Pharmaceuticals in Water: Risks to Aquatic Life and Remediation Strategies
Abstract
:1. Introduction
2. Method
3. Routes of Pharmaceutical Product Entry into Water Bodies and Their Detection
4. Assessment of Risk Related to Pharmaceutical Products in Water Bodies
5. Methods of Choice for the Management of Pharmaceutical Pollution in Water
5.1. Phytoremediation of Pharmaceutics
5.2. Advanced Oxidative Processes for Treatment of Pharmaceuticals
5.3. Comparison of Benefits and Limitations of Phytoremediation and AOPs
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferreira, T.; Akter, R.; Hasan, N.; Reza, F.; Asaduzzaman, M.; Begum, K.; Shammi, M. Hydrobiology of saline agriculture ecosystem: A review of scenario change in south-west region of Bangladesh. Hydrobiology 2023, 2, 162–180. [Google Scholar] [CrossRef]
- da Silva, J.R.M.C.; Bergami, E.; Gomes, V.; Corsi, I. occurrence and distribution of legacy and emerging pollutants including plastic debris in Antarctica: Sources, distribution and impact on marine biodiversity. Mar. Pollut. Bull. 2023, 186, 114353. [Google Scholar] [CrossRef]
- Li, B.; Xu, D.; Zhou, X.; Yin, Y.; Feng, L.; Liu, Y.; Zhang, L. Environmental behaviors of emerging contaminants in freshwater ecosystem dominated by submerged plants: A review. Environ. Res. 2023, 227, 115709. [Google Scholar] [CrossRef]
- Hawash, H.B.; Moneer, A.A.; Galhoum, A.A.; Elgarahy, A.M.; Mohamed, W.A.A.; Samy, M.; El-Seedi, H.R.; Gaballah, M.S.; Mubarak, M.F.; Attia, N.F. Occurrence and spatial distribution of pharmaceuticals and personal care products (PPCPs) in the aquatic environment, their characteristics, and adopted legislations. J. Water Process Eng. 2023, 52, 103490. [Google Scholar] [CrossRef]
- Kock, A.; Glanville, H.C.; Law, A.C.; Stanton, T.; Carter, L.J.; Taylor, J.C. Emerging challenges of the impacts of pharmaceuticals on aquatic ecosystems: A diatom perspective. Sci. Total Environ. 2023, 878, 162939. [Google Scholar] [CrossRef]
- Cui, C.; Han, Q.; Jiang, L.; Ma, L.; Jin, L.; Zhang, D.; Lin, K.; Zhang, T. Occurrence, distribution, and seasonal variation of antibiotics in an artificial water source reservoir in the Yangtze river delta, East China. Environ. Sci. Pollut. Res. 2018, 25, 19393–19402. [Google Scholar] [CrossRef]
- Mastrángelo, M.M.; Valdés, M.E.; Eissa, B.; Ossana, N.A.; Barceló, D.; Sabater, S.; Rodríguez-Mozaz, S.; Giorgi, A.D.N. Occurrence and accumulation of pharmaceutical products in water and biota of urban lowland rivers. Sci. Total Environ. 2022, 828, 154303. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Lichtfouse, E.; Liu, G.; Balaram, V.; Ribeiro, A.R.L.; Lu, Z.; Stock, F.; Carmona, E.; Teixeira, M.R.; Picos-Corrales, L.A.; et al. worldwide cases of water pollution by emerging contaminants: A review. Environ. Chem. Lett. 2022, 20, 2311–2338. [Google Scholar] [CrossRef]
- Carrizo, J.C.; Vo Duy, S.; Munoz, G.; Marconi, G.; Amé, M.V.; Sauvé, S. Suspect screening of pharmaceuticals, illicit drugs, pesticides, and other emerging contaminants in Argentinean Piaractus mesopotamicus, a fish species used for local consumption and export. Chemosphere 2022, 309, 136769. [Google Scholar] [CrossRef]
- O’Flynn, D.; Lawler, J.; Yusuf, A.; Parle-Mcdermott, A.; Harold, D.; Mc Cloughlin, T.; Holland, L.; Regan, F.; White, B. A review of pharmaceutical occurrence and pathways in the aquatic environment in the context of a changing climate and the COVID-19 pandemic. Anal. Methods 2021, 13, 575–594. [Google Scholar] [CrossRef]
