Bacterioplankton Community Shifts during a Spring Bloom of Aphanizomenon gracile and Sphaerospermopsis aphanizomenoides at a Temperate Shallow Lake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area, Sampling and Environmental Parameters
2.2. 16S rRNA Gene Metabarcoding
2.3. Statistical Analysis
3. Results
3.1. Environmental Parameters
3.2. 16S rRNA Gene Metabarcoding
3.3. Analysis of BCC vs. Environmental Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Figueiredo, D.R.; Azeiteiro, U.M.; Esteves, S.M.; Gonçalves, F.J.M.; Pereira, M.J. Microcystin-producing blooms—A serious global public health issue. Ecotoxicol. Environ. Saf. 2004, 59, 151–163. [Google Scholar] [CrossRef]
- Paerl, H.W.; Otten, T.G. Harmful cyanobacterial blooms: Causes, consequences, and controls. Microb. Ecol. 2013, 65, 995–1010. [Google Scholar] [CrossRef]
- Corbel, S.; Mougin, C.; Bouaïcha, N. Cyanobacterial toxins: Modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops. Chemosphere 2014, 96, 1–15. [Google Scholar] [CrossRef] [PubMed]
- WHO. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management, 2nd ed.; Chorus, I., Welker, M., Eds.; CRC Press: Boca Raton, FL, USA, 2021; ISBN 9788490225370. [Google Scholar]
- Aguilera, A.; Gómez, E.B.; Kaštovský, J.; Echenique, R.O.; Salerno, G.L. The polyphasic analysis of two native Raphidiopsis isolates supports the unification of the Genera raphidiopsis and Cylindrospermopsis (Nostocales, cyanobacteria). Phycologia 2018, 57, 130–146. [Google Scholar] [CrossRef]
- Zapomělová, E.; Jezberová, J.; Hrouzek, P.; Hisem, D.; Řeháková, K.; Komárková, J.; Zapomelová, E.; Jezberová, J.; Hrouzek, P.; Hisem, D.; et al. Polyphasic characterization of three strains of Anabaena reniformis and Aphanizomenon aphanizomenoides (Cyanobacteria) and their reclassification to Sphaerospermum gen. nov. (incl. Anabaena kisseleviana). J. Phycol. 2009, 45, 1363–1373. [Google Scholar] [CrossRef] [PubMed]
- Zapomělová, E.; Skácelová, O.; Pumann, P.; Kopp, R.; Janeček, E. Polyphasic characterization of three strains of Anabaena reniformis and Aphanizomenon aphanizomenoides (cyanobacteria) and their reclassification to Sphaerospermum gen. nov. (incl. Anabaena kisseleviana) (45:1363-73). J. Phycol. 2010, 46, 415. [Google Scholar] [CrossRef]
- Zapomělová, E.; Hrouzek, P.; Řezanka, T.; Jezberová, J.; Řeháková, K.; Hisem, D.; Komárková, J. Polyphasic characterization of Dolichospermum spp. and Sphaerospermopsis spp. (Nostocales, cyanobacteria): Morphology, 16S rRNA gene sequences and fatty acid and secondary metabolite profiles. J. Phycol. 2011, 47, 1152–1163. [Google Scholar] [CrossRef]
- Rajaniemi, P.; Komárek, J.; Willame, R.; Hrouzek, P.; Kaštovská, K.; Hoffmann, L.; Sivonen, K. Taxonomic consequences from the combined molecular and phenotype evaluation of selected Anabaena and Aphanizomenon strains. Algol. Stud./Arch. Hydrobiol. 2005, 117, 371–391. [Google Scholar] [CrossRef]
- Kim, Y.J.; Park, H.K.; Kim, I.S. Invasion and toxin production by exotic nostocalean cyanobacteria (Cuspidothrix, Cylindrospermopsis, and Sphaerospermopsis) in the Nakdong river, Korea. Harmful Algae 2020, 100, 101954. [Google Scholar] [CrossRef]
- Antunes, J.T.; Leão, P.N.; Vasconcelos, V.M. Cylindrospermopsis raciborskii: Review of the distribution, phylogeography, and ecophysiology of a global invasive species. Front. Microbiol. 2015, 6, 473. [Google Scholar] [CrossRef] [PubMed]
- Kokociński, M.; Gagala, I.; Jasser, I.; Karosiene, J.; Kasperovičiene, J.; Kobos, J.; Koreiviene, J.; Soininen, J.; Szczurowska, A.; Woszczyk, M.; et al. Distribution of invasive Cylindrospermopsis raciborskii in the east-central Europe is driven by climatic and local environmental variables. FEMS Microbiol. Ecol. 2017, 93, fix035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stüken, A.; Rücker, J.; Endrulat, T.; Preussel, K.; Hemm, M.; Nixdorf, B.; Karsten, U.; Wiedner, C. Distribution of three alien cyanobacterial species (Nostocales) in northeast Germany: Cylindrospermopsis raciborskii, Anabaena bergii and Aphanizomenon aphanizomenoides. Phycologia 2006, 45, 696–703. [Google Scholar] [CrossRef]
- Kaštovský, J.; Hauer, T.; Mareš, J.; Krautová, M.; Bešta, T.; Komárek, J.; Desortová, B.; Heteša, J.; Hindáková, A.; Houk, V.; et al. A review of the alien and expansive species of freshwater cyanobacteria and algae in the Czech Republic. Biol. Invasions 2010, 12, 3599–3625. [Google Scholar] [CrossRef]
- Valério, E.; Pereira, P.; Saker, M.L.; Franca, S.; Tenreiro, R. Molecular characterization of Cylindrospermopsis raciborskii strains isolated from portuguese freshwaters. Harmful Algae 2005, 4, 1044–1052. [Google Scholar] [CrossRef]
