A Review of Winter Ulcer Disease and Skin Ulcer Outbreaks in Atlantic Salmon (Salmo salar)
Abstract
:1. Introduction
Host (S) Marine Fish | Bacterial Strain | Dose | Infection/Challenge Route | Mortality Rate | References |
---|---|---|---|---|---|
Atlantic salmon | Vibrio sp. J383 | 108 CFU/dose | IP | 22.5% | [6] |
Atlantic salmon | Vibrio sp. J383 | 107 CFU/dose | IP | 5% | [6] |
Atlantic salmon | Vibrio sp. J383 | 106 CFU/dose | IP | 0% | [6] |
Atlantic salmon | M. viscosa | 7 × 105 CFU/mL | Bath | 33% | [28] |
Atlantic salmon | V. marinus | 3.5 × 103 CFU/dose | IM | 50% | [2] |
Atlantic salmon | M. viscosa-co cultivated | 106 CFU/mL | Bath | 96% | [29] |
Atlantic salmon | M. viscosa and Alivibrio wodanis | (106/106 CFU/mL) | Bath | 94% | [29] |
Atlantic salmon | M. viscosa and Alivibrio wodanis | (106/106 CFU/mL) | Bath | 98% | [29] |
Atlantic salmon | Alivibrio wodanis then M. viscosa | (106 + 106 CFU/mL) | Bath | 84% | [29] |
Atlantic salmon | Alivibrio wodanis co-cultivated | 1.5 × 106 CFU/mL | Bath | 8% | [29] |
Atlantic salmon | M. viscosa | 106 CFU/dose | IP | 5.64% | [1] |
Atlantic salmon | M. viscosa | 106 CFU/mL | Bath | 2.82% | [1] |
2. Canadian Aquaculture Industry
3. Global Status of Winter Ulcer Disease in Atlantic Salmon
4. Moritella viscosa, the Main Causative Agent of Winter Ulcer Disease
5. The Role of Co-Infection in Winter Ulcer Disease
6. Regional Distinctions
7. Vaccines against WUD
8. Treatments and Mitigating Strategies
9. Comparative Bacterial Genomics for Vaccine Advancements in Ulcerative Disease
10. Conclusions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghasemieshkaftaki, M.; Cao, T.; Hossain, A.; Vasquez, I.; Santander, J. Haemato-Immunological Response of Immunized Atlantic Salmon (Salmo salar) to Moritella viscosa Challenge and Antigens. Vaccines 2024, 12, 70. [Google Scholar] [CrossRef] [PubMed]
- Benediktsdóttir; Helgason; Sigurjónsdóttir. Vibrio spp. isolated from salmonids with shallow skin lesions and reared at low temperature. J. Fish Dis. 1998, 21, 19–28. [Google Scholar]
- Grove, S.; Reitan, L.; Lunder, T.; Colquhoun, D. Real-time PCR detection of Moritella viscosa, the likely causal agent of winter-ulcer in Atlantic salmon Salmo salar and rainbow trout Oncorhynchus mykiss. Dis. Aquat. Org. 2008, 82, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Furevik, A.; Tunheim, S.H.; Heen, V.; Klevan, A.; Knutsen, L.E.; Tandberg, J.I.; Tingbo, M.G. New vaccination strategies are required for effective control of winter ulcer disease caused by emerging variant strains of Moritella viscosa in Atlantic salmon. Fish Shellfish Immunol. 2023, 137, 108784. [Google Scholar] [CrossRef] [PubMed]
- Lunder, TVintersir [Winter ulcer]. In Fiskehelse [Fish Health]; John Grieg Forlag: Bergen, Norway, 1990; pp. 304–305.
