Toward a Brighter Future: Enhanced Sustainable Methods for Preventing Algal Blooms and Improving Water Quality
Abstract
:1. Introduction
2. Advancements in Water Treatment: Focused Strategies for Particulate Organic Matter and Harmful Algae
2.1. Physical Methods
2.2. Chemical Methods
2.3. Biological Methods
3. Comparative Analysis of Harmful Algal Blooms in Freshwater and Marine Ecosystems
4. Passive Strategies for Managing Harmful Algal Blooms (HABs) in Aquatic Ecosystems
5. Enhanced Sustainable Strategies for Algal Bloom Prevention and Water Quality Improvement
6. Conclusions and Future Direction
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bashir, I.; Lone, F.A.; Bhat, R.A.; Mir, S.A.; Dar, Z.A.; Dar, S.A. Concerns and Threats of Contamination on Aquatic Ecosystems. In Bio-Remediation and Biotechnology; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–26. [Google Scholar] [CrossRef]
- Bouraï, L.; Logez, M.; Laplace-Treyture, C.; Argillier, C. How Do Eutrophication and Temperature Interact to Shape the Community Structures of Phytoplankton and Fish in Lakes? Water 2020, 12, 779. [Google Scholar] [CrossRef]
- Anderson, D.M.; Burkholder, J.M.; Cochlan, W.P.; Glibert, P.M.; Gobler, C.J.; Heil, C.A.; Vargo, G.A. Harmful Algal Blooms and Eutrophication: Examining Linkages from Selected Coastal Regions of the United States. Harmful Algae 2008, 8, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Paerl, H.W.; Otten, T.G.; Kudela, R. Mitigating the Expansion of Harmful Algal Blooms Across the Freshwater-to-Marine Continuum. Environ. Sci. Technol. 2018, 52, 5519–5529. [Google Scholar] [CrossRef] [PubMed]
- Kennish, M.J. Environmental Threats and Environmental Future of Estuaries. Environ. Conserv. 2002, 29, 78–107. [Google Scholar] [CrossRef]
- Chilton, D.; Hamilton, D.P.; Nagelkerken, I.; Cook, P.; Hipsey, M.R.; Reid, R.; Brookes, J. Environmental Flow Requirements of Estuaries: Providing Resilience to Current and Future Climate and Direct Anthropogenic Changes. Front. Environ. Sci. 2021, 9, 764218. [Google Scholar] [CrossRef]
- Shah, N.W.; Baillie, B.R.; Bishop, K.; Ferraz, S.; Högbom, L.; Nettles, J.; Brookes, J. The Effects of Forest Management on Water Quality. Forest Ecol. Manag. 2022, 522, 120397. [Google Scholar] [CrossRef]
- Withers, P.J.A.; Neal, C.; Jarvie, H.P.; Doody, D.G. Agriculture and Eutrophication: Where Do We Go from Here? Sustainability 2014, 6, 5853–5875. [Google Scholar] [CrossRef]
- Kelly, N.E.; Guijarro-Sabaniel, J.; Zimmerman, R. Anthropogenic Nitrogen Loading and Risk of Eutrophication in the Coastal Zone of Atlantic Canada. Estuar. Coast. Shelf Sci. 2021, 263, 107630. [Google Scholar] [CrossRef]
- Osman, M.; Wan Yusof, K.; Takaijudin, H.; Goh, H.W.; Abdul Malek, M.; Azizan, N.A.; Abdurrasheed, A.S. A Review of Nitrogen Removal for Urban Stormwater Runoff in Bioretention System. Sustainability 2019, 11, 6673. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint Pollution of Surface Waters with Phosphorus and Nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Filippelli, R.; Termansen, M.; Hasan, S.; Hasler, B.; Hansen, L.; Smart, J.C.R. Water Quality Trading Markets—Integrating Land and Marine Based Measures under a Smart Market Approach. Ecol. Econ. 2022, 200, 107549. [Google Scholar] [CrossRef]
- Ho, J.C.; Michalak, A.M.; Pahlevan, N. Widespread Global Increase in Intense Lake Phytoplankton Blooms Since the 1980s. Nature 2019, 574, 667–670. [Google Scholar] [CrossRef]
- Wagner, T.; Erickson, L. Sustainable Management of Eutrophic Lakes and Reservoirs. J. Environ. Prot. 2017, 8, 436–463. [Google Scholar] [CrossRef]
- Schindler, D.W.; Carpenter, S.R.; Chapra, S.C.; Hecky, R.E.; Orihel, D.M. Reducing Phosphorus to Curb Lake Eutrophication is a Success. Environ. Sci. Technol. 2016, 50, 8923–8929. [Google Scholar] [CrossRef] [PubMed]
- Shortle, J.S.; Mihelcic, J.R.; Zhang, Q.; Arabi, M. Nutrient Control in Water Bodies: A Systems Approach. J. Environ. Qual. 2019, 49, 517–533. [Google Scholar] [CrossRef] [PubMed]
- Akinnawo, S.O. Eutrophication: Causes, Consequences, Physical, Chemical and Biological Techniques for Mitigation Strategies. Environ. Challenges 2023, 12, 100733. [Google Scholar] [CrossRef]
- Anderson, D.M.; Boerlage, S.F.E.; Dixon, M.B. Harmful Algal Blooms (HABs) and Desalination: A Guide to Impacts, Monitoring and Management; IOC Manuals and Guides; UNESCO: Paris, France, 2017. [Google Scholar]
- Hattenrath, T.K.; Anderson, D.M.; Gobler, C.J. The Influence of Anthropogenic Nitrogen Loading and Meteorological Conditions on the Dynamics and Toxicity of Alexandrium fundyense Blooms in a New York (USA) Estuary. Harmful Algae 2010, 9, 402–412. [Google Scholar] [CrossRef]
- Plaas, H.E.; Paerl, H.W. Toxic Cyanobacteria: A Growing Threat to Water and Air Quality. Environ. Sci. Technol. 2021, 55, 44–64. [Google Scholar] [CrossRef] [PubMed]
- Sukenik, A.; Kaplan, A. Cyanobacterial Harmful Algal Blooms in Aquatic Ecosystems: A Comprehensive Outlook on Current and Emerging Mitigation and Control Approaches. Microorganisms 2021, 9, 1472. [Google Scholar] [CrossRef]
- Newton, A.R.; Melaram, R. Harmful Algal Blooms in Agricultural Irrigation: Risks, Benefits, and Management. Front. Water 2023, 5, 1325300. [Google Scholar] [CrossRef]
- Brown, A.R.; Lilley, M.; Shutler, J.; Lowe, C.; Artioli, Y.; Torres, R.; Berdalet, E.; Tyler, C.R. Assessing Risks and Mitigating Impacts of Harmful Algal Blooms on Mariculture and Marine Fisheries. Rev. Aquacult. 2020, 12, 1663–1688. [Google Scholar] [CrossRef]
- Gilbert, O. (Ed.) GEOHAB. Global Ecology and Oceanography of Harmful Algal Blooms, Harmful Algal Blooms in Eutrophic Systems; IOC: Paris, France; SCOR: Baltimore, MD, USA, 2006; 74p. [Google Scholar]
- Sellner, K.G.; Doucette, G.J.; Kirkpatrick, G.J. Harmful Algal Blooms: Causes, Impacts and Detection. J. Ind. Microbiol. Biotechnol. 2003, 30, 383–406. [Google Scholar] [CrossRef] [PubMed]
- Igwaran, A.; Kayode, A.J.; Moloantoa, K.M.; Khetsha, Z.P.; Unuofin, J.O. Cyanobacteria Harmful Algae Blooms: Causes, Impacts, and Risk Management. Water Air Soil Pollut. 2024, 235, 71. [Google Scholar] [CrossRef]
- Kimambo, O.N.; Gumbo, J.R.; Chikoore, H. The Occurrence of Cyanobacteria Blooms in Freshwater Ecosystems and Their Link with Hydro-Meteorological and Environmental Variations in Tanzania. Heliyon 2019, 5, e01312. [Google Scholar] [CrossRef]
- Thees, A.; Atari, E.; Birbeck, J.; Westrick, J.A.; Huntley, J.F. Isolation and Characterization of Lake Erie Bacteria that Degrade the Cyanobacterial Microcystin Toxin MC-LR. J. Great Lakes Res. 2019, 45, 138–149. [Google Scholar] [CrossRef] [PubMed]
- Congressional Research Service (CRS) Report. Freshwater Harmful Algal Blooms: Causes, Challenges, and Policy Considerations. Congressional Research Service. 2020; R44871. Available online: https://crsreports.congress.gov (accessed on 18 March 2024).