- Saker, M.L.; Nogueira, I.C.G.; Vasconcelos, V.M.; Neilan, B.A.; Eaglesham, G.K.; Pereira, P. First report and toxicological assessment of the cyanobacterium Cylindrospermopsis raciborskii from portuguese freshwaters. Ecotoxicol. Environ. Saf. 2003, 55, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Saker, M.L.; Nogueira, I.C.G.; Vasconcelos, V.M. Distribution and toxicity of Cylindrospermopsis raciborskii (cyanobacteria) in portuguese freshwaters. Limnetica 2003, 22, 129–136. [Google Scholar] [CrossRef]
- Moreira, C.; Martins, A.; Azevedo, J.; Freitas, M.; Regueiras, A.; Vale, M.; Antunes, A.; Vasconcelos, V. Application of real-time PCR in the assessment of the toxic cyanobacterium Cylindrospermopsis raciborskii abundance and toxicological potential. Appl. Microbiol. Biotechnol. 2011, 92, 189–197. [Google Scholar] [CrossRef] [PubMed]
- de Figueiredo, D.R.; Gonçalves, A.M.M.; Castro, B.B.; Gonçalves, F.; Pereira, M.J.; Correia, A. Differential inter-and intra-specific responses of Aphanizomenon strains to nutrient limitation and algal growth inhibition. J. Plankton Res. 2011, 33, 1606–1616. [Google Scholar] [CrossRef] [Green Version]
- Pereira, P.; Dias, E.; Franca, S.; Pereira, E.; Carolino, M.; Vasconcelos, V. Accumulation and depuration of cyanobacterial paralytic shellfish toxins by the freshwater mussel Anodonta cygnea. Aquat. Toxicol. 2004, 68, 339–350. [Google Scholar] [CrossRef]
- Ramos, T.K.; Costa, L.D.F.; Yunes, J.S.; Resgalla, C.; Barufi, J.B.; Bastos, E.d.O.; Horta, P.A.; Rörig, L.R. Saxitoxins from the freshwater cyanobacterium Raphidiopsis raciborskii can contaminate marine mussels. Harmful Algae 2021, 103, 102004. [Google Scholar] [CrossRef]
- Tawong, W.; Pongcharoen, P.; Nishimura, T.; Adachi, M. Molecular characterizations of thai Raphidiopsis raciborskii (Nostocales, cyanobacteria) based on 16s rDNA, rbcLX, and cylindrospermopsin synthetase genes. Plankton Benthos Res. 2019, 14, 211–223. [Google Scholar] [CrossRef] [Green Version]
- Cirés, S.; Wörmer, L.; Ballot, A.; Agha, R.; Wiedner, C.; Velázquez, D.; Casero, M.C.; Quesada, A. Phylogeography of cylindrospermopsin and paralytic shellfish toxin-producing Nostocales cyanobacteria from mediterranean Europe (Spain). Appl. Environ. Microbiol. 2014, 80, 1359–1370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, S.A.; Rasmussen, J.P.; Holland, P.T.; Campbell, R.; Crowe, A.L.M. First report of the cyanotoxin anatoxin-a from Aphanizomenon issatschenkoi (cyanobacteria). J. Phycol. 2007, 43, 356–365. [Google Scholar] [CrossRef]
- Deng, J.; Qin, B.; Paerl, H.W.; Zhang, Y.; Ma, J.; Chen, Y. Earlier and warmer springs increase cyanobacterial (Microcystis spp.) blooms in subtropical lake Taihu, China. Freshw. Biol. 2014, 59, 1076–1085. [Google Scholar] [CrossRef]
- de Figueiredo, D.R.; Reboleira, A.S.S.P.; Antunes, S.C.; Abrantes, N.; Azeiteiro, U.; Gonçalves, F.; Pereira, M.J.; Gonçalves, F.; Figueiredo, D.R. The effect of environmental parameters and cyanobacterial blooms on phytoplankton dynamics of a portuguese temperate lake. Hydrobiologia 2006, 568, 145–157. [Google Scholar] [CrossRef]
- Wang, P.; Ma, J.; Wang, X.; Tan, Q. Rising atmospheric CO2 levels result in an earlier cyanobacterial bloom-maintenance phase with higher algal biomass. Water. Res. 2020, 185, 116267. [Google Scholar] [CrossRef] [PubMed]
- Vanderley, R.F.; Ger, K.A.; Becker, V.; Bezerra, M.G.T.A.; Panosso, R. Abiotic factors driving cyanobacterial biomass and composition under perennial bloom conditions in tropical latitudes. Hydrobiologia 2021, 848, 943–960. [Google Scholar] [CrossRef]
- Qin, B.; Deng, J.; Shi, K.; Wang, J.; Brookes, J.; Zhou, J.; Zhang, Y.; Zhu, G.; Paerl, H.W.; Wu, L. Extreme climate anomalies enhancing cyanobacterial blooms in eutrophic lake Taihu, China. Water. Resour. Res. 2021, 57, e2020WR029371. [Google Scholar] [CrossRef]
- Hayes, N.M.; Haig, H.A.; Simpson, G.L.; Leavitt, P.R. Effects of lake warming on the seasonal risk of toxic cyanobacteria exposure. Limnol. Oceanogr. Lett. 2020, 5, 393–402. [Google Scholar] [CrossRef]
- Paerl, H.W.; Otten, T.G. Duelling “CyanoHABs”: Unravelling the environmental drivers controlling dominance and succession among diazotrophic and non-N2-fixing harmful cyanobacteria. Environ. Microbiol. 2016, 18, 316–324. [Google Scholar] [CrossRef] [PubMed]
- O’Neil, J.M.; Davis, T.W.; Burford, M.A.; Gobler, C.J. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 2012, 14, 313–334. [Google Scholar] [CrossRef]
- Tanvir, R.U.; Hu, Z.; Zhang, Y.; Lu, J. Cyanobacterial community succession and associated cyanotoxin production in hypereutrophic and eutrophic freshwaters. Environ. Pollut. 2021, 290, 118056. [Google Scholar] [CrossRef] [PubMed]
- Chorus, I.; Fastner, J.; Welker, M. Cyanobacteria and cyanotoxins in a changing environment: Concepts, controversies, challenges. Water 2021, 13, 2463. [Google Scholar] [CrossRef]