- Puri, M.; Gandhi, K.; Kumar, M.S. Emerging environmental contaminants: A global perspective on policies and regulations. J. Environ. Manag. 2023, 332, 117344. [Google Scholar] [CrossRef]
- Rathi, B.S.; Kumar, P.S.; Show, P.L. A review on effective removal of emerging contaminants from aquatic systems: Current trends and scope for further research. J. Hazard. Mater. 2021, 409, 124413. [Google Scholar] [CrossRef]
- Almazrouei, B.; Islayem, D.; Alskafi, F.; Catacutan, M.K.; Amna, R.; Nasrat, S.; Sizirici, B.; Yildiz, I. Steroid hormones in wastewater: Sources, Treatments, Environmental Risks, and Regulations. Emerg. Contam. 2023, 9, 100210. [Google Scholar] [CrossRef]
- Omuferen, L.O.; Maseko, B.; Olowoyo, J.O. Occurrence of Antibiotics in Wastewater from Hospital and Convectional Wastewater Treatment Plants and Their Impact on the Effluent Receiving Rivers: Current Knowledge between 2010 and 2019. Environ. Monit. Assess. 2022, 194, 306. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AL Falahi, O.A.; Abdullah, S.R.S.; Hasan, H.A.; Othman, A.R.; Ewadh, H.M.; Al-Baldawi, I.A.; Kurniawan, S.B.; Imron, M.F.; Ismail, N.I. Simultaneous removal of ibuprofen, organic material, and nutrients from domestic wastewater through a pilot-scale vertical sub-surface flow constructed wetland with aeration system. J. Water Process. Eng. 2021, 43, 102214. [Google Scholar] [CrossRef]
- Xie, Z.; Lu, G.; Yan, Z.; Liu, J.; Wang, P.; Wang, Y. Bioaccumulation and trophic transfer of pharmaceuticals in food webs from a large freshwater lake. Environ. Pollut. 2017, 222, 356–366. [Google Scholar] [CrossRef]
- Chen, J.; Ying, G.G.; Wei, X.D.; Liu, Y.S.; Liu, S.S.; Hu, L.X.; He, L.Y.; Chen, Z.F.; Chen, F.R.; Yang, Y.Q. Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: Effect of flow configuration and plant species. Sci. Total Environ. 2016, 571, 974–982. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, N.; Umesh, M.; Chakraborty, P.; Kaur, K.; Duhan, L.; Sarojini, S.; Thazeem, B.; Pasrija, R.; Vangnai, A.S.; et al. Micropollutants characteristics, fate, and sustainable removal technologies for landfill leachate: A technical perspective. J. Water Process. Eng. 2023, 53, 103649. [Google Scholar] [CrossRef]
- Tijani, J.O.; Fatoba, O.O.; Petrik, L.F. A review of pharmaceuticals and endocrine-disrupting compounds: Sources, effects, removal, and detections. Water Air Soil Pollut. 2013, 224, 1770. [Google Scholar] [CrossRef] [Green Version]
- Rathi, B.S.; Kumar, P.S.; Vo, D.V.N. Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment. Sci. Total Environ. 2021, 797, 149134. [Google Scholar] [CrossRef] [PubMed]
- MacKeown, H.; Magi, E.; Di Carro, M.; Benedetti, B. Unravelling the role of membrane pore size in polar organic chemical integrative samplers (pocis) to broaden the polarity range of sampled analytes. Anal. Bioanal. Chem. 2022, 414, 1963–1972. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jie, Y.; Hu, Q.; Yang, Y.; Ye, Y.; Zou, S.; Xu, J.; Ouyang, G. A polymeric solid-phase microextraction fiber for the detection of pharmaceuticals in water samples. J. Chromatogr. A 2020, 1623, 461171. [Google Scholar] [CrossRef]
- Praveena, S.M.; Mohd Rashid, M.Z.; Mohd Nasir, F.A.; Sze Yee, W.; Aris, A.Z. Occurrence and potential human health risk of pharmaceutical residues in drinking water from Putrajaya (Malaysia). Ecotoxicol. Environ. Saf. 2019, 180, 549–556. [Google Scholar] [CrossRef]