- Ghasemieshkaftaki, M.; Vasquez, I.; Eshraghi, A.; Gamperl, A.K.; Santander, J. Comparative Genomic Analysis of a Novel Vibrio sp. Isolated from an Ulcer Disease Event in Atlantic Salmon (Salmo salar). Microorganisms 2023, 11, 1736. [Google Scholar] [CrossRef] [PubMed]
- MacKinnon, B.; Groman, D.; Fast, M.D.; Manning, A.J.; Jones, P.; St-Hilaire, S. Atlantic salmon challenged with extracellular products from Moritella viscosa. Dis. Aquat. Org. 2019, 133, 119–125. [Google Scholar] [CrossRef] [PubMed]
- MacKinnon, B.; Jones, P.; Hawkins, L.; Dohoo, I.; Stryhn, H.; Vanderstichel, R.; St-Hilaire, S. The epidemiology of skin ulcers in saltwater reared Atlantic salmon (Salmo salar) in Atlantic Canada. Aquaculture 2019, 501, 230–238. [Google Scholar] [CrossRef]
- Bruno, D.; Griffiths, J.; Petrie, J.; Hastings, T. Vibrio viscosus in farmed Atlantic salmon Salmo salar in Scotland: Field and experimental observations. Dis. Aquat. Org. 1998, 34, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Lunder, T.; Sørum, H.; Holstad, G.; Steigerwalt, A.G.; Mowinckel, P.; Brenner, D.J. Phenotypic and genotypic characterization of Vibrio viscosus sp. nov. and Vibrio wodanis sp. nov. isolated from Atlantic salmon (Salmo salar) with’winter ulcer’. Int. J. Syst. Evol. Microbiol. 2000, 50, 427–450. [Google Scholar] [CrossRef]
- Håstein, T.; Gudding, R.; Evensen, O. Bacterial vaccines for fish--an update of the current situation worldwide. Dev. Biol. 2005, 121, 55–74. [Google Scholar]
- Benediktsdóttir, E.; Verdonck, L.; Spröer, C.; Helgason, S.; Swings, J. Characterization of Vibrio viscosus and Vibrio wodanis isolated at different geographical locations: A proposal for reclassification of Vibrio viscosus as Moritella viscosa comb. nov. Int. J. Syst. Evol. Microbiol. 2000, 50, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Karlsen, C.; Ytteborg, E.; Furevik, A.; Sveen, L.; Tunheim, S.; Afanasyev, S.; Tingbø, M.G.; Krasnov, A. Moritella viscosa early infection and transcriptional responses of intraperitoneal vaccinated and unvaccinated Atlantic salmon. Aquaculture 2023, 572, 739531. [Google Scholar] [CrossRef]
- Björnsdóttir, B.; Gudmundsdóttir, S.; Bambir, S.; Magnadóttir, B.; Gudmundsdóttir, B. Experimental infection of turbot, Scophthalmus maximus (L.), by Moritella viscosa, vaccination effort and vaccine-induced side-effects. J. Fish Dis. 2004, 27, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Gudmundsdóttir, B.; Björnsdóttir, B.; Gudmundsdóttir, S.; Bambir, S. A comparative study of susceptibility and induced pathology of cod, Gadus morhua (L.), and halibut, Hippoglossus hippoglossus (L.), following experimental infection with Moritella viscosa. J. Fish Dis. 2006, 29, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Colquhoun, D.; Hovland, H.; Hellberg, H.; Haug, T.; Nilsen, H. Moritella viscosa isolated from farmed Atlantic cod (Gadus morhua). Bull.-Eur. Assoc. Fish Pathol. 2004, 24, 109–114. [Google Scholar]
- Einarsdottir, T.; Sigurdardottir, H.; Bjornsdottir, T.S.; Einarsdottir, E. Moritella viscosa in lumpfish (Cyclopterus lumpus) and Atlantic salmon (Salmo salar). J. Fish Dis. 2018, 41, 1751–1758. [Google Scholar] [CrossRef] [PubMed]
- Heidarsdottir, K.; Gravningen, K.; Benediktsdottir, E. Antigen profiles of the fish pathogen Moritella viscosa and protection in fish. J. Appl. Microbiol. 2008, 104, 944–951. [Google Scholar] [CrossRef]