- Galvanese, E.F.; Padial, A.A.; Aubriot, L. Acclimation at high temperatures increases the ability of Raphidiopsis raciborskii (cyanobacteria) to withstand phosphate deficiency and reveals distinct strain responses. Eur. J. Phycol. 2019, 54, 359–368. [Google Scholar] [CrossRef]
- Zapomělová, E.; Řeháková, K.; Jezberová, J.; Komárková, J. Polyphasic characterization of eight planktonic Anabaena strains (cyanobacteria) with reference to the variability of 61 Anabaena populations observed in the field. Hydrobiologia 2010, 639, 99–113. [Google Scholar] [CrossRef]
- Burford, M.A.; Davis, T.W.; Orr, P.T.; Sinha, R.; Willis, A.; Neilan, B.A. Nutrient-related changes in the toxicity of field blooms of the cyanobacterium, Cylindrospermopsis raciborskii. FEMS Microbiol. Ecol. 2014, 89, 135–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, L.; Lei, M.; Cheng, N.; Chen, Z.; Xiao, L.; Han, B.P.; Lin, Q. Nutrient regulation of relative dominance of cylindrospermopsin-producing and non-cylindrospermopsin-producing Raphidiopsis raciborskii. Front. Microbiol. 2021, 12, 793544. [Google Scholar] [CrossRef]
- Cirés, S.; Ballot, A. A review of the phylogeny, ecology and toxin production of bloom-forming Aphanizomenon spp. and related species within the Nostocales (cyanobacteria). Harmful Algae 2016, 54, 21–43. [Google Scholar] [CrossRef]
- Hindák, F. Morphological variation of four planktic nostocalean cyanophytes—Members of the genus Aphanizomenon or Anabaena? Hydrobiologia 2000, 438, 107–116. [Google Scholar] [CrossRef]
- Li, R.; Carmichael, W.W.; Liu, Y.; Watanabe, M.M. Taxonomic re-evaluation of Aphanizomenon flos-aquae NH-5 based on morphology and 16S rRNA gene sequences. Hydrobiologia 2000, 438, 99–105. [Google Scholar] [CrossRef]
- Komárek, J.; Zapomelová, E. Planktic morphospecies of the cyanobacterial genus Anabaena = subg. Dolichospermum—2. Part: Straight types. Fottea 2008, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Komárek, J. Modern taxonomic revision of planktic nostocacean cyanobacteria: A short review of genera. Hydrobiologia 2010, 639, 231–243. [Google Scholar] [CrossRef]
- Komárek, J. A Polyphasic approach for the taxonomy of cyanobacteria: Principles and applications. Eur. J. Phycol. 2016, 51, 346–353. [Google Scholar] [CrossRef] [Green Version]
- Komárek, J. Cyanobacterial taxonomy: Current problems and prospects for the integration of traditional and molecular approaches. Algae 2006, 21, 349–375. [Google Scholar] [CrossRef] [Green Version]
- Moreira, C.; Fathalli, A.; Vasconcelos, V.; Antunes, A. Genetic diversity and structure of the invasive toxic cyanobacterium Cylindrospermopsis raciborskii. Curr. Microbiol. 2011, 62, 1590–1595. [Google Scholar] [CrossRef] [PubMed]
- Haande, S.; Rohrlack, T.; Ballot, A.; Røberg, K.; Skulberg, R.; Beck, M.; Wiedner, C. Genetic characterisation of Cylindrospermopsis raciborskii (Nostocales, cyanobacteria) isolates from Africa and Europe. Harmful Algae 2008, 7, 692–701. [Google Scholar] [CrossRef]
- Gugger, M.; Molica, R.; Le Berre, B.; Dufour, P.; Bernard, C.; Humbert, J.-F. Genetic diversity of Cylindrospermopsis strains (cyanobacteria) isolated from four continents. Appl. Environ. Microbiol. 2005, 71, 1097–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zapomělová, E.; Skácelová, O.; Pumann, P.; Kopp, R.; Janeček, E. Biogeographically interesting planktonic Nostocales (cyanobacteria) in the Czech Republic and their polyphasic evaluation resulting in taxonomic revisions of Anabaena bergii Ostenfeld 1908 (Chrysosporum gen. nov.) and A. tenericaulis Nygaard 1949 (Dolichospermum tenericaule comb. nova). Hydrobiologia 2012, 698, 353–365. [Google Scholar] [CrossRef]
- Eiler, A.; Drakare, S.; Bertilsson, S.; Pernthaler, J.; Peura, S.; Rofner, C.; Simek, K.; Yang, Y.; Znachor, P.; Lindström, E.S. Unveiling distribution patterns of freshwater phytoplankton by a next generation sequencing based approach. PLoS ONE 2013, 8, e53516. [Google Scholar] [CrossRef] [Green Version]
- Steven, B.; McCann, S.; Ward, N.L. Pyrosequencing of plastid 23S rRNA genes reveals diverse and dynamic cyanobacterial and algal populations in two eutrophic lakes. FEMS Microbiol. Ecol. 2012, 82, 607–615. [Google Scholar] [CrossRef]
- Steffen, M.M.; Li, Z.; Effler, T.C.; Hauser, L.J.; Boyer, G.L.; Wilhelm, S.W. Comparative Metagenomics of Toxic Freshwater Cyanobacteria Bloom Communities on Two Continents. PLoS ONE 2012, 7, e44002. [Google Scholar] [CrossRef] [PubMed]
- Hur, M.; Lee, I.; Tak, B.-M.; Lee, H.J.; Yu, J.J.; Cheon, S.U.; Kim, B.-S. Temporal Shifts in Cyanobacterial Communities at Different Sites on the Nakdong River in Korea. Water Res. 2013, 47, 6973–6982. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, S.W.; Farnsley, S.E.; LeCleir, G.R.; Layton, A.C.; Satchwell, M.F.; DeBruyn, J.M.; Boyer, G.L.; Zhu, G.; Paerl, H.W. The Relationships between Nutrients, Cyanobacterial Toxins and the Microbial Community in Taihu (Lake Tai), China. Harmful Algae 2011, 10, 207–215. [Google Scholar] [CrossRef]