- Han, G.H.; Hur, H.G.; Kim, S.D. Ecotoxicological risk of pharmaceuticals from wastewater treatment plants in korea: Occurrence and toxicity to Daphnia magna. Environ. Toxicol. Chem. 2006, 25, 265–271. [Google Scholar] [CrossRef]
- Gallego-Ríos, S.E.; Peñuela, G.A.; Martínez-López, E. Updating the use of biochemical biomarkers in fish for the evaluation of alterations produced by pharmaceutical products. Environ. Toxicol. Pharmacol. 2021, 88, 103756. [Google Scholar] [CrossRef] [PubMed]
- Martín, C.; Fajardo, C.; Costa, G.; Sánchez-Fortún, S.; San Andrés, M.D.; González, F.; Nande, M.; Mengs, G.; Martín, M. Bioassays to assess the ecotoxicological impact of polyethylene microplastics and two organic pollutants, simazine and ibuprofen. Chemosphere 2021, 274, 129704. [Google Scholar] [CrossRef]
- da Silva, L.F.; Nobre, C.R.; Moreno, B.B.; Pereira, C.D.S.; de Souza Abessa, D.M.; Choueri, R.B.; Gusso-Choueri, P.K.; Cesar, A. Non-destructive biomarkers can reveal effects of the association of microplastics and pharmaceuticals or personal care products. Mar. Pollut. Bull. 2022, 177, 113469. [Google Scholar] [CrossRef]
- Ohoro, C.R.; Adeniji, A.O.; Okoh, A.I.; Okoh, O.O. Distribution and chemical analysis of pharmaceuticals and personal care products (ppcps) in the environmental systems: A review. Int. J. Environ. Res. Public Health 2019, 16, 3026. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.; Bu, Q.; Li, Q.; Gao, X.; Xie, H.; Gong, W.; Wang, X.; Yang, L.; Tang, J. Development and applications of diffusive gradients in thin films for monitoring pharmaceuticals in surface waters. Environ. Pollut. 2022, 311, 119979. [Google Scholar] [CrossRef]
- Riva, F.; Zuccato, E.; Castiglioni, S. Prioritization and analysis of pharmaceuticals for human use contaminating the aquatic ecosystem in Italy. J. Pharm. Biomed. Anal. 2015, 106, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Coecke, S.; Pelkonen, O.; Leite, S.B.; Bernauer, U.; Bessems, J.G.M.; Bois, F.Y.; Gundert-Remy, U.; Loizou, G.; Testai, E.; Zaldívar, J.M. Toxicokinetics as a key to the integrated toxicity risk assessment based primarily on non-animal approaches. Toxicol. Vitro 2013, 27, 1570–1577. [Google Scholar] [CrossRef] [PubMed]
- Kayode-Afolayan, S.D.; Ahuekwe, E.F.; Nwinyi, O.C. Impacts of pharmaceutical effluents on aquatic ecosystems. Sci. Afr. 2022, 17, e01288. [Google Scholar] [CrossRef]
- Gunnarsson, L.; Snape, J.R.; Verbruggen, B.; Owen, S.F.; Kristiansson, E.; Margiotta-Casaluci, L.; Österlund, T.; Hutchinson, K.; Leverett, D.; Marks, B.; et al. Pharmacology beyond the patient—The environmental risks of human drugs. Environ. Int. 2019, 129, 320–332. [Google Scholar] [CrossRef]
- Liu, N.; Jin, X.; Feng, C.; Wang, Z.; Wu, F.; Johnson, A.C.; Xiao, H.; Hollert, H.; Giesy, J.P. Ecological risk assessment of fifty pharmaceuticals and personal care products (PPCPs) in Chinese surface waters: A proposed multiple-level system. Environ. Int. 2020, 136, 105454. [Google Scholar] [CrossRef]
- Gwenzi, W.; Chaukura, N. Organic contaminants in african aquatic systems: Current knowledge, health risks, and future research directions. Sci. Total Environ. 2018, 619–620, 1493–1514. [Google Scholar] [CrossRef]
- Tambosi, J.L.; de Sena, R.F.; Favier, M.; Gebhardt, W.; José, H.J.; Schröder, H.F.; de Fatima Peralta Muniz Moreira, R. Removal of pharmaceutical compounds in membrane bioreactors (MBR) applying submerged membranes. Desalination 2010, 261, 148–156. [Google Scholar] [CrossRef]
