Next Article in Journal
Hydrobiology: A New Open Access Journal for the Rapid Dissemination of the Latest Discoveries on Aquatic Biodiversity and Ecosystems
Previous Article in Journal
Effects of Environmental Changes on Gerromorpha (Heteroptera: Hemiptera) Communities from Amazonian Streams
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Occurrence of Freshwater Cyanobacteria and Bloom Records in Spanish Reservoirs (1981–2017)

1
Department of Zoology, Genetics and Physical Anthropology, Campus Vida, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
2
Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
*
Author to whom correspondence should be addressed.
Hydrobiology 2022, 1(1), 122-136; https://doi.org/10.3390/hydrobiology1010009
Submission received: 13 January 2022 / Revised: 3 February 2022 / Accepted: 11 February 2022 / Published: 1 March 2022

Abstract

:
Cyanobacterial blooms constitute a global environmental concern, with sometimes serious implications for human and animal health. Consequently, they represent a major problem in the management of water and aquatic ecosystems. The design of good quality control and management programs is therefore imperative and, for this, a good understanding of the state of the art becomes essential. In Spain, information related to freshwater cyanobacteria is somewhat scattered. Thus, the main objective of this work is to gather all the available information related to cyanobacteria in Spanish artificial water bodies (reservoirs), with special attention to episodes of massive proliferation and probable toxic events. Data for this review were obtained from scientific papers, technical reports, and from the websites of the different Spanish basin organizations. From the review carried out, it is relevant that: cyanobacteria species have been recorded in 252 of the 988 existing reservoirs and blooms in 91 of them (most of them destined for water supply), potentially toxic cyanobacteria are widespread, and that occurrence of blooms has increased recently. The latter could be attributed to a spread monitoring effort. Nevertheless, the effect of the increasing eutrophication and climate change should not be underestimated. In addition to the data compilation, the relation between the cyanobacteria recorded in the Spanish water reservoirs and the geological area where the reservoirs are located has been analyzed.

1. Introduction

The proliferation of planktonic cyanobacteria in lakes and water reservoirs is related to eutrophication processes. Blooms can modify the chemical conditions of the water with the consequent impact on the survival of other aquatic organisms [1,2,3]. Additionally, they are generally associated with the presence of cyanotoxins [4,5,6,7,8]. Numerous cyanobacterial species can produce toxins [9,10,11], including some of the most potent toxins known [8]. It is estimated that 50% (25% to 75%) of cyanobacterial blooms are toxic and generally 75% of the cyanobacteria that appear in a bloom can produce one or more types of toxins. Thus, CyanoHABs (cyanobacterial harmful algal blooms) constitute a serious environmental problem, with implications in human and animal health [3,12,13,14,15,16]. Numerous known cases of lethal poisoning of animals and even of human populations occurred worldwide [11,17], but is important to consider that the damage produced by toxins varies depending on the affected organism. For example, mammals are mainly affected by neurotoxic toxins, which disturb the transmission of nerve impulses and can cause death by respiratory arrest, or by hepatotoxins, which produce changes in cell structure, leading to hepatocellular necrosis, extensive hemorrhagic necrosis, and sinusoidal disruption. In humans, cyanotoxins can produce hepatic damage and can lead to death by intrahepatic hemorrhage and hypovolemic shock [18]. In non-lethal doses, these toxins have been attributed a tumor-promoting action, and epidemiological studies suggest an increased incidence of hepatocellular carcinoma [19]. And in fish, there is less information on the pathology, affecting not only the liver, but also other organs, such as kidney, heart, gills, skin, marrow, and blood [12]. Moreover, and in addition to the health implications, cyanobacterial blooms have an economic impact with increasing costs of drinking-water treatments and the decrease of recreational water values [3,11,20]. Therefore, they must be considered in the management of water and aquatic ecosystems.
In temperate regions, cyanobacterial blooms usually occur in summer, when temperature and light intensity are high and nutrient renewal and water column conditions stable [21,22,23,24]. Some environmental factors can determine an increased abundance of potentially toxic cyanobacteria during a bloom: high phosphorus and nitrogen concentration, low N:P ratio, high residence time and low water renovation rate, low turbulence, high light intensity, high temperature, the increase of dissolved organic matter, iron and trace metals, and low planktophages rates [10]. The frequency and intensity of blooms have risen recently worldwide. This increase has been attributed to anthropogenic changes, primarily the over-enrichment with nutrients and river regulation [25,26]. The possible effects of climate change on water eutrophication, and consequently the increased risk of potentially toxic cyanobacterial blooms, have also been noted [26,27]. Because of this increase and its health and management implications, blooms have drawn the attention of environment agencies, water authorities, and human and animal health organizations with the consequent development of monitoring programs and the publication of numerous technical reports, e.g., [28,29,30,31,32,33,34,35,36,37]. Moreover, the Water Framework Directive (WFD) (Directive 000/60/EC[1]59) specifies that the ecological status based on phytoplankton should be defined by measuring the biomass, composition, and blooms, especially cyanobacterial blooms. In addition, new methodological approaches to monitor, control, or eliminate cyanobacteria from the environment are being developed [38,39].
In Spain, most lentic systems are reservoirs, with different degrees of eutrophication, which favors the proliferation of cyanobacteria. Despite this situation and the growing interest, the available official information is scattered, and cyanobacterial bloom episodes have gone unnoticed frequently in Spanish waters. This could be influenced by the complexity of the Spanish administration and water authorities (there are 19 “river basin districts” according to the RD 125/2007 and RD 29/2011). Regarding the scientific knowledge, in the last years, several studies have been published; nevertheless, the available scientific information is also somewhat patchy. Some works are focused on phytoplankton occurrence in reservoirs scattered all over the country [40,41], others on reservoirs of specific regions [42,43,44,45,46,47,48], or on a unique reservoir [49,50,51,52,53,54,55,56,57,58,59,60,61]. Furthermore, none of the more thorough studies [58,62,63] are focused over the entire territory.
Since the design of good monitoring and management programs depends on a good understanding of the matter (information on past cyanobacterial blooms, the existing species, their relationships with environmental conditions, etc.), the main objective of the present work is to gather in a single document the available information (from scientific papers and technical reports) on the cyanobacteria and bloom records in Spanish reservoirs, in order to provide a basis to picture the background of the situation. In addition, some circumstances related to the occurrence on blooms are also discussed.