- Casero, M.C.; Velázquez, D.; Medina-Cobo, M.; Quesada, A.; Cirés, S. Unmasking the Identity of Toxigenic Cyanobacteria Driving a Multi-Toxin Bloom by High-Throughput Sequencing of Cyanotoxins Genes and 16S RRNA Metabarcoding. Sci. Total Environ. 2019, 665, 367–378. [Google Scholar] [CrossRef]
- Pope, P.B.; Patel, B.K.C. Metagenomic Analysis of a Freshwater Toxic Cyanobacteria Bloom. FEMS Microbiol. Ecol. 2008, 64, 9–27. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhao, T.; Wang, Q.; Li, L.; Shen, T.; Gao, G. Bacterial Community Composition in Aquatic and Sediment Samples with Spatiotemporal Dynamics in Large, Shallow, Eutrophic Lake Chaohu, China. J. Freshw. Ecol. 2019, 34, 575–589. [Google Scholar] [CrossRef]
- Liu, L.; Yang, J.; Lv, H.; Yu, Z. Synchronous Dynamics and Correlations between Bacteria and Phytoplankton in a Subtropical Drinking Water Reservoir. FEMS Microbiol. Ecol. 2014, 90, 126–138. [Google Scholar] [CrossRef] [Green Version]
- Salomon, P.S.; Janson, S.; Granéli, E. Molecular Identification of Bacteria Associated with Filaments of Nodularia spumigena and Their Effect on the Cyanobacterial Growth. Harmful Algae 2003, 2, 261–272. [Google Scholar] [CrossRef]
- Berg, K.A.; Lyra, C.; Sivonen, K.; Paulin, L.; Suomalainen, S.; Tuomi, P.; Rapala, J. High Diversity of Cultivable Heterotrophic Bacteria in Association with Cyanobacterial Water Blooms. ISME J. 2008, 3, 314–325. [Google Scholar] [CrossRef] [Green Version]
- Shunyu, S.; Yongding, L.; Yinwu, S.; Genbao, L.; Dunhai, L. Lysis of Aphanizomenon flos-aquae (Cyanobacterium) by a Bacterium Bacillus cereus. Biol. Control 2006, 39, 345–351. [Google Scholar] [CrossRef]
- Shimizu, K.; Maseda, H.; Okano, K.; Itayama, T.; Kawauchi, Y.; Chen, R.; Utsumi, M.; Zhang, Z.; Sugiura, N. How Microcystin-Degrading Bacteria Express Microcystin Degradation Activity. Lakes Reserv. 2011, 16, 169–178. [Google Scholar] [CrossRef]
- Kormas, K.A.; Lymperopoulou, D.S. Cyanobacterial Toxin Degrading Bacteria: Who Are They? BioMed Res. Int. 2013, 2013, 463894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- APHA. Standard Methods for the Examination of Water and Wastewater, 19th ed.; American Public Health Association: Washington, DC, USA, 1995. [Google Scholar]
- de Figueiredo, D.R.; Pereira, M.J.; Correia, A.; de Figueiredo, D.R. Seasonal Modulation of Bacterioplankton Community at a Temperate Eutrophic Shallow Lake. World J. Microbiol. Biotechnol. 2010, 26, 1067–1077. [Google Scholar] [CrossRef]
- Wang, Y.; Qian, P.-Y. Conservative Fragments in Bacterial 16S RRNA Genes and Primer Design for 16S Ribosomal DNA Amplicons in Metagenomic Studies. PLoS ONE 2009, 4, e7401. [Google Scholar] [CrossRef] [Green Version]
- Cleary, D.F.R.; Becking, L.E.; de Voogd, N.J.; Pires, A.C.C.; Polónia, A.R.M.; Egas, C.; Gomes, N.C.M. Habitat- and Host-Related Variation in Sponge Bacterial Symbiont Communities in Indonesian Waters. FEMS Microbiol. Ecol. 2013, 85, 465–482. [Google Scholar] [CrossRef] [Green Version]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. Past: Paleontological Statistics Software Package for Education and. Data Analysis. Palaeontol. Electron. 2001, 4, 4. [Google Scholar]
- ter Braak, C.J.F. Canonical Correspondence Analysis: A New Eigenvector Technique for Multivariate Direct Gradient Analysis. Ecology 1986, 67, 1167–1179. [Google Scholar] [CrossRef] [Green Version]
- de Figueiredo, D.R.; Alves, A.; Pereira, M.J.; Correia, A. Molecular Characterization of Bloom-Forming Aphanizomenon Strains Isolated from Vela Lake (Western Central Portugal). J. Plankton Res. 2010, 32, 239–252. [Google Scholar] [CrossRef]
- Vasconcelos, V.M. Toxic Cyanobacteria (Blue-Green Algae) in Portuguese Fresh Waters. Arch. Hydrobiol. 1994, 130, 439–451. [Google Scholar] [CrossRef]
- Vasconcelos, V.M.; Sivonen, K.; Evans, W.R.; Carmichael, W.W.; Namikoshi, M. Hepatotoxic Microcystin Diversity in Cyanobacterial Blooms Collected in Portuguese Freshwaters. Water Res. 1996, 30, 2377–2384. [Google Scholar] [CrossRef]
- Moreira, C.; Gomes, C.; Vasconcelos, V.; Antunes, A. Cyanotoxins Occurrence in Portugal: A New Report on Their Recent Multiplication. Toxins 2020, 12, 154. [Google Scholar] [CrossRef] [PubMed]
- Lopes, A.R.; Azeiteiro, U.M.; Bessa, V.S.; Pereira, C.; Salvador, S.; Almeida, A.; Cunha, M.A.; Pereira, M.J. Spring Pelagic Communities of Phytoplankton, Cyanobacteria, Associated Heterotrophic Bacteria and Viruses in an Eutrophic Shallow Temperate Lake. Fresenius Environ. Bull. 2009, 18, 875–884. [Google Scholar]
- Vasconcelos, V.M.; Campos, T.; Amorim, A.; Soares, A.M.V.M. Toxicidade de Estirpes de Cianobactérias Isoladas a partir das Lagoas das Braças, Vela e Mira. Bol. UCA Univ. Algarve UCTRA 1993, 1, 193–201. [Google Scholar]