- Xie, J.; He, J.-B.; Shi, J.-W.; Xiao, Q.; Li, L.; Woo, P.C. An adult zebrafish model for Laribacter hongkongensis infection: Koch’s postulates fulfilled. Emerg. Microbes Infect. 2014, 3, e73. [Google Scholar] [CrossRef] [PubMed]
- Gallani, S.U.; Valladão, G.M.R.; Assane, I.M.; de Oliveira Alves, L.; Kotzent, S.; Hashimoto, D.T.; Pilarski, F. Motile Aeromonas septicemia in tambaqui Colossoma macropomum: Pathogenicity, lethality and new insights for control and disinfection in aquaculture. Microb. Pathog. 2020, 149, 104512. [Google Scholar] [CrossRef]
- Ellul, R.M.; Walde, C.; Haugland, G.T.; Wergeland, H.; Rønneseth, A. Pathogenicity of Pasteurella sp. in lumpsuckers (Cyclopterus lumpus L.). J. Fish Dis. 2019, 42, 35–46. [Google Scholar] [CrossRef]
- Koch, R. Die aetiologie der tuberkulose. Mittbeilungen Aus Dem Kais. Gesundbeisamte 1884, 2, 1–88. [Google Scholar]
- Afiyanti, A.D.; Yuliani, M.G.A.; Handijatno, D. Leukocyte count and differential leukocyte count of carp (Cyprinus carpio Linn) after infected by Aeromonas salmonicida. Cell 2018, 2000, 3. [Google Scholar]
- Harikrishnan, R.; Rani, M.N.; Balasundaram, C. Hematological and biochemical parameters in common carp, Cyprinus carpio, following herbal treatment for Aeromonas hydrophila infection. Aquaculture 2003, 221, 41–50. [Google Scholar] [CrossRef]
- Isla, A.; Sánchez, P.; Ruiz, P.; Albornoz, R.; Pontigo, J.P.; Rauch, M.C.; Hawes, C.; Vargas-Chacoff, L.; Yáñez, A.J. Effect of low-dose Piscirickettsia salmonis infection on haematological-biochemical blood parameters in Atlantic salmon (Salmo salar). J. Fish Biol. 2022, 101, 1021–1032. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.; Mouriño, J.; Amaral, G.; Vieira, F.; Dotta, G.; Jatobá, A.; Pedrotti, F.; Jerônimo, G.; Buglione-Neto, C. Haematological changes in Nile tilapia experimentally infected with Enterococcus sp. Braz. J. Biol. 2008, 68, 657–661. [Google Scholar] [CrossRef] [PubMed]
- Monir, M.S.; Yusoff, S.b.M.; Zulperi, Z.b.M.; Hassim, H.b.A.; Mohamad, A.; Ngoo, M.S.b.M.H.; Ina-Salwany, M.Y. Haemato-immunological responses and effectiveness of feed-based bivalent vaccine against Streptococcus iniae and Aeromonas hydrophila infections in hybrid red tilapia (Oreochromis mossambicus × O. niloticus). BMC Vet. Res. 2020, 16, 226. [Google Scholar] [CrossRef] [PubMed]
- Løvoll, M.; Wiik-Nielsen, C.; Tunsjø, H.S.; Colquhoun, D.; Lunder, T.; Sørum, H.; Grove, S. Atlantic salmon bath challenged with Moritella viscosa–pathogen invasion and host response. Fish Shellfish Immunol. 2009, 26, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Karlsen, C.; Vanberg, C.; Mikkelsen, H.; Sørum, H. Co-infection of Atlantic salmon (Salmo salar), by Moritella viscosa and Aliivibrio wodanis, development of disease and host colonization. Vet. Microbiol. 2014, 171, 112–121. [Google Scholar] [CrossRef]
- Tunsjø, H.S.; Paulsen, S.M.; Berg, K.; Sørum, H.; L’Abée-Lund, T.M. The winter ulcer bacterium Moritella viscosa demonstrates adhesion and cytotoxicity in a fish cell model. Microb. Pathog. 2009, 47, 134–142. [Google Scholar] [CrossRef]
- Noakes, D.J. Oceans of opportunity: A review of Canadian aquaculture. Mar. Econ. Manag. 2018, 1, 43–54. [Google Scholar] [CrossRef]
- Nguyen, T.; Williams, T. Aquaculture in Canada (Background Paper) Publication No. 2013-12-E. 2013.
- DFO. Species farmed in Canada: Farmed Salmon. 2017. Available online: https://www.dfo-mpo.gc.ca/aquaculture/sector-secteur/species-especes/salmon-saumon-eng.htm (accessed on 19 July 2024).