2. Materials and Methods

A bibliometric method was used to analyze the global SCI literature on cyanobacterial blooms in Spanish reservoirs from WOS database (search terms: cyanobacteria, blooms in Spanish reservoirs, Spanish cyanobacterial blooms, harmful algal blooms, HABs, CyanoHABs, monitoring algae blooms). In addition, information on the websites of all basin organizations and technical reports have been consulted. Data covers a range from 1981 to 2017. Specific information of the reservoirs with cyanobacterial records have also been collected. The geological data for every reservoir was obtained from IGME (Instituto Geológico y Minero de España—Geological and Mining Institute of Spain).
The most relevant information has been compiled in tables, extended versions of these included in the manuscript can be consulted as Supplementary Material.
In addition to the review, the relations between the cyanobacterial records and the geology where the reservoirs are located were analyzed. To do this, a similarity dendrogram was performed in the statistical package SYSTAT 13.0 software using the Ward method with Euclidean distance. Since in many cases, the information available on the presence of cyanobacteria includes dubious identifications at a specific level or, only identifications at genus level, to maintain consistency we used the cyanobacterial genera for the analysis.

3. Results and Discussion

3.1. Occurrence of Cyanobacteria and Blooms in Spanish Reservoirs

Based on the review carried out, cyanobacteria have been recorded in 252 of the 988 existing reservoirs (Figure 1, Supplementary Material Table S1) with blooms documented in 91 of them. Thus, blooms have been detected in 36% of the existing reservoirs. This is consistent with Quesada et al. [58] who estimated that around 40% of the Spanish reservoirs are susceptible to proliferation episodes. The absence of record in over 600 reservoirs could be related to the potential bias suggested in the introduction, regarding the fact that the available information is scattered, and with the fact that until the last five years there were no general surveillance and warning campaigns the formation of blooms.
Among the 19 Spanish river basin districts, Balearic Islands and Galicia-Costa are those with the most reservoirs with cyanobacterial records (100% and 66.67%, respectively). Galicia-Costa is the river basin district with the highest number of reservoirs in which blooms have been recorded (37%, Table 1).
Something worth noting is that 139 of the 252 reservoirs with cyanobacteria are water supply reservoirs (Table 2) and most of the blooms have occurred in this type of water body (Table 2). This higher incidence could be linked to a greater monitoring effort, in order to ensure health safety, which is indispensable in reservoirs intended for water supply for human use. Nonetheless, it is undoubtedly a fact that highlights the health hazards associated with cyanobacterial blooms and the management implications.