- de Figueiredo, D.R.; Pereira, M.J.; Moura, A.; Silva, L.; Bárrios, S.; Fonseca, F.; Henriques, I.; Correia, A. Bacterial Community Composition over a Dry Winter in Meso- and Eutrophic Portuguese Water Bodies. FEMS Microbiol. Ecol. 2007, 59, 638–650. [Google Scholar] [CrossRef] [Green Version]
- de Figueiredo, D.R.; Pereira, M.J.; Castro, B.B.; Correia, A. Bacterioplankton Community Composition in Portuguese Water Bodies under a Severe Summer Drought. Community Ecol. 2012, 13, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Barros, P.; Silveira, S.; Ribeiro, R.; Gonçalves, F.; Vasconcelos, V.; Soares, A.M.V.M. Estrutura Populacional Fitoplanctónica nas Lagoas das Braças, Vela e Mira (Região Centro-Litoral). Resultados Preliminares. Bol. UCA Univ. Algarve UCTRA 1993, 1, 1–8. [Google Scholar]
- Macário, I.P.E.; Castro, B.B.; Nunes, I.M.S.; Pizarro, C.; Coelho, C.; Gonçalves, F.; de Figueiredo, D.R. Stepwise Strategy for Monitoring Toxic Cyanobacterial Blooms in Lentic Water Bodies. Environ. Monit. Assess. 2017, 189, 620. [Google Scholar] [CrossRef]
- Moreira, C.; Mendes, R.; Azevedo, J.; Vasconcelos, V.; Antunes, A. First Occurrence of Cylindrospermopsin in Portugal: A Contribution to Its Continuous Global Dispersal. Toxicon 2017, 130, 87–90. [Google Scholar] [CrossRef]
- Wagner, C.; Adrian, R. Cyanobacteria Dominance: Quantifying the Effects of Climate Change. Limnol. Oceanogr. 2009, 54, 2460–2468. [Google Scholar] [CrossRef]
- Dokulil, M.T.; Teubner, K. Cyanobacterial Dominance in Lakes. Hydrobiologia 2000, 438, 1–12. [Google Scholar] [CrossRef]
- Burford, M.A.; Davis, T.W. Physical and Chemical Processes Promoting Dominance of the Toxic Cyanobacterium Cylindrospermopsis raciborskii. Chin. J. Oceanol. Limnol. 2011, 29, 883–891. [Google Scholar] [CrossRef] [Green Version]
- Taton, A.; Grubisic, S.; Brambilla, E.; De Wit, R.; Wilmotte, A. Cyanobacterial Diversity in Natural and Artificial Microbial Mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): A Morphological and Molecular Approach. Appl. Environ. Microbiol. 2003, 69, 5157–5169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allgaier, M.; Grossart, H.P. Seasonal Dynamics and Phylogenetic Diversity of Free-Living and Particle-Associated Bacterial Communities in Four Lakes in Northeastern Germany. Aquat. Microb. Ecol. 2006, 45, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Niu, Y.; Shen, H.; Chen, J.; Xie, P.; Yang, X.; Tao, M.; Ma, Z.; Qi, M. Phytoplankton Community Succession Shaping Bacterioplankton Community Composition in Lake Taihu, China. Water Res. 2011, 45, 4169–4182. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, Z.; Ding, A.; Wu, J.; Xiao, J.; Sun, Y.; Cheng, C.; Zaichao, Z.; Aizhong, D.; Jiayan, W.; et al. Bar-Coded Pyrosequencing Reveals the Bacterial Community during Microcystis Water Bloom in Guanting Reservoir, Beijing. Procedia Eng. 2011, 18, 341–346. [Google Scholar] [CrossRef] [Green Version]
- Salcher, M.M.; Pernthaler, J.; Posch, T. Seasonal Bloom Dynamics and Ecophysiology of the Freshwater Sister Clade of SAR11 Bacteria “that Rule the Waves” (LD12). ISME J. 2011, 5, 1242–1252. [Google Scholar] [CrossRef] [Green Version]
- Eiler, A.; Bertilsson, S. Composition of Freshwater Bacterial Communities Associated with Cyanobacterial Blooms in Four Swedish Lakes. Environ. Microbiol. 2004, 6, 1228–1243. [Google Scholar] [CrossRef]
- Wang, K.; Razzano, M.; Mou, X. Cyanobacterial Blooms Alter the Relative Importance of Neutral and Selective Processes in Assembling Freshwater Bacterioplankton Community. Sci. Total Environ. 2020, 706, 135724. [Google Scholar] [CrossRef]
- Maruyama, T.; Park, H.-D.; Ozawa, K.; Tanaka, Y.; Sumino, T.; Hamana, K.; Hiraishi, A.; Kato, K. Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. Int. J. Syst. Evol. Microbiol. 2006, 56, 85–89. [Google Scholar] [CrossRef]
- 92. Amé, V.; Echenique, R.; Pflugmacher, S.; Wunderlin, A. Degradation of Microcystin-RR by Sphingomonas sp. CBA4 Isolated from San Roque Reservoir (Córdoba—Argentina). Biodegradation 2006, 17, 447–455. [Google Scholar]
- Dziallas, C.; Grossart, H. Temperature and Biotic Factors Influence Bacterial Communities Associated with the Cyanobacterium Microcystis sp. Environ. Microbiol. 2011, 13, 1632–1641. [Google Scholar] [CrossRef] [PubMed]
- Mou, X.; Lu, X.; Jacob, J.; Sun, S.; Heath, R. Metagenomic Identification of Bacterioplankton Taxa and Pathways Involved in Microcystin Degradation in Lake Erie. PLoS ONE 2013, 8, e61890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabour, B.; Loudiki, M.; Oudra, B.; Vasconcelos, V.; Oubraim, S.; Fawzi, B. Dynamics and Toxicity of Anabaena aphanizomenoides (Cyanobacteria) Waterblooms in the Shallow Brackish Oued Mellah Lake (Morocco). Aquat. Ecosyst. Health Manag. 2005, 8, 95–104. [Google Scholar] [CrossRef]