- Almeida, Â.; Solé, M.; Soares, A.M.V.M.; Freitas, R. Anti-inflammatory drugs in the marine environment: Bioconcentration, metabolism and sub-lethal effects in marine bivalves. Environ. Pollut. 2020, 263, 114442. [Google Scholar] [CrossRef] [Green Version]
- Foster, H.R.; Burton, G.A.; Basu, N.; Werner, E.E. Chronic exposure to fluoxetine (prozac) causes developmental delays in Rana pipiens larvae. Environ. Toxicol. Chem. 2010, 29, 2845–2850. [Google Scholar] [CrossRef] [Green Version]
- Leonard, A.F.; Morris, D.; Schmitt, H.; Gaze, W.H. Natural recreational waters and the risk that exposure to antibiotic resistant bacteria poses to human health. Curr. Opin. Microbiol. 2022, 65, 40–46. [Google Scholar] [CrossRef]
- Bereketoglu, C.; Pradhan, A.; Olsson, P.E. Nonsteroidal anti-inflammatory drugs (NSAIDs) cause male-biased sex differentiation in zebrafish. Aquat. Toxicol. 2020, 223, 105476. [Google Scholar] [CrossRef] [PubMed]
- Nagda, A.; Meena, M.; Shah, M.P. Bioremediation of industrial effluents: A synergistic approach. J. Basic Microbiol. 2022, 62, 395–414. [Google Scholar] [CrossRef] [PubMed]
- Alfonso-Muniozguren, P.; Serna-Galvis, E.A.; Bussemaker, M.; Torres-Palma, R.A.; Lee, J. A review on pharmaceuticals removal from waters by single and combined biological, membrane filtration and ultrasound systems. Ultrason. Sonochem. 2021, 76, 105656. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, H. Catalytic ozonation for water and wastewater treatment: Recent advances and perspective. Sci. Total Environ. 2020, 704, 135249. [Google Scholar] [CrossRef]
- Fortunato, A.; Mba, M. A peptide-based hydrogel for adsorption of dyes and pharmaceuticals in water remediation. Gels 2022, 8, 672. [Google Scholar] [CrossRef]
- Barhoum, A.; García-Betancourt, M.L.; Jeevanandam, J.; Hussien, E.A.; Mekkawy, S.A.; Mostafa, M.; Omran, M.M.; Abdalla, M.S.; Bechelany, M. Review on natural, incidental, bioinspired, and engineered nanomaterials: History, definitions, classifications, synthesis, properties, market, toxicities, risks, and regulations. Nanomaterials 2022, 12, 177. [Google Scholar] [CrossRef]
- Khan, A.H.A.; Butt, T.A.; Mirza, C.R.; Yousaf, S.; Nawaz, I.; Iqbal, M. Combined Application of Selected Heavy Metals and EDTA Reduced the Growth of Petunia hybrida L. Sci. Rep. 2019, 9, 4138. [Google Scholar] [CrossRef] [Green Version]
- Raza, A.; Khan, A.H.A.; Nawaz, I.; Qu, Z.; Yousaf, S.; Ali, M.A.; Sayal, A.U.; Iqbal, M. Evaluation of Arsenic-Induced Stress in Dahlia Pinnata Cav.: Morphological and Physiological Response. Soil Sediment. Contam. 2019, 28, 716–728. [Google Scholar] [CrossRef]
- Curiel-Alegre, S.; Velasco-Arroyo, B.; Rumbo, C.; Khan, A.H.A.; Tamayo-Ramos, J.A.; Rad, C.; Gallego, J.L.R.; Barros, R. Evaluation of biostimulation, bioaugmentation, and organic amendments application on the bioremediation of recalcitrant hydrocarbons of soil. Chemosphere 2022, 307, 135638. [Google Scholar] [CrossRef]
- Javed, S.; Mirza, C.R.; Khan, A.H.A.; Khalifa, W.; Achour, B.; Barros, R.; Yousaf, S.; Butt, T.A.; Iqbal, M. Limited Phosphorous Supply Improved Lipid Content of Chlorella vulgaris That Increased Phenol and 2-Chlorophenol Adsorption from Contaminated Water with Acid Treatment. Processes 2022, 10, 2435. [Google Scholar] [CrossRef]