- Salter, C.; VanMensel, D.; Reid, T.; Birbeck, J.; Westrick, J.; Mundle, S.O.C.; Weisener, C.G. Investigating the Microbial Dynamics of Microcystin-LR Degradation in Lake Erie Sand. Chemosphere 2021, 272, 129873. [Google Scholar] [CrossRef]
- Fleming, L.E.; Kirkpatrick, B.; Backer, L.C.; Walsh, C.J.; Nierenberg, K.; Clark, J.; Reich, A.; Hollenbeck, J.; Benson, J.; Cheng, Y.S.; et al. Review of Florida Red Tide and Human Health Effects. Harmful Algae 2011, 10, 224–233. [Google Scholar] [CrossRef]
- Park, T.G.; Lim, W.A.; Park, Y.T.; Lee, C.K.; Jeong, H.J. Economic Impact, Management and Mitigation of Red Tides in Korea. Harmful Algae 2013, 30, S131–S143. [Google Scholar] [CrossRef]
- Chapman, R.L. Algae: The World’s Most Important “Plants”—An Introduction. Mitig. Adapt. Strateg. Glob. Change 2013, 18, 5–12. [Google Scholar] [CrossRef]
- Glibert, P.M. Harmful Algae at the Complex Nexus of Eutrophication and Climate Change. Harmful Algae 2020, 91, 101583. [Google Scholar] [CrossRef]
- Zanchett, G.; Oliveira-Filho, E.C. Cyanobacteria and cyanotoxins: From impacts on aquatic ecosystems and human health to anticarcinogenic effects. Toxins 2013, 5, 1896–1917. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Anabtawi, H.M.; Lee, W.H.; Al-Anazi, A.; Mohamed, M.M.; Aly Hassan, A. Advancements in Biological Strategies for Controlling Harmful Algal Blooms (HABs). Water 2024, 16, 224. [Google Scholar] [CrossRef]
- Oh, J.-W.; Pushparaj, S.S.C.; Muthu, M.; Gopal, J. Review of Harmful Algal Blooms (HABs) Causing Marine Fish Kills: Toxicity and Mitigation. Plants 2023, 12, 3936. [Google Scholar] [CrossRef]
- Jürgens, K.; Sala, M.M. Predation-Mediated Shifts in Size Distribution of Microbial Biomass and Activity during Detritus Decomposition. Oikos 2000, 91, 29–40. Available online: http://www.jstor.org/stable/3547471 (accessed on 15 April 2023). [CrossRef]
- Vézina, A.F.; Platt, T. Food Web Dynamics in the Ocean. I. Best-Estimates of Flow Networks Using Inverse Methods. Mar. Ecol. Prog. Ser. 1988, 42, 269–287. [Google Scholar] [CrossRef]
- Moncelon, R.; Metzger, E.; Pineau, P.; Emery, C.; Bénéteau, E.; de Lignières, C.; Philippine, O.; Robin, F.X.; Dupuy, C. Drivers for Primary Producers’ Dynamics: New Insights on Annual Benthos Pelagos Monitoring in Anthropised Freshwater Marshes (Charente-Maritime, France). Water Res. 2022, 221, 118718. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Yang, S.; Zhai, W.; Niu, Y.; Liu, C. Biological–Physical Oceanographic Coupling Influencing Particulate Organic Matter in the South Yellow Sea. Front. Mar. Sci. 2022, 9, 919423. [Google Scholar] [CrossRef]
- Orcutt, B.N.; Sylvan, J.B.; Knab, N.J.; Edwards, K.J. Microbial Ecology of the Dark Ocean above, at, and below the Seafloor. Microbiol. Mol. Biol. Rev. 2011, 75, 361–422. [Google Scholar] [CrossRef] [PubMed]
- Wurzbacher, C.; Wannicke, N.; Grimmett, I.J.; Bärlocher, F. Effects of FPOM Size and Quality on Aquatic Heterotrophic Bacteria. Limnologica 2016, 59, 109–115. [Google Scholar] [CrossRef]
- Bibi, R.; Kang, H.Y.; Kim, D.; Jang, J.; Kim, C.; Kundu, G.K.; Kang, C.-K. Biochemical Composition of Seston Reflecting the Physiological Status and Community Composition of Phytoplankton in a Temperate Coastal Embayment of Korea. Water 2021, 13, 3221. [Google Scholar] [CrossRef]
- Liu, Z.; Breecker, D.; Mayer, L.M.; Zhong, J. Composition of Size-Fractioned Sedimentary Organic Matter in Coastal Environments is Affected by Difference in Physical Forcing Strength. Org. Geochem. 2013, 60, 20–32. [Google Scholar] [CrossRef]
- Hu, B.; Wang, P.; Wang, C.; Bao, T. Photogeochemistry of Particulate Organic Matter in Aquatic Systems: A Review. Sci. Total Environ. 2022, 806, 150467. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Li, S.; Guo, J.; Yang, Y.; Xu, Z.; Zhang, M.; Li, H.; Yu, X.; Ma, H.; Wang, X. Source, Composition, and Reactivity of Particulate Organic Matter along the Changjiang Estuary Salinity Gradient and Adjacent Sea. Mar. Chem. 2023, 252, 104245. [Google Scholar] [CrossRef]
- Berhe, A.A.; Barnes, R.T.; Six, J.; Marín-Spiotta, E. Role of Soil Erosion in Biogeochemical Cycling of Essential Elements: Carbon, Nitrogen, and Phosphorus. Annu. Rev. Earth Planet. Sci. 2018, 46, 521–548. [Google Scholar] [CrossRef]
- Mehler, W.T.; Li, H.; Pang, J.; Sun, B.; Lydy, M.J.; You, J. Bioavailability of Hydrophobic Organic Contaminants in Sediment with Different Particle-Size Distributions. Arch. Environ. Contam. Toxicol. 2011, 61, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhao, J.; Zhu, Z.; Li, L.; Yu, F. Effect of Microplastic Size on the Adsorption Behavior and Mechanism of Triclosan on Polyvinyl Chloride. Environ. Pollut. 2019, 254, 113104. [Google Scholar] [CrossRef] [PubMed]
- Filep, T.; Zacháry, D.; Jakab, G.; Szalai, Z. Chemical Composition of Labile Carbon Fractions in Hungarian Forest Soils: Insight into Biogeochemical Coupling between DOM and POM. Geoderma 2022, 419, 115867. [Google Scholar] [CrossRef]
- Yeasmin, S.; Singh, B.; Johnston, C.T.; Hua, Q.; Sparks, D.L. Changes in Particulate and Mineral-Associated Organic Carbon with Land Use in Contrasting Soils. Pedosphere 2023, 33, 421–435. [Google Scholar] [CrossRef]
- Wei, X.; Huang, Z.; Jiang, L.; Li, Y.; Zhang, X.; Leng, Y.; Jiang, C. Charting the Landscape of the Environmental Exposome. iMeta 2022, 1, e50. [Google Scholar] [CrossRef]
- Coffey, R.; Paul, M.; Stamp, J.; Hamilton, A.; Johnson, T. A Review of Water Quality Responses to Air Temperature and Precipitation Changes 2: Nutrients, Algal Blooms, Sediment, Pathogens. J. Am. Water Resour. Assoc. 2018, 55, 844–868. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, M.; Xie, Z.; Ning, D.; Zhou, J.; Yu, X.; Liu, R.; Zhang, L.; Fang, J. Microbial Community Structure and Ecological Networks during Simulation of Diatom Sinking. Microorganisms 2022, 10, 639. [Google Scholar] [CrossRef]
- Mayali, X.; Azam, F. Algicidal Bacteria in the Sea and Their Impact on Algal Blooms. J. Eukaryot. Microbiol. 2004, 51, 139–144. [Google Scholar] [CrossRef]
- Deng, Y.; Vallet, M.; Pohnert, G. Temporal and Spatial Signaling Mediating the Balance of the Plankton Microbiome. Annu. Rev. Mar. Sci. 2022, 14, 239–260. [Google Scholar] [CrossRef]
- Bundschuh, M.; McKie, B.G. An Ecological and Ecotoxicological Perspective on Fine Particulate Organic Matter in Streams. Freshw. Biol. 2016, 61, 2063–2074. [Google Scholar] [CrossRef]
- Nakakuni, M.; Yamamoto, S.; Yamaguchi, H.; Ichimi, K.; Tada, K. Molecular Composition of Particulate Organic Matter in Surface Waters of the Harima-Nada, Seto Inland Sea, Japan. Reg. Stud. Mar. Sci. 2022, 56, 102685. [Google Scholar] [CrossRef]
- Callisto, M.; Graça, M.A.S. The Quality and Availability of Fine Particulate Organic Matter for Collector Species in Headwater Streams. Int. Rev. Hydrobiol. 2013, 98, 132–140. [Google Scholar] [CrossRef]
- Song, J.; Xu, Z.; Chen, Y.; Guo, J. Nanoparticles, an Emerging Control Method for Harmful Algal Blooms: Current Technologies, Challenges, and Perspectives. Nanomaterials 2023, 13, 2384. [Google Scholar] [CrossRef] [PubMed]
- Inaba, N.; Kodama, I.; Nagai, S.; Shiraishi, T.; Matsuno, K.; Yamaguchi, A.; Imai, I. Distribution of Harmful Algal Growth-Limiting Bacteria on Artificially Introduced Ulva and Natural Macroalgal Beds. Appl. Sci. 2020, 10, 5658. [Google Scholar] [CrossRef]