- FAO. The State of World Fisheries and Aquaculture 2020; Sustainability in action; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Statistics Canada. Table 32-10-0107-01 Aquaculture, Production and Value. 2023. Available online: https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3210010701 (accessed on 19 July 2024). [CrossRef]
- Osmond, A.T.; Charlebois, S.; Colombo, S.M. Exploratory analysis on Canadian consumer perceptions, habits, and opinions on salmon consumption and production in Canada. Aquac. Int. 2023, 31, 179–193. [Google Scholar] [CrossRef]
- Toranzo, A.E.; Magariños, B.; Romalde, J.L. A review of the main bacterial fish diseases in mariculture systems. Aquaculture 2005, 246, 37–61. [Google Scholar] [CrossRef]
- Lunder, T.; Evensen, Ø.; Holstad, G.; Håstein, T. \’Winter ulcer\’ in the Atlantic salmon Salmo salar. Pathological and bacteriological investigations and transmission experiments. Dis. Aquat. Org. 1995, 23, 39–49. [Google Scholar] [CrossRef]
- Bjornsdottir, B.; Gudmundsdottir, T.; Gudmundsdottir, B. Virulence properties of Moritella viscosa extracellular products. J. Fish Dis. 2011, 34, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Bjornsdottir, B.; Hjerde, E.; Bragason, B.T.; Gudmundsdottir, T.; Willassen, N.P.; Gudmundsdottir, B.K. Identification of type VI secretion systems in Moritella viscosa. Vet. Microbiol. 2012, 158, 436–442. [Google Scholar] [CrossRef]
- Coyne, R.; Smith, P.; Dalsgaard, I.; Nilsen, H.; Kongshaug, H.; Bergh, Ø.; Samuelsen, O. Winter ulcer disease of post-smolt Atlantic salmon: An unsuitable case for treatment? Aquaculture 2006, 253, 171–178. [Google Scholar] [CrossRef]
- Jansson, E.; Vennerström, P. Infectious diseases of coldwater fish in marine and brackish waters. In Diseases and Disorders of Finfish in Cage Culture; CABI: Wallingford, UK, 2014; pp. 15–59. [Google Scholar]
- Olsen, A.B.; Nilsen, H.; Sandlund, N.; Mikkelsen, H.; Sørum, H.; Colquhoun, D. Tenacibaculum sp. associated with winter ulcers in sea-reared Atlantic salmon Salmo salar. Dis. Aquat. Org. 2011, 94, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.; Bøgwald, J.; Andersson, R.; Kenne, L. Structural studies of the lipopolysaccharide of Moritella viscosa strain M2-226. Carbohydr. Res. 2012, 347, 164–167. [Google Scholar] [CrossRef]
- Lillehaug, A.; Lunestad, B.; Grave, K. Epidemiology of bacterial diseases in Norwegian aquaculture a description based on antibiotic prescription data for the ten-year period 1991 to 2000. Dis. Aquat. Org. 2003, 53, 115–125. [Google Scholar] [CrossRef]
- Karlsen, C.; Sørum, H.; Willassen, N.P.; Åsbakk, K. Moritella viscosa bypasses Atlantic salmon epidermal keratocyte clearing activity and might use skin surfaces as a port of infection. Vet. Microbiol. 2012, 154, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Wade, J.; Weber, L. Characterization of Moritella viscosa and Winter Ulcer to Inform Pathogen Transfer Risk Assessments in British Columbia; Canadian Science Advisory Secretariat: Ottawa, ON, Canada, 2020. [Google Scholar]
- Tingbø, M.G.; Tunheim, S.H.; Klevan, A.; Kamisinska, A.; Behzaad, H.; Sandtrø, A.; Furevik, A. Antigenic similarities and clinical cross-protection between variant and classic non-viscous strains of Moritella viscosa in Atlantic salmon in Norway. Fish Shellfish Immunol. 2024, 145, 109306. [Google Scholar] [CrossRef] [PubMed]
- Ramberg, S.; Krasnov, A.; Colquhoun, D.; Wallace, C.; Andreassen, R. Expression analysis of Moritella viscosa-challenged Atlantic salmon identifies disease-responding genes, microRNAs and their predicted target genes and pathways. Int. J. Mol. Sci. 2022, 23, 11200. [Google Scholar] [CrossRef] [PubMed]
