; Moyano, M. Measuring respiration rates in marine fish larvae: Challenges and advances. J. Fish Biol. 2016, 88, 173–205. [Google Scholar] [CrossRef] [PubMed]
- Norin, T. Growth and mortality as causes of variation in metabolic scaling among taxa and taxonomic levels. Integr. Comp. Biol. 2022, 62, 1448–1459. [Google Scholar] [CrossRef]
Range of Body Mass (g) | Range of Day After Hatching | Volume of Respiration Chamber (mL) | Respirometry Time (Min) | Flow Rate of Water (mL min−1) | |
---|---|---|---|---|---|
Before Measurement | During Measurement | ||||
0.02–0.8 | 3–41 | 60–70 | 60–100 | 40–610 | 10–60 |
0.8–1.3 | 42–50 | 130–140 | 90–120 | 40–60 | 60–80 |
1.5–2.6 | 57–64 | 350–370 | 110–120 | 50–90 | 100–130 |
Transitional Phases (Body Mass: g) | Changes in Morphology | Changes in Behavior |
---|---|---|
– (approximately 0.25) |
| |
– (approximately 0.65) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.I. Ontogenetic Phase Shifts in Metabolism and Intraspecific Scaling in a Non-Teleost Fish, the Sterlet Sturgeon (Acipenser ruthenus). Hydrobiology 2025, 4, 24. https://doi.org/10.3390/hydrobiology4030024
Kim DI. Ontogenetic Phase Shifts in Metabolism and Intraspecific Scaling in a Non-Teleost Fish, the Sterlet Sturgeon (Acipenser ruthenus). Hydrobiology. 2025; 4(3):24. https://doi.org/10.3390/hydrobiology4030024
Chicago/Turabian StyleKim, Dong In. 2025. "Ontogenetic Phase Shifts in Metabolism and Intraspecific Scaling in a Non-Teleost Fish, the Sterlet Sturgeon (Acipenser ruthenus)" Hydrobiology 4, no. 3: 24. https://doi.org/10.3390/hydrobiology4030024
APA StyleKim, D. I. (2025). Ontogenetic Phase Shifts in Metabolism and Intraspecific Scaling in a Non-Teleost Fish, the Sterlet Sturgeon (Acipenser ruthenus). Hydrobiology, 4(3), 24. https://doi.org/10.3390/hydrobiology4030024