- Gallardo-Rodríguez, J.J.; Astuya-Villalón, A.; Llanos-Rivera, A.; Avello-Fontalba, V.; Ulloa-Jofré, V. A Critical Review on Control Methods for Harmful Algal Blooms. Rev. Aquacult. 2019, 11, 661–684. [Google Scholar] [CrossRef]
- Sharma, A.K.; Pandit, J. Advanced Bioremediation Strategies for Organophosphorus Compounds. Microbiol. Biotechnol. Lett. 2023, 51, 374–389. [Google Scholar] [CrossRef]
- Li, T.; Chu, C.; Zhang, Y.; Ju, M.; Wang, Y. Contrasting Eutrophication Risks and Countermeasures in Different Water Bodies: Assessments to Support Targeted Watershed Management. Int. J. Environ. Res. Public Health 2017, 14, 695. [Google Scholar] [CrossRef]
- Pereira, A.C.; Mulligan, C.N. Practices for Eutrophic Shallow Lake Water Remediation and Restoration: A Critical Literature Review. Water 2023, 15, 2270. [Google Scholar] [CrossRef]
- Khan, F.A.; Ansari, A.A. Eutrophication: An Ecological Vision. Bot. Rev. 2005, 71, 449–482. [Google Scholar] [CrossRef]
- Rast, W.; Holland, M. Eutrophication of Lakes and Reservoirs: A Framework for Making Management Decisions. Ambio 1988, 17, 2–12. [Google Scholar]
- González, Y.; Gómez, G.; Moeller-Chávez, G.E.; Vidal, G. UV Disinfection Systems for Wastewater Treatment: Emphasis on Reactivation of Microorganisms. Sustainability 2023, 15, 11262. [Google Scholar] [CrossRef]
- Hendricks, D.W. Fundamentals of Water Treatment Unit Processes: Physical, Chemical, and Biological; IWA Publishing: London, UK, 2010. [Google Scholar]
- Mojiri, A.; Trzcinski, A.P.; Bashir, M.J.K.; Abu Amr, S.S. Editorial: Innovative treatment technologies for sustainable water and wastewater management. Front. Water 2024, 6, 1388387. [Google Scholar] [CrossRef]
- Somashekar, V.; Vivek Anand, A.; Hariprasad, V.; Elsehly, E.M.; Kapulu, M. Advancements in saline water treatment: A review. Water Reuse 2023, 13, 475–491. [Google Scholar] [CrossRef]
- Kaswan, V.; Kaur, H. A comparative study of advanced oxidation processes for wastewater treatment. Water Pract. Technol. 2023, 18, 1233–1254. [Google Scholar] [CrossRef]
- Zouboulis, A.I.; Katsoyiannis, I.A. Recent Advances in Water and Wastewater Treatment with Emphasis in Membrane Treatment Operations. Water 2019, 11, 45. [Google Scholar] [CrossRef]
- Martín Enríquez Castro, C.; Pérez Nafarrate, M.; Manuel Badillo Olvera, A.; Guzmán Martínez, C. Emerging Technologies in Water Treatment: Recent Advances; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Anderson, D.M. Approaches to Monitoring, Control, and Management of Harmful Algal Blooms (HABs). Ocean Coast. Manag. 2009, 52, 342–347. [Google Scholar] [CrossRef]
- GlobalHAB. 2023. Fish-Killing Marine Algal Blooms: Causative Organisms, Ichthyotoxic Mecha-nisms, Impacts and Mitigation; Hallegraeff, G.M., Anderson, D.M., Davidson, K., Gianella, F., Hansen, P.J., Hegaret, H., Iwataki, M., Larsen, T.O., Mardones, J., MacKenzie, L., Eds.; UNESCO-IOC/SCOR: Paris, France; 96pp, (IOC Manuals and Guides, 93). [CrossRef]
- ISOC-HAB. Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs. Adv. Exp. Med. Biol. 2008, 619, 1–912. [Google Scholar]
- FAO; IOC; IAEA. Joint Technical Guidance for the Implementation of Early Warning Systems for Harmful Algal Blooms; Fisheries and Aquaculture Technical Paper No. 690; FAO: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Stauffer, B.A.; Bowers, H.A.; Buckley, E.; Davis, T.W.; Johengen, T.H.; Kudela, R.; McManus, M.A.; Purcell, H.; Smith, G.J.; Vander Woude, A.; et al. Considerations in Harmful Algal Bloom Research and Monitoring: Perspectives From a Consensus-Building Workshop and Technology Testing. Front. Mar. Sci. 2019, 6, 399. [Google Scholar] [CrossRef]
- Shen, L.; Xu, H.; Guo, X. Satellite Remote Sensing of Harmful Algal Blooms (HABs) and a Potential Synthesized Framework. Sensors 2012, 12, 7778–7803. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, I.M.F.; Cardoso, R.M.F.; da Silva, J.C.G.E. Advanced Oxidation Processes Coupled with Nanomaterials for Water Treatment. Nanomaterials 2021, 11, 2045. [Google Scholar] [CrossRef]
- Gopalakrishnan, G.; Jeyakumar, R.B.; Somanathan, A. Challenges and Emerging Trends in Advanced Oxidation Technologies and Integration of Advanced Oxidation Processes with Biological Processes for Wastewater Treatment. Sustainability 2023, 15, 4235. [Google Scholar] [CrossRef]
- Boinpally, S.; Kolla, A.; Kainthola, J.; Kodali, R.; Vemuri, J. A State-of-the-Art Review of the Electrocoagulation Technology for Wastewater Treatment. Water Cycle 2023, 4, 26–36. [Google Scholar] [CrossRef]
- Price, J.I.; Heberling, M.T. The Effects of Source Water Quality on Drinking Water Treatment Costs: A Review and Synthesis of Empirical Literature. Ecol. Econ. 2018, 151, 195–209. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, C.; Klemick, H.; Massey, M.; Moore, C.; Newbold, S.; Simpson, D.; Walsh, P.J.; Wheeler, W.J. US Environmental Protection Agency Valuation of Surface Water Quality Improvements. Rev. Environ. Econ. Policy 2012, 6, 130–146. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (EPA). Overview of the EPA, The Clean Water Act, and Water Quality Standards, Virtual WQS Academy; May 2023. Available online: https://www.epa.gov/system/files/documents/2023-04/clean-water-act-water-quality-standards.pdf (accessed on 18 March 2024).
- U.S. Government Accountability Office (USGAO). Water Quality and Protection; 2024. Available online: https://www.gao.gov/water-quality-and-protection (accessed on 10 May 2024).
- Anderson, C.R.; Berdalet, E.; Kudela, R.M.; Cusack, C.K.; Silke, J.; O’Rourke, E.; Dugan, D.; McCammon, M.; Newton, J.A.; Moore, S.K.; et al. Scaling Up from Regional Case Studies to a Global Harmful Algal Bloom Observing System. Front. Mar. Sci. 2019, 6, 250. [Google Scholar] [CrossRef]
- Kudela, R.M.; Berdalet, E.; Enevoldsen, H.; Pitcher, G.; Raine, R.; Urban, E. GEOHAB: The Global Ecology and Oceanography of Harmful Algal Blooms Program: Motivation, Goals, and Legacy. Oceanography 2017, 30, 12–21. [Google Scholar] [CrossRef]
- Qasem, N.A.A.; Mohammed, R.H.; Lawal, D.U. Removal of Heavy Metal Ions from Wastewater: A Comprehensive and Critical Review. npj Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Laursen, S.N.; Fruergaard, M.; Andersen, T.J. Rapid Flocculation and Settling of Positively Buoyant Microplastic and Fine-Grained Sediment in Natural Seawater. Mar. Pollut. Bull. 2022, 178, 113619. [Google Scholar] [CrossRef]
- Razali, M.C.; Wahab, N.A.; Sunar, N.; Shamsudin, N.H. Existing Filtration Treatment on Drinking Water Process and Concerns Issues. Membranes 2023, 13, 285. [Google Scholar] [CrossRef] [PubMed]
- Cevallos-Mendoza, J.; Amorim, C.G.; Rodríguez-Díaz, J.M.; Montenegro, M.D.C.B.S.M. Removal of Contaminants from Water by Membrane Filtration: A Review. Membranes 2022, 12, 570. [Google Scholar] [CrossRef]
- Hoslett, J.; Massara, T.M.; Malamis, S.; Ahmad, D.; van den Boogaert, I.; Katsou, E.; Ahmad, B.; Ghazal, H.; Simons, S.; Wrobel, L.; et al. Surface Water Filtration Using Granular Media and Membranes: A Review. Sci. Total Environ. 2018, 639, 1268–1282. [Google Scholar] [CrossRef]
- Zhang, J.; Li, G.; Yuan, X.; Li, P.; Yu, Y.; Yang, W.; Zhao, S. Reduction of Ultrafiltration Membrane Fouling by the Pretreatment Removal of Emerging Pollutants: A Review. Membranes 2023, 13, 77. [Google Scholar] [CrossRef]
- Othman, N.H.; Alias, N.H.; Fuzil, N.S.; Marpani, F.; Shahruddin, M.Z.; Chew, C.M.; Ng, D.; Lau, W.J.; Ismail, A.F. A Review on the Use of Membrane Technology Systems in Developing Countries. Membranes 2021, 12, 30. [Google Scholar] [CrossRef] [PubMed]