- Kochi, L.Y.; Freitas, P.L.; Maranho, L.T.; Juneau, P.; Gomes, M.P. Aquatic Macrophytes in Constructed Wetlands: A Fight against Water Pollution. Sustainability 2020, 12, 9202. [Google Scholar] [CrossRef]
- Hussain, F.; Khan, A.H.A.; Hussain, I.; Farooqi, A.; Muhammad, Y.S.; Iqbal, M.; Arslan, M.; Yousaf, S. Soil Conditioners Improve Rhizodegradation of Aged Petroleum Hydrocarbons and Enhance the Growth of Lolium multiflorum. Environ. Sci. Pollut. Res. 2021, 29, 9097–9109. [Google Scholar] [CrossRef] [PubMed]
- Hussain, F.; Hussain, I.; Khan, A.H.A.; Muhammad, Y.S.; Iqbal, M.; Soja, G.; Reichenauer, T.G.; Zeshan; Yousaf, S. Combined application of biochar, compost, and bacterial consortia with italian ryegrass enhanced phytoremediation of petroleum hydrocarbon contaminated soil. Environ. Exp. Bot. 2018, 153, 80–88. [Google Scholar] [CrossRef]
- Iqbal, A.; Mushtaq, M.U.; Khan, A.H.A.; Nawaz, I.; Yousaf, S.; Zeshan; Iqbal, M. Influence of Pseudomonas japonica and organic amendments on the growth and metal tolerance of Celosia argentea L. Environ. Sci. Pollut. Res. 2020, 27, 24671–24685. [Google Scholar] [CrossRef]
- Khan, A.H.A.; Kiyani, A.; Cheema, A.S.; Tareen, U.; Nawaz, I.; Iqbal, M.; Yousaf, S. Integrative application of soil conditioners and bio-augmentation for enhanced heavy metal stabilization from wastewater and improved growth of Nicotiana alata L. and Petunia hydrida L. J. Plant. Growth Regul. 2021, 40, 240–253. [Google Scholar] [CrossRef]
- Khan, A.H.A.; Kiyani, A.; Mirza, C.R.; Butt, T.A.; Barros, R.; Ali, B.; Iqbal, M.; Yousaf, S. Ornamental plants for the phytoremediation of heavy metals: Present knowledge and future perspectives. Environ. Res. 2021, 195, 110780. [Google Scholar] [CrossRef]
- Saleem, K.; Zaman, A.; Butt, T.A.; Mirza, C.R.; Iqbal, A.; Khan, A.H.A.; Yousaf, S.; Iqbal, M. Uptake and Distribution of Cadmium and Copper by Solanum lycopersicum L. and Changes in the Metabolite Production. Biol. Bull. Russ. Acad. Sci. 2023, 50, 390–399. [Google Scholar] [CrossRef]
- Nguyen, P.M.; Afzal, M.; Ullah, I.; Shahid, N.; Baqar, M.; Arslan, M. Removal of Pharmaceuticals and Personal Care Products Using Constructed Wetlands: Effective Plant-Bacteria Synergism May Enhance Degradation Efficiency. Environ. Sci. Pollut. Res. 2019, 26, 21109–21126. [Google Scholar] [CrossRef]
- Wu, H.; Wang, R.; Yan, P.; Wu, S.; Chen, Z.; Zhao, Y.; Cheng, C.; Hu, Z.; Zhuang, L.; Guo, Z.; et al. Constructed wetlands for pollution control. Nat. Rev. Earth Environ. 2023, 4, 218–234. [Google Scholar] [CrossRef]
- Khan, A.H.A.; Kiyani, A.; Santiago-Herrera, M.; Ibáñez, J.; Yousaf, S.; Iqbal, M.; Martel-Martín, S.; Barros, R. Sustainability of phytoremediation: Post-harvest stratagems and economic opportunities for the produced metals contaminated biomass. J. Environ. Manag. 2023, 326, 116700. [Google Scholar] [CrossRef]
- Ekperusi, A.O.; Sikoki, F.D.; Nwachukwu, E.O. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective. Chemosphere 2019, 223, 285–309. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J. Constructed wetlands for wastewater treatment: Five decades of experience. Environ. Sci. Technol. 2011, 45, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Brunhoferova, H.; Venditti, S.; Schlienz, M.; Hansen, J. Removal of 27 Micropollutants by selected wetland macrophytes in hydroponic conditions. Chemosphere 2021, 281, 130980. [Google Scholar] [CrossRef]