- Karlsen, C.; Thorarinsson, R.; Wallace, C.; Salonius, K.; Midtlyng, P.J. Atlantic salmon winter-ulcer disease: Combining mortality and skin ulcer development as clinical efficacy criteria against Moritella viscosa infection. Aquaculture 2017, 473, 538–544. [Google Scholar] [CrossRef]
- Tunsjø, H.S.; Wiik-Nielsen, C.R.; Grove, S.; Skjerve, E.; Sørum, H.; L’Abée-Lund, T.M. Putative virulence genes in Moritella viscosa: Activity during in vitro inoculation and in vivo infection. Microb. Pathog. 2011, 50, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Urakawa, H.; Kita-Tsukamoto, K.; Steven, S.E.; Ohwada, K.; Colwell, R.R. A proposal to transfer Vibrio marinus (Russell 1891) to a new genus Moritella gen. nov. as Moritella marina comb. nov. FEMS Microbiol. Lett. 1998, 165, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Hjerde, E.; Karlsen, C.; Sørum, H.; Parkhill, J.; Willassen, N.P.; Thomson, N.R. Co-cultivation and transcriptome sequencing of two co-existing fish pathogens Moritella viscosa and Aliivibrio wodanis. BMC Genom. 2015, 16, 447. [Google Scholar] [CrossRef] [PubMed]
- Bjornsdottir, B.; Fridjonsson, O.H.; Magnusdottir, S.; Andresdottir, V.; Hreggvidsson, G.O.; Gudmundsdottir, B.K. Characterisation of an extracellular vibriolysin of the fish pathogen Moritella viscosa. Vet. Microbiol. 2009, 136, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Bjornsdottir, B.; Fast, M.D.; Sperker, S.A.; Brown, L.L.; Gudmundsdottir, B.K. Effects of Moritella viscosa antigens on pro-inflammatory gene expression in an Atlantic salmon (Salmo salar Linnaeus) cell line (SHK-1). Fish Shellfish Immunol. 2009, 26, 858–863. [Google Scholar] [CrossRef]
- Björnsson, H.; Marteinsson, V.; Friðjónsson, Ó.; Linke, D.; Benediktsdottir, E. Isolation and characterization of an antigen from the fish pathogen Moritella viscosa. J. Appl. Microbiol. 2011, 111, 17–25. [Google Scholar] [CrossRef]
- Okon, E.M.; Okocha, R.C.; Taiwo, A.B.; Michael, F.B.; Bolanle, A.M. Dynamics of co-infection in fish: A review of pathogen-host interaction and clinical outcome. Fish Shellfish Immunol. Rep. 2023, 4, 100096. [Google Scholar] [CrossRef] [PubMed]
- Småge, S.B.; Brevik, Ø.J.; Duesund, H.; Ottem, K.F.; Watanabe, K.; Nylund, A. Tenacibaculum finnmarkense sp. nov., a fish pathogenic bacterium of the family Flavobacteriaceae isolated from Atlantic salmon. Antonie Van Leeuwenhoek 2016, 109, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Kotob, M.H.; Menanteau-Ledouble, S.; Kumar, G.; Abdelzaher, M.; El-Matbouli, M. The impact of co-infections on fish: A review. Vet. Res. 2017, 47, 98. [Google Scholar] [CrossRef] [PubMed]
- Whitman, K.; Backman, S.; Benediktsdottir, E.; Coles, M.; Johnson, G.R. Isolation and characterization of a new Vibrio spp.(Vibrio wodanis) associated with’winter ulcer disease’in sea water raised Atlantic salmon (Salmo salar L.) in New Brunswick. Aquaculture Canada 2000 2001, 4, 115–117. [Google Scholar]
- MacKinnon, B.; Groman, D.; Fast, M.D.; Manning, A.J.; Jones, P.; MacKinnon, A.M.; St-Hilaire, S. Transmission experiment in Atlantic salmon (Salmo salar) with an Atlantic Canadian isolate of Moritella viscosa. Aquaculture 2020, 516, 734547. [Google Scholar] [CrossRef]
- Tunsjø, H.S.; Paulsen, S.M.; Mikkelsen, H.; L’Abée-Lund, T.M.; Skjerve, E.; Sørum, H. Adaptive response to environmental changes in the fish pathogen Moritella viscosa. Res. Microbiol. 2007, 158, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Grove, S.; Wiik-Nielsen, C.; Lunder, T.; Tunsjø, H.; Tandstad, N.; Reitan, L.; Marthinussen, A.; Sørgaard, M.; Olsen, A.; Colquhoun, D. Previously unrecognised division within Moritella viscosa isolated from fish farmed in the North Atlantic. Dis. Aquat. Org. 2010, 93, 51–61. [Google Scholar] [CrossRef]