- Aragaw, T.A.; Bogale, F.M. Role of Coagulation/Flocculation as a Pretreatment Option to Reduce Colloidal/Bio-Colloidal Fouling in Tertiary Filtration of Textile Wastewater: A Review and Future Outlooks. Front. Environ. Sci. 2023, 11, 1142227. [Google Scholar] [CrossRef]
- Alshahri, A.H.; Fortunato, L.; Ghaffour, N.; Leiknes, T. Controlling Harmful Algal Blooms (HABs) by Coagulation-Flocculation-Sedimentation Using Liquid Ferrate and Clay. Chemosphere 2021, 274, 129676. [Google Scholar] [CrossRef]
- Badawi, A.K.; Salama, R.S.; Mostafa, M.M.M. Natural-based coagulants/flocculants as sustainable market-valued products for industrial wastewater treatment: A review of recent developments. RSC Adv. 2023, 13, 19335–19355. [Google Scholar] [CrossRef]
- Erftemeijer, P.L.A.; Riegl, B.; Hoeksema, B.W.; Todd, P.A. Environmental impacts of dredging and other sediment disturbances on corals: A review. Mar. Pollut. Bull. 2012, 64, 1737–1765. [Google Scholar] [CrossRef]
- Kjelland, M.E.; Woodley, C.M.; Swannack, T.M.; Smith, D.L. A review of the potential effects of suspended sediment on fishes: Potential dredging-related physiological, behavioral, and transgenerational implications. Environ. Syst. Decis. 2015, 35, 334–350. [Google Scholar] [CrossRef]
- Chahal, C.; van den Akker, B.; Young, F.; Franco, C.; Blackbeard, J.; Monis, P. Pathogen and Particle Associations in Wastewater: Significance and Implications for Treatment and Disinfection Processes. Adv. Appl. Microbiol. 2016, 97, 63–119. [Google Scholar] [CrossRef] [PubMed]
- Hama Aziz, K.H.; Fryad, S.M. Advanced oxidation processes for the decontamination of heavy metal complexes in aquatic systems: A review. Case Stud. Chem. Environ. Eng. 2024, 9, 100567. [Google Scholar] [CrossRef]
- Chalaris, M.; Gkika, D.A.; Tolkou, A.K.; Kyzas, G.Z. Advancements and sustainable strategies for the treatment and management of wastewaters from metallurgical industries: An overview. Environ. Sci. Pollut. Res. Int. 2023, 30, 119627–119653. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yeoh, J.X.; Jamil, S.N.A.; Syukri, F.; Koyama, M.; Nourouzi Mobarekeh, M. Comparison between Conventional Treatment Processes and Advanced Oxidation Processes in Treating Slaughterhouse Wastewater: A Review. Water 2022, 14, 3778. [Google Scholar] [CrossRef]
- Imai, I.; Inaba, N.; Yamamoto, K. Harmful algal blooms and environmentally friendly control strategies in Japan. Fish Sci. 2021, 87, 437–464. [Google Scholar] [CrossRef]
- Dhir, B. Effective control of waterborne pathogens by aquatic plants. In Waterborne Pathogens; Elsevier Ltd.: Amsterdam, The Netherlands, 2020; pp. 339–361. [Google Scholar] [CrossRef]
- Landesman, L.; Fedler, C.; Duan, R. Plant Nutrient Phytoremediation Using Duckweed. In Eutrophication: Causes, Consequences and Control; Ansari, A., Singh Gill, S., Lanza, G., Rast, W., Eds.; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar] [CrossRef]
- Kim, B.-H.; Sang, M.; Hwang, S.-J.; Han, M.-S. In situ bacterial mitigation of the toxic cyanobacterium Microcystis aeruginosa: Implications for biological bloom control. Limnol. Oceanogr. Methods 2008, 6, 513–522. [Google Scholar] [CrossRef]
- Kim, N.-Y.; Park, M.-H.; Hwang, S.-O.; Kim, B.-H.; Hwang, S.-J. Combined Effects of Filter-feeding Bivalve and Zooplankton on the Growth Inhibition of Cyanobacterium Microcystis aeruginosa. Korean J. Ecol. Environ. 2015, 48, 108–114. [Google Scholar] [CrossRef]
- Kazmi, S.S.U.H.; Yapa, N.; Karunarathna, S.C.; Suwannarach, N. Perceived Intensification in Harmful Algal Blooms Is a Wave of Cumulative Threat to the Aquatic Ecosystems. Biology 2022, 11, 852. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sun, X.; Tao, M.; Qin, B.; Qi, M.; Niu, Y.; Zhang, J.; Ma, Z.; Xie, P. Large-scale field evidence on the enhancement of small-sized cladocerans by Microcystis blooms in Lake Taihu, China. J. Plankton Res. 2012, 34, 853–863. [Google Scholar] [CrossRef]
- Agasild, H.; Panksep, K.; Tõnno, I.; Blank, K.; Kõiv, T.; Freiberg, R.; Laugaste, R.; Jones, R.I.; Nõges, P.; Nõges, T. Role of potentially toxic cyanobacteria in crustacean zooplankton diet in a eutrophic lake. Harmful Algae 2019, 89, 101688. [Google Scholar] [CrossRef] [PubMed]
- du Plooy, S.J.; Carrasco, N.K.; Perissinotto, R. Effects of zooplankton grazing on the bloom-forming Cyanothece sp. in a subtropical estuarine lake. J. Plankton Res. 2017, 39, 826–835. [Google Scholar] [CrossRef]
- Omondi, O.; Donde; Atalitsa, C.N. Constructed Wetlands in Wastewater Treatment and Challenges of Emerging Resistant Genes Filtration and Reloading. In Inland Waters—Dynamics and Ecology; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Sakadevan, K.; Bavor, H.J. Nutrient Removal Mechanisms in Constructed Wetlands and Sustainable Water Management. Water Sci. Technol. 1999, 40, 121–128. [Google Scholar] [CrossRef]
- Gasparatos, A.; Doll, C.N.H.; Esteban, M.; Ahmed, A.; Olang, T.A. Renewable Energy and Biodiversity: Implications for Transitioning to a Green Economy. Renew. Sustain. Energy Rev. 2017, 70, 161–184. [Google Scholar] [CrossRef]
- Niesenbaum, R.A. The Integration of Conservation, Biodiversity, and Sustainability. Sustainability 2019, 11, 4676. [Google Scholar] [CrossRef]
- Sandifer, P.A.; Sutton-Grier, A.E.; Ward, B.P. Exploring Connections Among Nature, Biodiversity, Ecosystem Services, and Human Health and Well-Being: Opportunities to Enhance Health and Biodiversity Conservation. Ecosyst. Serv. 2015, 12, 1–15. [Google Scholar] [CrossRef]
- White, T.B.; Petrovan, S.O.; Booth, H.; Correa, R.J.; Gatt, Y.; Martin, P.A.; Newell, H.; Worthington, T.A.; Sutherland, W.J. Determining the economic costs and benefits of conservation actions: A decision support framework. Conserv. Sci. Pract. 2022, 4, e12840. [Google Scholar] [CrossRef]
- Wang, J.; Delavar, M.A. Junye Wang, Mojtaba Aghajani Delavar, Techno-economic analysis of phytoremediation: A strategic rethinking. Sci. Total Environ. 2023, 902, 165949. [Google Scholar] [CrossRef]
- Saveyn, H.; Eder, P. End-of-Waste Criteria for Biodegradable Waste Subjected to Biological Treatment (Compost & Digestate): Technical Proposals; Scientific and Technical Research Series; Publications Office of the European Union: Luxembourg, 2014; 308p, ISSN 1831-9424. ISBN 978-92-79-35062-7. [Google Scholar] [CrossRef]
- WHO. Ecosystems and Human Well-Being: Health Synthesis: A Report of the Millennium Ecosystem Assessment; WHO: Geneva, Switzerland, 2005; ISBN 92 4 156309 5. [Google Scholar]
- Feist, S.M.; Lance, R.F. Genetic detection of freshwater harmful algal blooms: A review focused on the use of environmental DNA (eDNA) in Microcystis aeruginosa and Prymnesium parvum. Harmful Algae 2021, 110, 102124. [Google Scholar] [CrossRef]
- Pal, M.; Yesankar, P.J.; Dwivedi, A.; Qureshi, A. Biotic Control of Harmful Algal Blooms (HABs): A Brief Review. J. Environ. Manag. 2020, 268, 110687. [Google Scholar] [CrossRef] [PubMed]
- Griffith, A.W.; Gobler, C.J. Harmful Algal Blooms: A Climate Change Co-Stressor in Marine and Freshwater Ecosystems. Harmful Algae 2020, 91, 101590. [Google Scholar] [CrossRef] [PubMed]