- Ilyas, H.; van Hullebusch, E.D. Performance comparison of different types of constructed wetlands for the removal of pharmaceuticals and their transformation products: A review. Environ. Sci. Pollut. Res. 2020, 27, 14342–14364. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, M.; Atalla, A.A.; Frihling, B.E.F.; Cavalheri, P.S.; Migliolo, L.; Filho, F.J.C.M. Ibuprofen and caffeine removal in vertical flow and free-floating macrophyte constructed wetlands with Heliconia rostrata and Eichornia crassipes. J. Chem. Eng. 2019, 373, 458–467. [Google Scholar] [CrossRef]
- Silori, R.; Shrivastava, V.; Singh, A.; Sharma, P.; Aouad, M.; Mahlknecht, J.; Kumar, M. Global groundwater vulnerability for Pharmaceutical and Personal care products (PPCPs): The scenario of second decade of 21st century. J. Environ. Manag. 2022, 320, 115703. [Google Scholar] [CrossRef]
- Adeola, A.O.; Ore, O.T.; Fapohunda, O.; Adewole, A.H.; Akerele, D.D.; Akingboye, A.S.; Oloye, F.F. Psychotropic drugs of emerging concerns in aquatic systems: Ecotoxicology and remediation approaches. Chem. Afr. 2022, 5, 481–508. [Google Scholar] [CrossRef]
- Couto, E.; Assemany, P.P.; Assis Carneiro, G.C.; Ferreira Soares, D.C. The potential of algae and aquatic macrophytes in the Pharmaceutical and Personal Care Products (PPCPs) environmental removal: A review. Chemosphere 2022, 302, 134808. [Google Scholar] [CrossRef]
- Carpinteiro, I.; Rodil, R.; Quintana, J.B.; Cela, R. Reaction of diazepam and related benzodiazepines with chlorine. Kinetics, transformation products and in-silico toxicological assessment. Water Res. 2017, 120, 280–289. [Google Scholar] [CrossRef]
- Stando, K.; Czyż, A.; Gajda, M.; Felis, E.; Bajkacz, S. Study of the Phytoextraction and phytodegradation of sulfamethoxazole and trimethoprim from water by Limnobium laevigatum. Int. J. Environ. Res. Public Health 2022, 19, 16994. [Google Scholar] [CrossRef]
- Dordio, A.V.; Duarte, C.; Barreiros, M.; Carvalho, A.J.P.; Pinto, A.P.; da Costa, C.T. Toxicity and removal efficiency of pharmaceutical metabolite clofibric acid by Typha spp.—Potential use for phytoremediation? Bioresour. Technol. 2009, 100, 1156–1161. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.Q.; Gersberg, R.M.; Hua, T.; Zhu, J.; Tuan, N.A.; Tan, S.K. Pharmaceutical removal in tropical subsurface flow constructed wetlands at varying hydraulic loading rates. Chemosphere 2012, 87, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Osama, O.A.; Abdullah, S.R.S.; Hasan, H.A.; Othman, A.R.; Ewadh, H.M.; Al-Baldawi, I.A.; Sharuddin, S.S.N.; Kurniawan, S.B.; Ismail, N.I. Elimination of mixed ibuprofen and paracetamol from spiked domestic wastewater via a pilot continuous aerated sub-surface constructed wetland system. J. Water Process. Eng. 2022, 50, 103308. [Google Scholar] [CrossRef]
- Dolatabadi, M.; Ahmadzadeh, S. A rapid and efficient removal approach for degradation of metformin in pharmaceutical wastewater using electro-fenton process; Optimization by response surface methodology. Water Sci. Technol. 2019, 80, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Talwar, S.; Verma, A.K.; Sangal, V.K. Synergistic degradation employing photocatalysis and photo-fenton process of real industrial pharmaceutical effluent utilizing the iron-titanium dioxide composite. Process Saf. Environ. Prot. 2021, 146, 564–576. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, J.; Du, J.; Zhang, P.; Zhao, Z.; Shi, W.; Cui, F. Rapid degradation of norfloxacin by VUV/Fe2+/H2O2 over a wide initial pH: Process parameters, synergistic mechanism, and influencing factors. J. Hazard. Mater. 2021, 416, 125893. [Google Scholar] [CrossRef]