- Karlsen, C.; Ellingsen, A.B.; Wiik-Nielsen, C.; Winther-Larsen, H.C.; Colquhoun, D.J.; Sørum, H. Host specificity and clade dependent distribution of putative virulence genes in Moritella viscosa. Microb. Pathog. 2014, 77, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Shoemaker, C.A.; Klesius, P.H.; Evans, J.J.; Arias, C.R. Use of modified live vaccines in aquaculture. J. World Aquac. Soc. 2009, 40, 573–585. [Google Scholar] [CrossRef]
- Gudmundsdóttir, B.K.; Björnsdóttir, B. Vaccination against atypical furunculosis and winter ulcer disease of fish. Vaccine 2007, 25, 5512–5523. [Google Scholar] [CrossRef]
- Greger, E.; Goodrich, T. Vaccine development for winter ulcer disease, Vibrio viscosus, in Atlantic salmon, Salmo salar L. J. Fish Dis. 1999, 22, 193–199. [Google Scholar] [CrossRef]
- Tafalla, C.; Bøgwald, J.; Dalmo, R.A. Adjuvants and immunostimulants in fish vaccines: Current knowledge and future perspectives. Fish Shellfish Immunol. 2013, 35, 1740–1750. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lee, Y.-k.; Kang, S.C.; Han, B.K.; Choi, K.M. Recent vaccine technology in industrial animals. Clin. Exp. Vaccine Res. 2016, 5, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Adams, A. Progress, challenges and opportunities in fish vaccine development. Fish Shellfish Immunol. 2019, 90, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Bruce, T.J.; Jones, E.M.; Cain, K.D. A review of fish vaccine development strategies: Conventional methods and modern biotechnological approaches. Microorganisms 2019, 7, 569. [Google Scholar] [CrossRef] [PubMed]
- Brudeseth, B.E.; Wiulsrød, R.; Fredriksen, B.N.; Lindmo, K.; Løkling, K.-E.; Bordevik, M.; Steine, N.; Klevan, A.; Gravningen, K. Status and future perspectives of vaccines for industrialised fin-fish farming. Fish Shellfish Immunol. 2013, 35, 1759–1768. [Google Scholar] [CrossRef] [PubMed]
- Kayansamruaj, P.; Areechon, N.; Unajak, S. Development of fish vaccine in Southeast Asia: A challenge for the sustainability of SE Asia aquaculture. Fish Shellfish Immunol. 2020, 103, 73–87. [Google Scholar] [CrossRef] [PubMed]
- Jan, A.T. Outer membrane vesicles (OMVs) of gram-negative bacteria: A perspective update. Front. Microbiol. 2017, 8, 1053. [Google Scholar] [CrossRef]
- Ellis, T.N.; Kuehn, M.J. Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol. Mol. Biol. Rev. 2010, 74, 81–94. [Google Scholar] [CrossRef]
- Furuyama, N.; Sircili, M.P. Outer membrane vesicles (OMVs) produced by gram-negative bacteria: Structure, functions, biogenesis, and vaccine application. BioMed Res. Int. 2021, 2021, 1490732. [Google Scholar] [CrossRef]
- Schwechheimer, C.; Kuehn, M.J. Outer-membrane vesicles from Gram-negative bacteria: Biogenesis and functions. Nat. Rev. Microbiol. 2015, 13, 605–619. [Google Scholar] [CrossRef] [PubMed]
- Coyne, R.; Bergh, Ø.; Samuelsen, O.; Andersen, K.; Lunestad, B.T.; Nilsen, H.; Dalsgaard, I.; Smith, P. Attempt to validate breakpoint MIC values estimated from pharmacokinetic data obtained during oxolinic acid therapy of winter ulcer disease in Atlantic salmon (Salmo salar). Aquaculture 2004, 238, 51–66. [Google Scholar] [CrossRef]
- Morrison, D.B.; Saksida, S. Trends in antimicrobial use in Marine Harvest Canada farmed salmon production in British Columbia (2003–2011). Can. Vet. J. 2013, 54, 1160. [Google Scholar] [PubMed]
- Canada, H. List of Veterinary Drugs that Are Authorized for Sale by Health Canada for Use in Food-Producing Aquatic Animals; Government of Canada: Ottawa, ON, Canada, 2010.