- Devlin, M.; Brodie, J. Nutrients and Eutrophication. In Marine Pollution—Monitoring, Management and Mitigation; Reichelt-Brushett, A., Ed.; Springer Textbooks in Earth Sciences, Geography and Environment; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Davidson, K.; Gowen, R.J.; Harrison, P.J.; Fleming, L.E.; Hoagland, P.; Moschonas, G. Anthropogenic nutrients and harmful algae in coastal waters. J. Environ. Manag. 2014, 146, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Kamanmalek, S.; Alamdari, N.; Nikoo, M.R. Comprehensive Insights into Harmful Algal Blooms: A Review of Chemical, Physical, Biological, and Climatological Influencers with Predictive Modeling Approaches. J. Environ. Eng. 2024, 150, 03124002. [Google Scholar] [CrossRef]
- Loureiro, S.; René, A.; Garcés, E.; Camp, J.; Vaqué, D. Harmful Algal Blooms (HABs), Dissolved Organic Matter (DOM), and Planktonic Microbial Community Dynamics at a Near-Shore and a Harbour Station Influenced by Upwelling (SW Iberian Peninsula). J. Sea Res. 2011, 65, 401–413. [Google Scholar] [CrossRef]
- Yoon, J.N.; Lee, M.; Jin, H.; Lim, Y.K.; Ro, H.; Park, Y.G.; Baek, S.H. Summer Distributional Characteristics of Surface Phytoplankton Related to Multiple Environmental Variables in the Korean Coastal Waters. J. Mar. Sci. Eng. 2022, 10, 850. [Google Scholar] [CrossRef]
- Paerl, H.W. Mitigating Toxic Planktonic Cyanobacterial Blooms in Aquatic Ecosystems Facing Increasing Anthropogenic and Climatic Pressures. Toxins 2018, 10, 76. [Google Scholar] [CrossRef]
- Lad, A.; Breidenbach, J.D.; Su, R.C.; Murray, J.; Kuang, R.; Mascarenhas, A.; Najjar, J.; Patel, S.; Hegde, P.; Youssef, M.; et al. As We Drink and Breathe: Adverse Health Effects of Microcystins and Other Harmful Algal Bloom Toxins in the Liver, Gut, Lungs and Beyond. Life 2022, 12, 418. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gill, D.; Rowe, M.; Joshi, S.J. Fishing in greener waters: Understanding the impact of harmful algal blooms on Lake Erie anglers and the potential for adoption of a forecast model. J. Environ. Manag. 2018, 227, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Karlson, B.; Andersen, P.; Arneborg, L.; Cembella, A.; Eikrem, W.; John, U.; West, J.J.; Klemm, K.; Kobos, J.; Lehtinen, S.; et al. Harmful algal blooms and their effects in coastal seas of Northern Europe. Harmful Algae 2021, 102, 101989. [Google Scholar] [CrossRef] [PubMed]
- Balaram, V.; Copia, L.; Kumar, U.S.; Miller, J.; Chidambaram, S. Pollution of Water Resources and Application of ICP-MS Techniques for Monitoring and Management—A Comprehensive Review. Geosyst. Geoenviron. 2023, 2, 100210. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, J.; Mao, X. Removal of Pathogens in Onsite Wastewater Treatment Systems: A Review of Design Considerations and Influencing Factors. Water 2021, 13, 1190. [Google Scholar] [CrossRef]
- Naidoo, S.; Olaniran, A.O. Treated Wastewater Effluent as a Source of Microbial Pollution of Surface Water Resources. Int. J. Environ. Res. Public Health 2013, 11, 249–270. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.N.; Smith, M.E.; Swoboda, H.D. Shellfish Toxicity. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Grattan, L.M.; Holobaugh, S.; Morris, J.G. Harmful algal blooms and public health. Harmful Algae 2016, 57 Pt B, 2–8. [Google Scholar] [CrossRef]
- Cusick, K.D.; Sayler, G.S. An overview of the marine neurotoxin, saxitoxin: Genetics, molecular targets, methods of detection and ecological functions. Mar. Drugs. 2013, 11, 991–1018. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Band-Schmidt, C.J.; Durán-Riveroll, L.M.; Bustillos-Guzmán, J.J.; Leyva-Valencia, I.; López-Cortés, D.J.; Núñez-Vázquez, E.J.; Hernández-Sandoval, F.E.; Ramírez-Rodríguez, D.V. Paralytic Toxin Producing Dinoflagellates in Latin America: Ecology and Physiology. Front. Mar. Sci. 2019, 6, 42. [Google Scholar] [CrossRef]
- Hoagland, P.; Jin, D.; Beet, A.; Kirkpatrick, B.; Reich, A.; Ullmann, S.; Fleming, L.E.; Kirkpatrick, G. The human health effects of Florida Red Tide (FRT) blooms: An expanded analysis. Environ. Int. 2014, 68, 144–153. [Google Scholar] [CrossRef]
- Vargo, G.A. A brief summary of the physiology and ecology of Karenia brevis Davis (G. Hansen and Moestrup comb. nov.) red tides on the West Florida Shelf and of hypotheses posed for their initiation, growth, maintenance, and termination. Harmful Algae 2009, 8, 573–584. [Google Scholar] [CrossRef]
- Li, X.; Tian, Y.; Yu, R.; Zhou, M. A review of Karenia mikimotoi: Bloom events, physiology, toxicity and toxic mechanism. Harmful Algae 2019, 90, 101702. [Google Scholar] [CrossRef]
- Louzao, M.C.; Vilariño, N.; Vale, C.; Costas, C.; Cao, A.; Raposo-Garcia, S.; Vieytes, M.R.; Botana, L.M. Current Trends and New Challenges in Marine Phycotoxins. Mar. Drugs 2022, 20, 198. [Google Scholar] [CrossRef]
- Burkholder, J.M. Implications of Harmful Microalgae and Heterotrophic Dinoflagellates in Management of Sustainable Marine Fisheries. Ecol. Appl. 1998, 8, S37–S62. [Google Scholar] [CrossRef]
- Farabegoli, F.; Blanco, L.; Rodríguez, L.P.; Vieites, J.M.; Cabado, A.G. Phycotoxins in Marine Shellfish: Origin, Occurrence and Effects on Humans. Mar. Drugs 2018, 16, 188. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moreira, C. Editorial: Harmful Algal Blooms in Marine Environments: From Biologically Active Compounds to Species Diversity. Front. Mar. Sci. 2022, 9, 812660. [Google Scholar] [CrossRef]
- Martelli, F.; Cirlini, M.; Dellafiora, L.; Neviani, E.; Dall’Asta, C.; Bernini, V. Mitigation of marine toxins by interactions with bacteria: The case of okadaic acid and tetrodotoxin. Food Control 2022, 131, 108428. [Google Scholar] [CrossRef]
- Anderson, D.M.; Fensin, E.; Gobler, C.H.; Hoeglund, A.E.; Hubbard, K.A.; Kulis, D.B.; Landsberg, J.H.; Lefebvre, K.A.; Provoost, P.; Richlen, M.L.; et al. Marine harmful algal blooms (HABs) in the United States: History, current status and future trends. Harmful Algae 2021, 102, 101975. [Google Scholar] [CrossRef]
- Mary, L.; Quere, J.; Latimier, M.; Rovillon, G.A.; Hégaret, H.; Réveillon, D.; Le Gac, M. Genetic association of toxin production in the dinoflagellate Alexandrium minutum. Microb. Genom. 2022, 8, mgen000879. [Google Scholar] [CrossRef] [PubMed]
- Subong, B.J.J.; Lluisma, A.O.; Azanza, R.V.; Salvador-Reyes, L.A. Differentiating Two Closely Related Alexandrium Species Using Comparative Quantitative Proteomics. Toxins 2021, 13, 7. [Google Scholar] [CrossRef] [PubMed]
- Christensen, V.G.; Maki, R.P.; Stelzer, E.A.; Norland, J.E.; Khan, E. Phytoplankton Community and Algal Toxicity at a Recurring Bloom in Sullivan Bay, Kabetogama Lake, Minnesota, USA. Sci. Rep. 2019, 9, 16129. [Google Scholar] [CrossRef] [PubMed]
- García-Garay, J.; Franco-Herrera, A.; Machuca-Martinez, F. Zooplankton sensitivity and phytoplankton regrowth for ballast water treatment with advanced oxidation processes. Environ. Sci. Pollut. Res. Int. 2018, 25, 35008–35014. [Google Scholar] [CrossRef]
- Löder, M.G.J.; Meunier, C.; Wiltshire, K.H.; Boersma, M.; Aberle, N. The role of ciliates, heterotrophic dinoflagellates and copepods in structuring spring plankton communities at Helgoland Roads, North Sea. Mar. Biol. 2011, 158, 1551–1580. [Google Scholar] [CrossRef]
- Lee, R.E.; Kugrens, P. Relationship between the flagellates and the ciliates. Microbiol. Rev. 1992, 56, 529–542. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Landsberg, J.H. The effects of harmful algal blooms on aquatic organisms. Rev. Fish. Sci. 2002, 10, 113–390. [Google Scholar] [CrossRef]