- Scherer, P.I.; Millard, A.D.; Miller, A.; Schoen, R.; Raeder, U.; Geist, J.; Zwirglmaier, K. Temporal Dynamics of the Microbial Community Composition with a Focus on Toxic Cyanobacteria and Toxin Presence during Harmful Algal Blooms in Two South German Lakes. Front. Microbiol. 2017, 8, 2387. [Google Scholar] [CrossRef]
- Guedes, I.A.; Rachid, C.T.C.C.; Rangel, L.M.; Silva, L.H.S.; Bisch, P.M.; Azevedo, S.M.F.O.; Pacheco, A.B.F. Close Link between Harmful Cyanobacterial Dominance and Associated Bacterioplankton in a Tropical Eutrophic Reservoir. Front. Microbiol. 2018, 9, 424. [Google Scholar] [CrossRef]
- Tromas, N.; Fortin, N.; Bedrani, L.; Terrat, Y.; Cardoso, P.; Bird, D.; Greer, C.W.; Shapiro, B.J. Characterising and Predicting Cyanobacterial Blooms in an 8-Year Amplicon Sequencing Time Course. ISME J. 2017, 11, 1746–1763. [Google Scholar] [CrossRef] [Green Version]
- Rossi, P.; Laurion, I.; Lovejoy, C. Distribution and Identity of Bacteria in Subarctic Permafrost Thaw Ponds. Aquat. Microbial. Ecol. 2013, 69, 231–245. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Xiao, L.; Ren, J.; Yang, L. The Effect of a Microcystis aeruginosa Bloom on the Bacterioplankton Community Composition of Lake Xuanwa. J. Freshw. Ecol. 2008, 23, 297–304. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Wang, Y.; Xie, R.; Lang, A.S.; Liu, Y.; Lu, J.; Zhang, X.; Sun, J.; Suttle, C.A.; Jiao, N. Dynamics of Heterotrophic Bacterial Assemblages within Synechococcus Cultures. Appl. Environ. Microbiol. 2018, 84, e01517-17. [Google Scholar] [CrossRef] [Green Version]
- Mohit, V.; Archambault, P.; Toupoint, N.; Lovejoy, C. Phylogenetic Differences in Attached and Free-Living Bacterial Communities in a Temperate Coastal Lagoon during Summer, Revealed via High-Throughput 16S rRNA Gene Sequencing. Appl. Environ. Microbiol. 2014, 80, 2071–2083. [Google Scholar] [CrossRef] [Green Version]
- Becker, S.; Richl, P.; Ernst, A. Seasonal and Habitat-Related Distribution Pattern of Synechococcus Genotypes in Lake Constance. FEMS Microbiol. Ecol. 2007, 62, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Tao, M.; Xie, P.; Chen, J.; Qin, B.; Zhang, D.; Niu, Y.; Zhang, M.; Wang, Q.; Wu, L. Use of a Generalized Additive Model to Investigate Key Abiotic Factors Affecting Microcystin Cellular Quotas in Heavy Bloom Areas of Lake Taihu. PLoS ONE 2012, 7, e32020. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, T.; Katsiapi, M.; Kormas, K.A.; Moustaka-Gouni, M.; Kagalou, I. Artificially-Born “Killer” Lake: Phytoplankton Based Water Quality and Microcystin Affected Fish in a Reconstructed Lake. Sci. Total. Environ. 2013, 452–453, 116–124. [Google Scholar] [CrossRef]
- Carmichael, W.; Li, R. Cyanobacteria Toxins in the Salton Sea. Saline Syst. 2006, 2, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballot, A.; Fastner, J.; Wiedner, C. Paralytic Shellfish Poisoning Toxin-Producing Cyanobacterium Aphanizomenon gracile in Northeast Germany. Appl. Environ. Microbiol. 2010, 76, 1173–1180. [Google Scholar] [CrossRef] [PubMed]
- Ballot, A.; Sandvik, M.; Rundberget, T.; Botha, C.J.; Miles, C.O. Diversity of Cyanobacteria and Cyanotoxins in Hartbeespoort Dam, South Africa. Mar. Freshw. Res. 2014, 65, 175–189. [Google Scholar] [CrossRef] [Green Version]
- Ledreux, A.; Thomazeau, S.; Catherine, A.; Duval, C.; Yéprémian, C.; Marie, A.; Bernard, C. Evidence for Saxitoxins Production by the Cyanobacterium Aphanizomenon gracile in a French Recreational Water Body. Harmful Algae 2010, 10, 88–97. [Google Scholar] [CrossRef]
- Karosienė, J.; Savadova-Ratkus, K.; Toruńska-Sitarz, A.; Koreivienė, J.; Kasperovičienė, J.; Vitonytė, I.; Błaszczyk, A.; Mazur-Marzec, H. First Report of Saxitoxins and Anatoxin-a Production by Cyanobacteria from Lithuanian Lakes. Eur. J. Phycol. 2020, 55, 327–338. [Google Scholar] [CrossRef]
- Kokociński, M.; Mankiewicz-Boczek, J.; Jurczak, T.; Spoof, L.; Meriluoto, J.; Rejmonczyk, E.; Hautala, H.; Vehniäinen, M.; Pawełczyk, J.; Soininen, J. Aphanizomenon gracile (Nostocales), a Cylindrospermopsin-Producing Cyanobacterium in Polish Lakes. Environ. Sci. Pollut. Res. 2013, 20, 5243–5264. [Google Scholar] [CrossRef] [Green Version]
- Savadova-Ratkus, K.; Mazur-Marzec, H.; Jūratė, K.; Jūratė, K.; Paškauskas, R.; Vitonyte, I.; Koreiviene, J. Interplay of Nutrients, Temperature, and Competition of Native and Alien Cyanobacteria Species Growth and Cyanotoxin Production in Temperate Lakes. Toxins 2021, 13, 23. [Google Scholar] [CrossRef]
- Sabour, B.; Loudiki, M.; Vasconcelos, V. Growth Responses of Microcystis ichthyoblabe Kützing and Anabaena aphanizomenoides Forti (Cyanobacteria) under Different Nitrogen and Phosphorus Conditions. Chem. Ecol. 2009, 25, 337–344. [Google Scholar] [CrossRef]
- Komárek, J.; Komárková, J. Diversity of Aphanizomenon-like Cyanobacteria. Fottea 2006, 6, 1–32. [Google Scholar]