- de O. Roberti Filho, F.; Koch, J.F.A.; Wallace, C.; Leal, M.C. Dietary β-1, 3/1, 6-glucans improve the effect of a multivalent vaccine in Atlantic salmon infected with Moritella viscosa or infectious salmon anemia virus. Aquac. Int. 2019, 27, 1825–1834. [Google Scholar] [CrossRef]
- Rørvik, K.A.; Steien, S.; Saltkjelsvik, B.; Thomassen, M. Urea and trimethylamine oxide in diets for seawater farmed rainbow trout: Effect on fat belching, skin vesicle, winter ulcer and quality grading. Aquac. Nutr. 2000, 6, 247–254. [Google Scholar] [CrossRef]
- Rorvik, K.; Steien, S.; Nordrum, S.; Lein, R.; Thomassen, M. Urea in feeds for sea water farmed Atlantic salmon: Effect on growth, carcass quality and outbreaks of winter ulcer. Aquac. Nutr. 2001, 7, 133–140. [Google Scholar] [CrossRef]
- Duff, D. The oral immunization of trout against Bacterium salmonicida. J. Immunol. 1942, 44, 87–94. [Google Scholar] [CrossRef]
- Snieszko, S.; Friddle, S. Prophylaxis of furunculosis in brook trout (Salvelinus fontinalis) by oral immunization and sulfamerazine. Progress. Fish-Cult. 1949, 11, 161–168. [Google Scholar] [CrossRef]
- Du, Y.; Hu, X.; Miao, L.; Chen, J. Current status and development prospects of aquatic vaccines. Front. Immunol. 2022, 13, 1040336. [Google Scholar] [CrossRef] [PubMed]
- Gudding, R.; Van Muiswinkel, W.B. A history of fish vaccination: Science-based disease prevention in aquaculture. Fish Shellfish Immunol. 2013, 35, 1683–1688. [Google Scholar] [CrossRef]
- Sudheesh, P.S.; Cain, K.D. Prospects and challenges of developing and commercializing immersion vaccines for aquaculture. Int. Biol. Rev. 2017, 1, 1–20. [Google Scholar]
- Biering, E.; Salonius, K. DNA vaccines. In Fish Vaccination; Academic Press: Cambridge, MA, USA, 2014; pp. 47–55. [Google Scholar]
- Levine, M.M.; Sztein, M.B. Vaccine development strategies for improving immunization: The role of modern immunology. Nat. Immunol. 2004, 5, 460–464. [Google Scholar] [CrossRef] [PubMed]
- Fraser, C.M.; Eisen, J.; Fleischmann, R.D.; Ketchum, K.A.; Peterson, S. Comparative genomics and understanding of microbial biology. Emerg. Infect. Dis. 2000, 6, 505. [Google Scholar] [CrossRef] [PubMed]
- Prentice, M.B. Bacterial comparative genomics. Genome Biol. 2004, 5, 338. [Google Scholar] [CrossRef]
- García-Angulo, V.A.; Kalita, A.; Kalita, M.; Lozano, L.; Torres, A.G. Comparative genomics and immunoinformatics approach for the identification of vaccine candidates for enterohemorrhagic Escherichia coli O157:H7. Infect. Immun. 2014, 82, 2016–2026. [Google Scholar] [CrossRef]
- Seib, K.L.; Dougan, G.; Rappuoli, R. The key role of genomics in modern vaccine and drug design for emerging infectious diseases. PLoS Genet. 2009, 5, e1000612. [Google Scholar] [CrossRef]
- Weinstock, G.M. Genomics and bacterial pathogenesis. Emerg. Infect. Dis. 2000, 6, 496. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghasemieshkaftaki, M. A Review of Winter Ulcer Disease and Skin Ulcer Outbreaks in Atlantic Salmon (Salmo salar). Hydrobiology 2024, 3, 224-237. https://doi.org/10.3390/hydrobiology3030015
Ghasemieshkaftaki M. A Review of Winter Ulcer Disease and Skin Ulcer Outbreaks in Atlantic Salmon (Salmo salar). Hydrobiology. 2024; 3(3):224-237. https://doi.org/10.3390/hydrobiology3030015
Chicago/Turabian StyleGhasemieshkaftaki, Maryam. 2024. "A Review of Winter Ulcer Disease and Skin Ulcer Outbreaks in Atlantic Salmon (Salmo salar)" Hydrobiology 3, no. 3: 224-237. https://doi.org/10.3390/hydrobiology3030015
APA StyleGhasemieshkaftaki, M. (2024). A Review of Winter Ulcer Disease and Skin Ulcer Outbreaks in Atlantic Salmon (Salmo salar). Hydrobiology, 3(3), 224-237. https://doi.org/10.3390/hydrobiology3030015