- Christensen, S.; Daugbjerg, N.; Moestrup, Ø.; Annadotter, H.; Cronberg, G. Potential harmful cyanobacteria in drinking water reservoirs of Ho Chi Minh City, Vietnam—Toxicity and molecular phylogeny. In Proceedings of the XII International Conference on Harmful Algal Blooms, København, Denmark, 4–8 September 2006. Abstract. [Google Scholar]
- Cheung, M.Y.; Liang, S.; Lee, J. Toxin-producing cyanobacteria in freshwater: A review of the problems, impact on drinking water safety, and efforts for protecting public health. J. Microbiol. 2013, 51, 1–10. [Google Scholar] [CrossRef]
- Rolton, A.; Rhodes, L.; Hutson, K.S.; Biessy, L.; Bui, T.; MacKenzie, L.; Symonds, J.E.; Smith, K.F. Effects of Harmful Algal Blooms on Fish and Shellfish Species: A Case Study of New Zealand in a Changing Environment. Toxins 2022, 14, 341. [Google Scholar] [CrossRef] [PubMed]
- Kansole, M.M.R.; Lin, T.-F. Impacts of Hydrogen Peroxide and Copper Sulfate on the Control of Microcystis aeruginosa and MC-LR and the Inhibition of MC-LR Degrading Bacterium Bacillus sp. Water 2017, 9, 255. [Google Scholar] [CrossRef]
- Haughey, M.A.; Anderson, R.D.; Whitney, W.D.; Taylor, R.F. Losee, Forms and fate of Cu in a source drinking water reservoir following CuSO4 treatment. Water Res. 2000, 34, 3440–3452. [Google Scholar] [CrossRef]
- Hangzhou, X.; Justin, B.; Peter, H.; Haiyan, P. Impact of copper sulphate, potassium permanganate, and hydrogen peroxide on Pseudanabaena galeata cell integrity, release and degradation of 2-methylisoborneol. Water Res. 2019, 157, 64–73. [Google Scholar] [CrossRef]
- Bartram, J.; Balance, R. (Eds.) Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring, and Management; F & FN Spon: London, UK, 1999. [Google Scholar]
- Smith, B.C.; Persson, A.; Alix, J.H. Dinoflagellate cell density limits explored using Scrippsiella lachrymosa cultured in flow-through cages. J. Appl. Phycol. 2023, 35, 613–623. [Google Scholar] [CrossRef]
- Randhawa, V.; Thakkar, M.; Wei, L. Applicability of hydrogen peroxide in brown tide control—Culture and microcosm studies. PLoS ONE 2012, 7, e47844. [Google Scholar] [CrossRef]
- Mardones, J.I.; Flores-Leñero, A.; Pinto-Torres, M.; Paredes-Mella, J.; Fuentes-Alburquenque, S. Mitigation of Marine Dinoflagellates Using Hydrogen Peroxide (H2O2) Increases Toxicity towards Epithelial Gill Cells. Microorganisms 2022, 11, 83. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Coyne, K.J.; Wang, Y.; Johnson, G. Algicidal Bacteria: A Review of Current Knowledge and Applications to Control Harmful Algal Blooms. Front. Microbiol. 2022, 13, 871177. [Google Scholar] [CrossRef]
- Thawabteh, A.M.; Naseef, H.A.; Karaman, D.; Bufo, S.A.; Scrano, L.; Karaman, R. Thawabteh AM, Naseef HA, Karaman D, Bufo SA, Scrano L, Karaman R. Understanding the Risks of Diffusion of Cyanobacteria Toxins in Rivers, Lakes, and Potable Water. Toxins 2023, 15, 582. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, X.; Dao, G.; Tao, Y.; Zhan, X.; Hu, H. A review on control of harmful algal blooms by plant-derived allelochemicals. J. Hazard. Mater. 2021, 401, 123403. [Google Scholar] [CrossRef] [PubMed]
- GlobalHAB. Guidelines for the Study of Climate Change Effects on HABs; Wells, M., Burford, M., Kremp, A., Montresor, M., Pitcher, G., Richardson, A., Eriksen, R., Hallegraeff, G., Rochester, W., Van de Waal, D., et al., Eds.; IOC Manuals and Guides no 88; UNESCO: Paris, France, 2021. [Google Scholar]
- Marrone, B.L.; Banerjee, S.; Talapatra, A.; Gonzalez-Esquer, C.R.; Pilania, G. Toward a Predictive Understanding of Cyanobacterial Harmful Algal Blooms through AI Integration of Physical, Chemical, and Biological Data. ACS ES&T Water 2023, 4, 844–858. [Google Scholar] [CrossRef] [PubMed]
- Wells, M.L.; Karlson, B.; Wulff, A.; Kudela, R.; Trick, C.; Asnaghi, V.; Berdalet, E.; Cochlan, W.; Davidson, K.; De Rijcke, M.; et al. Future HAB science: Directions and challenges in a changing climate. Harmful Algae 2020, 91, 101632. [Google Scholar] [CrossRef]
- Izadi, M.; Sultan, M.; Kadiri, R.E.; Ghannadi, A.; Abdelmohsen, K. A Remote Sensing and Machine Learning-Based Approach to Forecast the Onset of Harmful Algal Bloom. Remote Sens. 2021, 13, 3863. [Google Scholar] [CrossRef]
- Potvin, M.; Gauthier, J.; Langevin, C.; Mohit, V.; da Costa, N.B.; Deschênes, T.; Pomerleau, M.; Kukavica-Ibrulj, I.; Verreault, D.; Comte, J.; et al. Rapid on-site detection of harmful algal blooms: Real-time cyanobacteria identification using Oxford Nanopore sequencing. Front. Microbiol. 2023, 14, 1267652. [Google Scholar] [CrossRef]
- Sebesta, J.; Xiong, W.; Guarnieri, M.T.; Yu, J. Biocontainment of Genetically Engineered Algae. Front. Plant Sci. 2022, 13, 839446. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Raman, R. The Impact of Genetically Modified (GM) Crops in Modern Agriculture: A Review. GM Crops Food. 2017, 8, 195–208. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oliver, M.J. Why We Need GMO Crops in Agriculture. MO Med. 2014, 111, 492–507. [Google Scholar] [PubMed] [PubMed Central]
- Snow, A.A.; Andow, D.A.; Gepts, P.; EM Hallerman Power, A.; Tiedje, J.M.; Wolfenbarger, L.L. Genetically Engineered Organisms and the Environment: Current Status and Recommendations. Ecol. Appl. 2005, 15, 377–404. [Google Scholar] [CrossRef]
- Anderson, D.M.; Cembella, A.D.; Hallegraeff, G.M. Progress in understanding harmful algal blooms: Paradigm shifts and new technologies for research, monitoring, and management. Ann. Rev. Mar. Sci. 2012, 4, 143–176. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Balaji-Prasath, B.; Wang, Y.; Su, Y.P.; Hamilton, D.P.; Lin, H.; Zheng, L.; Zhang, Y. Methods to control harmful algal blooms: A review. Environ. Chem. Lett. 2022, 20, 3133–3152. [Google Scholar] [CrossRef]
- Silva, J.A. Wastewater Treatment and Reuse for Sustainable Water Resources Management: A Systematic Literature Review. Sustainability 2023, 15, 10940. [Google Scholar] [CrossRef]
- Chapman, D.V.; Sullivan, T. The role of water quality monitoring in the sustainable use of ambient waters. One Earth 2022, 5, 132–137. [Google Scholar] [CrossRef]
- Englande, A.J., Jr.; Krenkel, P.; Shamas, J. Wastewater Treatment & Water Reclamation. Ref. Modul. Earth Syst. Environ. Sci. 2015. [CrossRef] [PubMed Central]
- Khadre, M.A.; Yousef, A.E. Sporicidal action of ozone and hydrogen peroxide: A comparative study. Int. J. Food Microbiol. 2001, 71, 131–138. [Google Scholar] [CrossRef]
- Pfendler, S.; Bousta, F.; Alaoui-Sossé, L.; Khatyr, A.; Aleya, L.; Alaoui-Sossé, B. UV-C as an Efficient Means to Combat Biofilm Formation in Cultural Heritage Monument. Biodiversity and Impact on Prehistoric Pigments? In 10th International Symposium on the Conservation of Monuments in the Mediterranean Basin; Koui, M., Zezza, F., Kouis, D., Eds.; MONUBASIN 2017; Springer: Cham, Switzerland,, 2018. [Google Scholar] [CrossRef]
- Prest, E.I.; Hammes, F.; van Loosdrecht, M.C.; Vrouwenvelder, J.S. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges. Front. Microbiol. 2016, 7, 45. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- USEPA. Drinking Water Treatment Technologies; United States Environmental Protection Agency: Washington, DC, USA, 2021. [Google Scholar]
- UNEP. Water Quality for Ecosystem and Human Health, 2nd ed.; United Nations Environment Programme Global Environment Monitoring System/Water Programme; UN GEMS/Water Programme Office: Koblenz, Germany, 2008; Available online: http://www.gemswater.org/ (accessed on 21 April 2024).