- Žgajnar Gotvajn, A.; Derco, J.; Vrabeľ, M.; Kassai, A. Improvement of biotreatability of environmentally persistent antibiotic tiamulin by O3 and O3/H2O2 Oxidation Processes. Environ. Technol. 2021, 43, 2319–2328. [Google Scholar] [CrossRef]
- Bilal, M.; Rizwan, K.; Adeel, M.; Iqbal, H.M.N. Hydrogen-based catalyst-assisted advanced oxidation processes to mitigate emerging pharmaceutical contaminants. Int. J. Hydrogen Energy 2022, 47, 19555–19569. [Google Scholar] [CrossRef]
- Wang, S.; Li, T.; Cheng, X.; Zhu, R.; Xu, Y. Regulating the concentration of dissolved oxygen to achieve the directional transformation of reactive oxygen species: A controllable oxidation process for ciprofloxacin degradation by calcined CuCoFe-LDH. Water. Res. 2023, 233, 119744. [Google Scholar] [CrossRef]
- Serna-Galvis, E.A.; Botero-Coy, A.M.; Martínez-Pachón, D.; Moncayo-Lasso, A.; Ibáñez, M.; Hernández, F.; Torres-Palma, R.A. Degradation of seventeen contaminants of emerging concern in municipal wastewater effluents by sonochemical advanced oxidation processes. Water. Res. 2019, 154, 349–360. [Google Scholar] [CrossRef]
- Brillas, E.; Garcia-Segura, S. Recent progress of applied TiO2 photoelectrocatalysis for the degradation of organic pollutants in wastewaters. J. Environ. Chem. Eng. 2023, 11, 109635. [Google Scholar] [CrossRef]
- Gao, Y.Q.; Zhou, J.Q.; Rao, Y.Y.; Ning, H.; Zhang, J.; Shi, J.; Gao, N.Y. Comparative study of degradation of ketoprofen and paracetamol by ultrasonic irradiation: Mechanism, toxicity and DBP formation. Ultrason. Sonochem. 2022, 82, 105906. [Google Scholar] [CrossRef]
- Kiyoshi Tominaga, F.; Fonseca Boiani, N.; Tieko Silva, T.; Gomes dos Santos, J.; Temponi Lebre, D.; Leo, P.; Ivone Borrely, S. Electron beam irradiation applied for the detoxification and degradation of single ciprofloxacin aqueous solution and multiclass pharmaceutical quaternary mixture. Sep. Purif. Technol. 2023, 307, 122818. [Google Scholar] [CrossRef]
- Kudlek, E.; Dudziak, M.; Bohdziewicz, J. Influence of inorganic ions and organic substances on the degradation of pharmaceutical compound in water matrix. Water 2016, 8, 532. [Google Scholar] [CrossRef] [Green Version]
- Aftab, N.; Saleem, K.; Khan, A.H.A.; Butt, T.A.; Mirza, C.R.; Hussain, J.; Farooq, G.; Tahir, A.; Yousaf, S.; Zafar, M.I.; et al. Cosmos sulphureus Cav. is more tolerant to lead than copper and chromium in hydroponics system. Int. J. Environ. Sci. Technol. 2021, 18, 2325–2334. [Google Scholar] [CrossRef]
- Mushtaq, M.U.; Iqbal, A.; Nawaz, I.; Mirza, C.R.; Yousaf, S.; Farooq, G.; Ali, M.A.; Khan, A.H.A.; Iqbal, M. Enhanced uptake of Cd, Cr, and Cu in Catharanthus roseus (L.) G. Don by Bacillus cereus: Application of moss and compost to reduce metal availability. Environ. Sci. Pollut. Res. 2020, 27, 39807–39818. [Google Scholar] [CrossRef]
- Yousaf, U.; Ali Khan, A.H.; Farooqi, A.; Muhammad, Y.S.; Barros, R.; Tamayo-Ramos, J.A.; Iqbal, M.; Yousaf, S. Interactive effect of biochar and compost with Poaceae and Fabaceae plants on remediation of total petroleum hydrocarbons in crude oil contaminated soil. Chemosphere 2022, 286, 131782. [Google Scholar] [CrossRef]
Methods | Description | Monitoring Status | Usage | References | |
---|---|---|---|---|---|