- Komárek, J.; Mareš, J. An Update to Modern Taxonomy (2011) of Freshwater Planktic Heterocytous Cyanobacteria. Hydrobiologia 2012, 698, 327–351. [Google Scholar] [CrossRef]
- Zhao, S.; Pan, W.; Ma, C. Stimulation and Inhibition Effects of Algae-Lytic Products from Bacillus cereus Strain L7 on Anabaena flos-aquae. J. Appl. Phycol. 2011, 24, 1015–1021. [Google Scholar] [CrossRef]
- Cai, H.; Jiang, H.; Krumholz, L.R.; Yang, Z. Bacterial Community Composition of Size-Fractioned Aggregates within the Phycosphere of Cyanobacterial Blooms in a Eutrophic Freshwater Lake. PLoS ONE 2014, 9, e102879. [Google Scholar] [CrossRef] [Green Version]
- Banerji, A.; Bagley, M.J.; Shoemaker, J.A.; Tettenhorst, D.R.; Nietch, C.T.; Allen, H.J.; Santo Domingo, J.W. Evaluating Putative Ecological Drivers of Microcystin Spatiotemporal Dynamics Using Metabarcoding and Environmental Data. Harmful Algae 2019, 86, 84–95. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Cai, Y.; Kong, F.; Yu, Y. Specific Association between Bacteria and Buoyant Microcystis Colonies Compared with Other Bulk Bacterial Communities in the Eutrophic Lake Taihu, China. Environ. Microbiol. Rep. 2012, 4, 669–678. [Google Scholar] [CrossRef]
- Berg, K.A.; Lyra, C.; Niemi, R.M.; Heens, B.; Hoppu, K.; Erkomaa, K.; Sivonen, K.; Rapala, J. Virulence Genes of Aeromonas Isolates, Bacterial Endotoxins and Cyanobacterial Toxins from Recreational Water Samples Associated with Human Health Symptoms. J. Water Health 2011, 9, 670–679. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Cai, Y.; Kong, F.; Yu, Y. Changes in Abundance and Community Structure of Bacteria Associated with Buoyant Microcystis Colonies during the Decline of Cyanobacterial Bloom (Autumn–Winter Transition). Ann. Limnol.—Int. J. Limnol. 2011, 47, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Parveen, B.; Ravet, V.; Djediat, C.; Mary, I.; Quiblier, C.; Debroas, D.; Humbert, J. Bacterial Communities Associated with Microcystis Colonies Differ from Free-Living Communities Living in the Same Ecosystem. Environ. Microbiol. Rep. 2013, 5, 716–724. [Google Scholar] [CrossRef]
Sampling Date | Sample Code | Water Tempature (°C) | pH | O2 (mg L−1) | O2 Saturation (%) | TSS (mg L−1) | Chl a (μg L−1) | NO3− | NH4+ | SRP | Conductivity (μS cm−1) |
---|---|---|---|---|---|---|---|---|---|---|---|
(mg L−1) | |||||||||||
10 April | 10AP | 18.0 | 8.30 | 8.40 | 89.2 | 19.8 | 18.2 | <0.1 | <0.01 | <0.01 | 560 |
20 April | 20AP | 18.9 | 8.45 | 10.16 | 110.6 | 23.7 | 21.1 | <0.1 | 0.04 | <0.01 | 575 |
24 April | 24AP | 20.1 | 8.33 | 11.04 | 120.9 | 19.5 | 21.3 | <0.1 | <0.01 | <0.01 | 566 |
4 May | 4MAY | 20.2 | 8.02 | 8.35 | 92.6 | 14.1 | 15.4 | <0.1 | <0.01 | <0.01 | 590 |
10 May | 10MAY | 20.6 | 8,65 | 9.39 | 104.8 | 13.7 | 10.3 | <0.1 | <0.01 | <0.01 | 605 |
22 May | 22MAY | 20.4 | 8.81 | 8.81 | 97.6 | 26.0 | 12.9 | <0.1 | <0.01 | 0.01 | 630 |
28 May | 28MAY | 27.5 | 9.11 | 12.10 | 150.7 | 33.5 | 67.2 | <0.1 | <0.01 | <0.01 | 618 |
1 June | 1JN | 23.8 | 9.30 | 11.06 | 130.1 | 39.8 | 47.5 | <0.1 | <0.01 | <0.01 | 614 |
5 June | 5JN | 26.2 | 9.82 | 13.70 | 173.3 | 45.5 | 98.1 | <0.1 | <0.01 | <0.01 | 605 |
9 June | 9JN | 25.9 | 8.54 | 8.80 | 108.3 | 38.7 | 60.4 | <0.1 | <0.01 | <0.01 | 627 |
11 June | 11JN | 23.7 | 8.27 | 5.99 | 71.4 | 51.0 | 56.3 | <0.1 | <0.01 | <0.01 | 641 |
25 June | 25JN | 22.1 | 8.49 | 7.90 | 79.1 | 42.0 | 73.2 | <0.1 | <0.01 | <0.01 | 647 |
OTU | Max Reads in Samples (%) | Sample Code with Max Reads | Closest Relatives (NCBI Accession N) | Origin | Percentage Similarity (%) | RDP Phylogenetic Affiliation |
---|---|---|---|---|
2 | 34 | 5JN | Anabaena sp. 1LT27S03 (FM177478) Aphanizomenon gracile UADFA16 (FJ895128) | Lake Trasimeno, Italy Vela Lake, Portugal | 100 99 | Cyanobacteria (Nostocaceae) |
3 | 22 | 25JN | Aphanizomenon aphanizomenoides UADFA13(FJ895123), UADFA8 (FJ895122), UADFA3 (FJ895118), UADFA5 (FJ895119), UADFA6 (FJ895120), UADFA7 (FJ895121) | Vela Lake, Portugal | 100 | Cyanobacteria (Nostocaceae) |
1 | 21 | 24AP | Alpha proteobacterium SCGC AAA208-M13 (JF488156) Candidatus Pelagibacter sp. (JN941972) | Damariscotta Lake, USA Nanhu Lake, China | 100 99 | Alphaproteobacteria (Pelagibacteraceae) |
264 | 12 | 22MAY | Synechococcus sp. BE0807I (FJ763789), BE0807L (FJ763778), BE0807G (FJ763772), BE0807F (FJ763770) | Eutrophic freshwater, Mazurian Lakes, Poland | 100 | Cyanobacteria (Synechococcaceae) |
6 | 11 | 25JN | Uncultured Cyanobacterium sp. clone G4_EH_Jul_2008 (HQ707098) Synechococcus sp. Suigetsu-CG2 (AB610891) | Erhai Lake, China Saline Suigetsu Lake, Japan | 100 99 | Cyanobacteria (Synechococcaceae) |
5 | 9 | 1JN | Uncultured bacterium clone W-Pla-6 (JX279920) | Wastewater | 100 | OD1 (Mb-NB09) |
4 | 7 | 22 and 28MAY | Uncultured bacterium clone DCBP.0912.48 (HQ904840) | Dianchi Lake, China | 100 | Bacteroidetes (Chitinophagaceae, [Saprospirales]) |