- Magrabi, F.; Ammenwerth, E.; Hyppönen, H.; de Keizer, N.; Nykänen, P.; Rigby, M.; Scott, P.; Talmon, J.; Georgiou, A. Improving Evaluation to Address the Unintended Consequences of Health Information Technology: A Position Paper from the Working Group on Technology Assessment & Quality Development. Yearb. Med. Inform. 2016, 1, 61–69. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Suckling, J.; Hoolohan, C.; Soutar, I.; Druckman, A. Unintended Consequences: Unknowable and Unavoidable, or Knowable and Unforgivable? Front. Clim. 2021, 3, 737929. [Google Scholar] [CrossRef]
- Wurtsbaugh, W.A.; Paerl, H.W.; Dodds, W.K. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. WIREs Water. 2019, 6, e1373. [Google Scholar] [CrossRef]
- Song, X.; Huang, L.; Zhang, J.; Huang, H.; Li, T.; Su, Q. Harmful algal blooms (HABs) in Daya Bay, China: An in situ study of primary production and environmental impacts. Mar Pollut Bull. 2009, 58, 1310–1318. [Google Scholar] [CrossRef] [PubMed]
- Lapointe, B.E.; Herren, L.W.; Debortoli, D.D.; Vogel, M.A. Evidence of sewage-driven eutrophication and harmful algal blooms in Florida’s Indian River Lagoon. Harmful Algae 2015, 43, 82–102. [Google Scholar] [CrossRef]
- Singh, B.J.; Chakraborty, A.; Sehgal, R. A systematic review of industrial wastewater management: Evaluating challenges and enablers. J. Environ. Manag. 2023, 348, 119230. [Google Scholar] [CrossRef]
- Ibrahim, M.; Nawaz, M.H.; Rout, P.R.; Lim, J.-W.; Mainali, B.; Shahid, M.K. Advances in Produced Water Treatment Technologies: An In-Depth Exploration with an Emphasis on Membrane-Based Systems and Future Perspectives. Water 2023, 15, 2980. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A.; Rodrigo, M.A.; Sirés, I.; Scialdone, O. A critical review on latest innovations and future challenges of electrochemical technology for the abatement of organics in water. Appl. Catal. B Environ. 2023, 328, 122430. [Google Scholar] [CrossRef]
- Paerl, H.W.; Gardner, W.S.; Havens, K.E.; Joyner, A.R.; McCarthy, M.J.; Newell, S.E.; Qin, B.; Scott, J.T. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae 2016, 54, 213–222. [Google Scholar] [CrossRef]
- West, J.J.; Järnberg, L.; Berdalet, E.; Cusack, C. Understanding and Managing Harmful Algal Bloom Risks in a Changing Climate: Lessons From the European CoCliME Project. Front. Clim. 2021, 3, 636723. [Google Scholar] [CrossRef]
- Banerji, A.; Benesh, K. Incorporating Microbial Species Interaction in Management of Freshwater Toxic Cyanobacteria: A Systems Science Challenge. Aquat Ecol. 2022, 3, 570–587. [Google Scholar] [CrossRef]
- Kibuye, F.A.; Zamyadi, A.; Wert, E.C. A critical review on operation and performance of source water control strategies for cyanobacterial blooms: Part I-chemical control methods. Harmful Algae 2021, 109, 102099. [Google Scholar] [CrossRef] [PubMed]
- Mishra, B.K.; Kumar, P.; Saraswat, C.; Chakraborty, S.; Gautam, A. Water Security in a Changing Environment: Concept, Challenges and Solutions. Water 2021, 13, 490. [Google Scholar] [CrossRef]
- Harper, M.; Mejbel, H.S.; Longert, D.; Abell, R.; Beard, T.D.; Bennett, J.R.; Carlson, S.M.; Darwall, W.; Dell, A.; Domisch, S.; et al. Twenty-five essential research questions to inform the protection and restoration of freshwater biodiversity. Aquat. Conserv. Mar. Freshw. Ecosyst. 2021, 31, 2632–2653. [Google Scholar] [CrossRef]
- Cantonati, M.; Poikane, S.; Pringle, C.M.; Stevens, L.E.; Turak, E.; Heino, J.; Richardson, J.S.; Bolpagni, R.; Borrini, A.; Cid, N.; et al. Characteristics, Main Impacts, and Stewardship of Natural and Artificial Freshwater Environments: Consequences for Biodiversity Conservation. Water 2020, 12, 260. [Google Scholar] [CrossRef]
- Lahsen, M.; Sanchez-Rodriguez, R.; Lankao, P.R.; Dube, P.; Leemans, R.; Gaffney, O.; Mirza, M.; Pinho, P.; Osman-Elasha, B.; Smith, M.S. Impacts, adaptation and vulnerability to global environmental change: Challenges and pathways for an action-oriented research agenda for middle-income and low-income countries. Curr. Opin. Environ. Sustain. 2010, 2, 364–374. [Google Scholar] [CrossRef]
- Troell, M.; Costa-Pierce, B.; Stead, S.; Cottrell, R.S.; Brugere, C.; Farmery, A.K.; Little, D.C.; Strand, Å.; Pullin, R.; Soto, D.; et al. Perspectives on aquaculture’s contribution to the Sustainable Development Goals for improved human and planetary health. J. World Aquac. Soc. 2023, 54, 251–342. [Google Scholar] [CrossRef]
- Hariram, N.P.; Mekha, K.B.; Suganthan, V.; Sudhakar, K. Sustainalism: An Integrated Socio-Economic-Environmental Model to Address Sustainable Development and Sustainability. Sustainability 2023, 15, 10682. [Google Scholar] [CrossRef]
- Rabiee, N.; Sharma, R.; Foorginezhad, S.; Jouyandeh, M.; Asadnia, M.; Rabiee, M.; Akhavan, O.; Lima, E.C.; Formela, K.; Ashrafizadeh, M.; et al. Green and Sustainable Membranes: A review. Environ. Res. 2023, 231 Pt 2, 116133. [Google Scholar] [CrossRef]
- Anegbe, B.; Ifijen, I.H.; Maliki, M.; Uwidia, I.E.; Aigbodion, A.I. Graphene oxide synthesis and applications in emerging contaminant removal: A comprehensive review. Environ. Sci. Eur. 2024, 36, 15. [Google Scholar] [CrossRef]
- Osman, A.I.; El-Monaem, E.M.A.; Elgarahy, A.M.; Aniagor, C.O.; Hosny, M.; Farghali, M.; Rashad, E.; Ejimofor, M.I.; Lopez-Maldonado, E.A.; Ihara, I.; et al. Methods to prepare biosorbents and magnetic sorbents for water treatment: A review. Environ. Chem. Lett. 2023, 21, 2337–2398. [Google Scholar] [CrossRef]
- Honarmandrad, Z.; Kaykhaii, M.; Gębicki, J. Microplastics removal from aqueous environment by metal organic frameworks. BMC Chem. 2023, 21, 122. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- PICES (North Pacific Marine Science Organization). PICES-2023 Annual Meeting. 2023. Available online: https://meetings.pices.int/meetings/annual/2023/PICES/Program (accessed on 21 April 2024).
- McPartlin, D.A.; Loftus, J.H.; Crawley, A.S.; Silke, J.; Murphy, C.S.; O’Kennedy, R.J. Biosensors for the monitoring of harmful algal blooms. Curr. Opin. Biotechnol. 2017, 45, 164–169. [Google Scholar] [CrossRef]
- Wang, L.; Chen, X.; Pan, F.; Yao, G.; Chen, J. Development of a rapid detection method for Karenia mikimotoi by using CRISPR-Cas12a. Front. Microbiol. 2023, 14, 1205765. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Han, X.; Zhao, T.; Yan, T.; Yu, R. Rapid and sensitive detection of Karenia mikimotoi by loop-mediated isothermal amplification combined with a lateral flow dipstick. Environ. Sci. Pollut. Res. Int. 2022, 29, 24696–24703. [Google Scholar] [CrossRef] [PubMed]
- Durán-Vinet, B.; Araya-Castro, K.; Chao, T.C.; Wood, S.A.; Gallardo, V.; Godoy, K.; Abanto, M. Potential applications of CRISPR/Cas for next-generation biomonitoring of harmful algae blooms: A review. Harmful Algae 2021, 103, 102027. [Google Scholar] [CrossRef] [PubMed]
- Chernysh, Y.; Roubík, H. International Collaboration in the Field of Environmental Protection: Trend Analysis and COVID-19 Implications. Sustainability 2020, 12, 10384. [Google Scholar] [CrossRef]
- Nti, E.K.; Cobbina, S.J.; Attafuah, E.E.; Senanu, L.D.; Amenyeku, G.; Gyan, M.A.; Forson, D.; Safo, A.R. Water pollution control and revitalization using advanced technologies: Uncovering artificial intelligence options towards environmental health protection, sustainability and water security. Heliyon 2023, 9, e18170. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, C.H.; Liu, W.L.; Leu, H.G. Sustainable water quality management framework and a strategy planning system for a river basin. Environ. Manag. 2006, 38, 952–973. [Google Scholar] [CrossRef] [PubMed]
- Sagarminaga, Y.; Garcés, E.; Francé, J.; Stern, R.; Revilla, M.; Magaletti, E.; Bresnan, E.; Tsirtsis, G.; Jakobsen, H.H.; Sampedro, N.; et al. New tools and recommendations for a better management of harmful algal blooms under the European Marine Strategy Framework Directive. Front. Ocean Sustain. 2023, 1, 1298800. [Google Scholar] [CrossRef]
- Rashidi, H.; Baulch, H.; Gill, A.; Bharadwaj, L.; Bradford, L. Monitoring, Managing, and Communicating Risk of Harmful Algal Blooms (HABs) in Recreational Resources across Canada. Environ. Health Insights 2021, 15, 11786302211014401. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Santos, E.; Carvalho, M.; Martins, S. Sustainable Water Management: Understanding the Socioeconomic and Cultural Dimensions. Sustainability 2023, 15, 13074. [Google Scholar] [CrossRef]
- Jin, G.; Deng, X.; Chu, X.; Li, Z.; Wang, Y. Optimization of land-use management for ecosystem service improvement: A review. Phys. Chem. Earth Parts A/B/C 2017, 101, 70–77. [Google Scholar] [CrossRef]
- Berghöfer, A.; Brown, C.; Bruner, A.; Emerton, L.; Esen, E.; Geneletti, D.; Kosmus, M.; Kumar, R.; Lehmann, M.; Leon Morales, V. Increasing the Policy Impact of Ecosystem Service Assessments and Valuations—Insights from Practice; Helmholtz-Zentrum für Umweltforschung (UFZ) GmbH: Leipzig, Germany; Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH: Eschborn, Germany, 2016; 31p, Available online: https://www.aboutvalues.net (accessed on 21 April 2024).