Analytical Chemistry Techniques: Pharmaceutical products can be detected and quantified using various analytical chemistry techniques | High-Performance Liquid Chromatography (HPLC) | Separates and identifies individual components in a sample based on their chemical properties. | Active | Commonly used methods (individually and in combination) for the detection of pharmaceutical contaminants | [29] |
Gas Chromatography (GC) | Separates and analyzes volatile compounds in a sample. | Active | |||
Mass Spectrometry (MS) | Measures the mass-to-charge ratio of ions to identify and quantify compounds in a sample. | Active | |||
Diffusive Gradients in Thin Films (DGT) | Uses a resin gel that binds to the pharmaceuticals, allowing for their detection after being collected on the resin. | Passive | Antiviral agent, hypoglycemic, blood lipid regulator, anticonvulsant drug, anti-inflammatory drug, antidepressant, antiplatyhelmintic drug, antirheumatic drug, β-lactams, macrolides, fluoroquinolones, sulfonamide, tetracyclines, and other antibiotics | [30] | |
Polar Organic Chemical Integrative Samplers (POCIS) | Uses a sorbent material to collect pharmaceuticals over time. | Passive | Carbamazepine, Ibuprofen, Gemfibrozil, Triclosan, Octocrylene, Caffeine, Ketoprofen, Naproxen, Diclofenac, Mefenamic acid | [22] | |
Solid Phase Microextraction (SPME) | Uses a small fiber coated with a sorbent material to extract pharmaceuticals from the water over time. | Passive | Nifedipine, furosemide, hydrochlorothiazide, valsartan, pravastatin sodium, rosuvastatin calcium salt, and gemfibrozil | [23] | |
Biological Methods. Living organisms or biological origin products that can be used to monitor the effects of pharmaceutical products on aquatic ecosystems | Bioassays | Measures the biological response of an organism or cell to a pharmaceutical product. (Growth, reproduction, and survival—Caenorhabditis elegan, germination assay—Lactuca sativa, and bio-luminance assay-Vibrio fischeri) | Active | Ibuprofen | [27] |
Biomarkers | Measures the presence or levels of specific molecules or genes in an organism that indicate exposure to a pharmaceutical product. (Enzymatic profiling for Fish—invasive, Hemolymph for carb—Noninvasive) | Passive | Triclosan and 17α-Ethynylestradiol | [26,28] | |
Ecotoxicology | Examines the effects of pharmaceutical products on the behavior, reproduction, growth, and survival of aquatic organisms. (Mortality (LC50) and reproduction inhibition (NOEC) in Daphnia magna | Passive | Diclofenac, ibuprofen, clofibric acid, carbamazepine, salicylic acid, gemfibrozil, acetaminophen, bezafibrate, tolfenamic acid | [25] | |
Enzyme-Linked Immunosorbent Assay (ELISA) | A type of immunoassay that detects and measures specific molecules, including pharmaceuticals, in a sample. | Active | Amoxicillin, caffeine, chloramphenicol, ciprofloxacin, dexamethasone, diclofenac, nitrofurazone, sulfamethoxazole, and triclosan | [24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.H.A.; Barros, R. Pharmaceuticals in Water: Risks to Aquatic Life and Remediation Strategies. Hydrobiology 2023, 2, 395-409. https://doi.org/10.3390/hydrobiology2020026
Khan AHA, Barros R. Pharmaceuticals in Water: Risks to Aquatic Life and Remediation Strategies. Hydrobiology. 2023; 2(2):395-409. https://doi.org/10.3390/hydrobiology2020026
Chicago/Turabian StyleKhan, Aqib Hassan Ali, and Rocío Barros. 2023. "Pharmaceuticals in Water: Risks to Aquatic Life and Remediation Strategies" Hydrobiology 2, no. 2: 395-409. https://doi.org/10.3390/hydrobiology2020026