18 | 6 | 10AP | Uncultured Bacteroidetes bacterium clone MEsu06b11A1 (FJ828430) | Mendota Lake, USA | 99 | Bacteroidetes (Sphingobacteriales) |
22 | 6 | 25JN | Uncultured bacterium clone FL_03_181 (KC666538) | Villerest Lake, France | 100 | Bacteroidetes (Sphingobacteriales) |
21 | 6 | 24AP | Uncultured bacterium clone Filia_2_B12 (HE857172) Cryptomonas curvata plastid CCAC 0006 (AM709636) | Lake Filia, Pyrenees, Spain Cornwall, England | 100 99 | Chloroplast (Cryptophyta) |
15 | 5 | 4MAY | Uncultured Bacteroidetes bacterium clone BF 021 (KC994701) | Microalgae photobioreactor | 99 | Bacteroidetes (Chitinophagaceae, [Saprospirales]) |
14 | 5 | 20AP | Uncultured bacterium clone FL_04_148 (KC666711) | Villerest Lake, France | 100 | Chlorobi (OPB56) |
12 | 5 | 10AP | Uncultured bacterium clone TH_b88 (EU273054) | Taihu Lake, China | 99 | Bacteroidetes (Saprospiraceae, [Saprospirales]) |
204 | 5 | 20AP | Uncultured bacterium clone AK1AB1_02E (GQ396807) | Soil | 94 | Actinobacteria (ACK-M1, Actinomycetales) |
13 | 4 | 22MAY | Uncultured bacterium clone DCBP.0912.132 (HQ904919) | Dianchi Lake, China | 100 | Gammaproteobacteria (Sinobacteraceae, Xanthomonadales) |
448 | 4 | 28MAY | Uncultured Bacteroidetes bacterium clone Aug-PC332 (JQ795402) | freshwater shallow lake, China | 99 | Bacteroidetes (Chitinophagaceae, [Saprospirales]) |
607 | 4 | 10MAY | Uncultured bacterium clone TSL-50-WB15 (FJ948205) | Tanggula South Lake, Tibet | 99 | Actinobacteria (Actinomycetales) |
38 | 4 | 28MAY | Uncultured bacterium clone AB_03_107 (KC666374) | Villerest Lake, France | 100 | Alphaproteobacteria |
10 | 4 | 10AP | Uncultured bacterium clone DCPA.0912.124 (HQ905382) | Dianchi Lake, China | 99 | Alphaproteobacteria (Rhizobiales) |
35 | 4 | 5JN | Uncultured bacterium clone FFCH12672 (EU134640) | Soil | 91 | Firmicutes (Paenibacillaceae, Bacillales) |
34 | 4 | 28MAY and 1JN | Uncultured Bacteroidetes bacterium clone DE1A6 (FJ916257) | Lake Delton, Wisconsin, USA | 98 | Bacteroidetes (Saprospiraceae, [Saprospirales]) |
331 | 4 | 9JN | Uncultured actinomycete clone LJ-29 16S (JX242773) | Salty Beach, China | 95 | Actinobacteria (C111, Acidimicrobiales) |
33 | 4 | 24AP | Uncultured bacterium clone CB27 (KC253298) Chroomonas caudata chloroplast (AB591422) | Freshwater pond, China Dinoflagellate symbiont | 99 98 | Chloroplast (Cryptophyta) |
11 | 4 | 28MAY and 1JN | Uncultured bacterium clone XH-4-C-58 (JX075510) | Lake Xihu, China | 100 | Alphaproteobacteria (Acetobacteraceae, Rhodospirillales) |
26 | 3 | 24AP | Uncultured bacterium clone DP10.5.11 (FJ612433) Cryptophyta sp. CR-MAL01 (EU123323) | Dongping Lake, China Gomso Bay, Korea | 100 99 | Chloroplast (Cryptophyta) |
32 | 3 | 10AP | Uncultured bacterium clone dcpa4-43 (HM050711) | Dianchi Lake, China | 99 | Bacteroidetes (Chitinophagaceae, [Saprospirales]) |
31 | 3 | 24AP | Uncultured bacterium clone FL_04_46 (KC666611) | Villerest Lake, France | 100 | Betaproteobacteria (Comamonadaceae, Burkholderiales) |
39 | 3 | 20AP | Uncultured bacterium clone 1024 (KC298790) | Lake Taihu, China | 99 | Bacteroidetes (Sphingobacteriales) |
62 | 3 | 22MAY | Uncultured Bacteroidetes bacterium clone KWK12S.43 (JN656869) | Subartic thaw pond KWK12, Canada | 100 | Bacteroidetes (Chitinophagaceae, [Saprospirales]) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Figueiredo, D.R.; Lopes, A.R.; Pereira, M.J.; Polónia, A.R.M.; Castro, B.B.; Gonçalves, F.; Gomes, N.C.M.; Cleary, D.F.R. Bacterioplankton Community Shifts during a Spring Bloom of Aphanizomenon gracile and Sphaerospermopsis aphanizomenoides at a Temperate Shallow Lake. Hydrobiology 2022, 1, 499-517. https://doi.org/10.3390/hydrobiology1040030
de Figueiredo DR, Lopes AR, Pereira MJ, Polónia ARM, Castro BB, Gonçalves F, Gomes NCM, Cleary DFR. Bacterioplankton Community Shifts during a Spring Bloom of Aphanizomenon gracile and Sphaerospermopsis aphanizomenoides at a Temperate Shallow Lake. Hydrobiology. 2022; 1(4):499-517. https://doi.org/10.3390/hydrobiology1040030
Chicago/Turabian Stylede Figueiredo, Daniela R., Ana R. Lopes, Mário J. Pereira, Ana R. M. Polónia, Bruno B. Castro, Fernando Gonçalves, Newton C. M. Gomes, and Daniel F. R. Cleary. 2022. "Bacterioplankton Community Shifts during a Spring Bloom of Aphanizomenon gracile and Sphaerospermopsis aphanizomenoides at a Temperate Shallow Lake" Hydrobiology 1, no. 4: 499-517. https://doi.org/10.3390/hydrobiology1040030
APA Stylede Figueiredo, D. R., Lopes, A. R., Pereira, M. J., Polónia, A. R. M., Castro, B. B., Gonçalves, F., Gomes, N. C. M., & Cleary, D. F. R. (2022). Bacterioplankton Community Shifts during a Spring Bloom of Aphanizomenon gracile and Sphaerospermopsis aphanizomenoides at a Temperate Shallow Lake. Hydrobiology, 1(4), 499-517. https://doi.org/10.3390/hydrobiology1040030