Technology | Mechanism | Advantages | Limitations |
---|---|---|---|
Filtration | Physical | Effective across a broad particle size range Medium to high cost efficiency Low environmental impact | High maintenance and operational energy requirements |
Membrane Filtration | Physical | High removal efficiency and consistency Environmentally friendly | High costs and susceptibility to membrane fouling |
Sedimentation | Physical | Effective for large particulates using gravity Economical and straightforward operation | Ineffective against dissolved substances |
Dissolved Air Flotation | Physical | Efficient in suspended particle removal Moderately priced Low environmental impact | More energy-demanding than gravity-based methods |
Electrocoagulation | Physical | Chemical-free with effective contaminant removal Considerable byproduct management requirements | Energy-intensive with potential negative effects on aquatic life |
Ultraviolet Irradiation | Physical/Chemical | Highly efficient in microorganism inactivation Non-specific action on natural microorganisms | Moderate environmental impact Specific operational conditions required Possible UV resistance in some organisms |
Activated Carbon | Chemical | Highly effective against dissolved organics Medium environmental footprint | Needs frequent regeneration |
Ozone | Chemical | Powerful oxidizing ability, degrades organics and microorganisms Moderate environmental impact | High operational costs and byproduct management needed |
Coagulation/Flocculation | Chemical | Effective in particulate matter removal through aggregation Medium environmental footprint | Dependence on chemicals, results in sludge production, although sludges may be repurposed for other uses. |
Advanced Oxidation Processes | Chemical | High efficiency in pollutant removal Potentially beneficial with proper integration into ecosystems | Specific conditions required, possibly high energy consumption |
Biological Treatment | Biological | Promotes biodiversity by creating a conducive environment for various microorganisms. Utilizes diverse consortia of bacteria, fungi, and algae. Low cost and eco-friendly | Time-consuming and condition-dependent |
Biochar | Biological | Improves water quality and supports biodiversity Economical and beneficial to soil and carbon storage | Varying effectiveness on pollutants, may need regeneration |
Genus | Key Toxins | Adverse Effects | Mitigation Strategies |
---|---|---|---|
Alexandrium (Dinoflagellata) | Saxitoxins, Gonyautoxins, PSP | Neurotoxic effects, paralysis, respiratory failure in humans | Advanced ballast water treatment, UV treatment, biomanipulation, RNA interference (RNAi) techniques, genetic engineering for resistant marine life |
Anabaena (Cyanobacteria) | Saxitoxins, PSP | Neurotoxic effects, respiratory distress in humans | Filtration, sedimentation, advanced chemical treatments (e.g., precision dosing), aeration, nutrient management, UV light, phage therapy |
Aphanizomenon (Cyanobacteria) | Saxitoxins, PSP | Neurotoxic effects, respiratory distress in humans | Advanced filtration methods, sedimentation, chemical treatments with lower environmental impact, aeration, precise nutrient addition, UV light, enzymatic degradation |
Chattonella (Raphidophyceae) | Ichthyotoxins, Brevetoxins | Fish mortality, respiratory distress in humans | Genetic manipulation of ciliates or flagellates for better efficacy, advanced binding agents, water temperature control, innovative biological controls |
Cochlodinium (Dinoflagellata) | Palytoxin, Neurotoxic effects | Neurological symptoms, respiratory distress in humans | Enhanced water circulation and filtration, bioaugmentation with specific zooplankton or bacteria strains, innovative binding agents, H2O2, ozone, nanotechnology |
Dinophysis (Dinoflagellata) | Okadaic Acid, Dinophysistoxins, DSP | Gastrointestinal issues, diarrhea in humans | Advanced coagulation techniques, UV treatment with improved efficacy, precision nutrient management, biocontrol agents |
Lingulodinium polyedra (formerly Gonyaulax polyedra) (Dinoflagellata) | Yessotoxins, Shellfish Poisoning | Gastrointestinal issues, respiratory distress in humans | Optimized water circulation and filtration, H2O2 or ozone treatment with reduced byproducts, introduction of genetically engineered copepods or rotifers |
Karenia (Dinoflagellata) | Brevetoxins | Neurotoxic effects, respiratory distress in humans | Integrated nutrient management, physical removal with minimal impact, biological control with novel agents, CRISPR-Cas9 for targeted interventions |
Microcystis (Cyanobacteria) | Microcystins | Hepatotoxicity, gastrointestinal issues in humans | Advanced filtration and sedimentation, precision chemical treatments, aeration, targeted nutrient addition, UV light, application of biofilms and microbial mats for toxin degradation |
Oscillatoria (Cyanobacteria) | Anatoxin-a, Cylindrospermopsin | Neurological disturbances, nausea, vomiting, acute liver failure, respiratory irritation in humans | Targeted copper sulfate treatment, sediment removal with minimal ecological impact, bioremediation techniques, introduction of toxin-degrading bacteria |
Prymnesium parvum (Haptophyta) | Prymnesins, Hemolytic Toxin | Hemolysis, fish mortality | Clay flocculation with specific clays, introduction of genetically modified tolerant fish species, copper sulfate treatment with precise application, toxin adsorbents |
Pseudo-nitzschia (Bacillariophyceae) | Domoic Acid, ASP | Neurological symptoms, memory loss in humans | Enhanced monitoring and early warning systems, adaptive nutrient management, biomanipulation with targeted species, AI-driven predictive modeling |
Methods | Economic Efficiency | Ecological Impact | Infrastructure Type |
---|---|---|---|
Phytoplankton | Cost-effective with minimal investment | May impact non-target species, affecting biodiversity | Open waters |
Zooplankton | Efficient, uses natural predation without additional costs | Risk of food web disruption, altering natural balances | Open waters, flowing channels |
Benthic Macro-Invertebrates | Natural and effective, low ongoing costs | Potential for habitat disturbance, changing ecosystems | Open waters, open pools |
Microorganisms | Versatile and cost-effective, with scalable applications | High specificity to target species, minimizing collateral damage | Hermetic tanks, controlled tanks |
Aquatic Plants | Provides oxygenation benefits, economically beneficial long-term | Risk of overgrowth and habitat change, can lead to ecological imbalance | Open waters, open pools |
Fish | Economically viable, especially in integrated pest management systems | Potential for ecosystem disruption through predation and competition | Open waters, flowing channels |
Allelochemicals | Selective and natural, cost-effective for targeted applications | May affect non-target species, requiring careful management | Open waters, controlled tanks |
Algicidal Microorganisms | Eco-friendly and cost-effective, sustainable over time | Targeted action against HABs, promotes ecological balance | Open waters, hermetic tanks |
Seagrass-associated Bacteria | Low long-term management cost, sustainable solution | Promotes biodiversity and relies on healthy seagrass ecosystems, enhancing ecological resilience | Open waters, coasta |
Areas of Focus | Approaches |
---|---|
Water Quality Improvement | Focuses on advanced methods for pollutant removal, including physical, chemical, and biological techniques. It also mentions developing diagnostic tests for cyanotoxins and using high-resolution data for site restoration and nutrient interception. |
Algal Bloom Mitigation | Highlights integrated approaches, such as drainage water recycling and assessing wetland plants for nutrient capture. Monitoring and modeling specific lakes for HAB reduction and evaluating climate change’s impact on nutrient runoff are also covered. |
Decision Criteria | Discusses the consideration of contamination type, resource availability, environmental impact, cost-effectiveness, and scalability in projects, thus supporting statewide water quality and HAB management efforts. |
Biocontrol and Health Impacts | Reviews research on the susceptibility to HAB toxins and toxic microplastics, focusing on direct and indirect human health impacts, highlighting the need to mitigate adverse health effects on communities and ecosystems. |
Socioeconomic Consequences of HABs | New research addresses broader socioeconomic effects on communities and industries, with projects aimed at visualizing water quality trends in the Lake Erie watershed to enhance understanding and communication of these impacts. |
Ecologically Sustainable Practices | Emphasizes sustainable and ecological solutions like nutrient capture in wetlands and best practices for nutrient control, including research on water-carbon-nutrient coupling for climate-resilient production. |
Policy and Governance | Supports policy development and implementation based on research, evaluating water treatment technologies and fostering collaboration among universities and state agencies for adaptive governance, aiming to sustain water quality and ecosystem health. |
Innovative and Emerging Solutions | Incorporates predictive models for climate change effects on nutrient runoff and explores enhanced cyanotoxin removal methods, underscoring the importance of emerging technologies in water quality and HAB management. |
Community Involvement and Awareness | Focuses on increasing public awareness and involvement through projects that make water quality data more accessible and understandable, encouraging community engagement in addressing water quality issues, thus supporting proactive management strategies. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, S.-O.; Cho, I.-H.; Kim, H.-K.; Hwang, E.-A.; Han, B.-H.; Kim, B.-H. Toward a Brighter Future: Enhanced Sustainable Methods for Preventing Algal Blooms and Improving Water Quality. Hydrobiology 2024, 3, 100-118. https://doi.org/10.3390/hydrobiology3020008
Hwang S-O, Cho I-H, Kim H-K, Hwang E-A, Han B-H, Kim B-H. Toward a Brighter Future: Enhanced Sustainable Methods for Preventing Algal Blooms and Improving Water Quality. Hydrobiology. 2024; 3(2):100-118. https://doi.org/10.3390/hydrobiology3020008
Chicago/Turabian StyleHwang, Su-Ok, In-Hwan Cho, Ha-Kyung Kim, Eun-A Hwang, Byung-Hun Han, and Baik-Ho Kim. 2024. "Toward a Brighter Future: Enhanced Sustainable Methods for Preventing Algal Blooms and Improving Water Quality" Hydrobiology 3, no. 2: 100-118. https://doi.org/10.3390/hydrobiology3020008
APA StyleHwang, S. -O., Cho, I. -H., Kim, H. -K., Hwang, E. -A., Han, B. -H., & Kim, B. -H. (2024). Toward a Brighter Future: Enhanced Sustainable Methods for Preventing Algal Blooms and Improving Water Quality. Hydrobiology, 3(2), 100-118. https://doi.org/10.3390/hydrobiology3020008