3.2. Species of Cyanobacteria in Spanish Reservoirs

According to the available information, 126 different species of cyanobacteria, belonging to 38 genera, have been identified in the Spanish reservoirs (Supplementary Table S2 for references). In several of the consulted works, identifications remained at the genus level (as Genus sp.; indicated here as spp.). A detailed list with the identified taxa and the reservoirs in which they were cited is available in the Supplementary Material (Table S2).
Of the 38 genera, 11 have been recorded in more than 20% of the reservoirs, while the remaining have a much narrower distribution range (Table 3), with species recorded in only one reservoir. Several available studies state that Microcystis and Microcystis aeruginosa are the most common genus and species in Spanish waters, e.g., [2,58,64,65,66,67,68,69,70,71]. However, from the review carried out for this work, it is found that the most common genus in the Spanish reservoirs is Anabaena (60.71% of the 252 reservoirs), followed by Microcystis (57.14%), and Aphanizomenon (50.00%) (Table 3). Of the identified species, most of them have a low distribution range, being present in less than 10% of the reservoirs with record of cyanobacteria (see Table S2). The most frequent species (distribution range > 10%) (Table 4) are species of the genus Anabaena (Anabaena spp.) (38.49%), Microcystis aeruginosa (34.13%), Woronichinia naegeliana (32.54%), and Aphanizomenon flos-aquae (30.16%).
In addition to native species, 2 exotic cyanobacteria have been recorded: Aphanizomenon ovalisporum, in 8 reservoirs, and Cylindrospermopsis raciborskii, in 18. The first one comes from tropical and subtropical regions, although the recent appearance in temperate latitudes is considered as an expansion of its natural distribution [72] and the second is established in the Spanish region according to De Hoyos et al., 2004. The potential impact [73] of these and other possible exotic cyanobacteria has not been studied in Spanish waters. Nevertheless, the potential production of highly-toxic cylindrospermopsin by C. raciborskii has been assessed; therefore, this can be applied to Spanish waters.
It is relevant that there is a different degree of taxonomic expertise in the consulted sources, with identifications at different taxonomical levels even in the same study, and sometimes ambiguous identifications. This could constitute another bias in the knowledge of the background of cyanobacterial occurrence in Spanish waters. In this paper, the identifications have been kept as they appear in the consulted works, since we consider that the scope was the collection of data and not the taxonomic or nomenclatural arrangement. Being aware that, for example, synonymous or current unaccepted names could appear in the main text and the Supplementary Material (e.g., the use of Anabaena instead of Dolichospermum; [74]).

3.3. Toxic Cyanobacteria and Blooms in Spanish Reservoirs

According to the available data, 257 blooms occurred in 91 reservoirs between 1981 and 2017. The dominant species in blooms varies between reservoirs and even within the same reservoir in different episodes (Supplementary Material—Table S3).
The most frequently dominant species in blooms (Table 5) are: Microcystis aeruginosa (17.90%), Aphanizomenon flos-aquae (12.84%), and Woronichinia naegeliana (9.34%). These species have the potential to produce cyanotoxins; moreover, microcystins are considered the main pollutants in freshwater in terms of risk for human health [14]. Therefore, blooms produced by these species are of great concern.
It is assumed that, in Europe, cyanobacterial blooms are mainly dominant by species of genera Microcystis, Planktothrix, Anabaena, and Aphanizomenon [15]. Agha [70] stated that Microcystis, Planktothrix, Anabaena, and Aphanizomenon are the most frequent genera in the Spanish waters. Our data compilation agrees with both works in the dominance of Microcystis and Aphanizomenon. However, it shows a lower frequency of appearance of Planktothrix (2.72% for P. agardhii and 3.11% for P. rubescens) and Anabaena (between 0.39% for A. sphaerica and 2.72% for A. planctonica) (Table 5).
Microcystis aeruginosa is the most globally common source of toxic blooms and it also has a higher incidence in Spain (17.9%) (Table 5), but it is not the only potentially toxic species recorded in Spanish reservoirs. Potential producers of microcystins (e.g., Microcystis spp. M. aeruginosa, M. smithii, M. flos-aquae, M. novaceckii, M. wesenbergii, Anabaena spp., A. flos-aquae and P. agardhii), cylindrospermopsin (e.g., Aph. ovalisporum and C. raciborskii) and anatoxin-a (e.g., Anabaena circinalis, A. flos-aquae, A. planctonica, Aphanizomenon flos-aquae, Cylindrospermum spp., Oscillatoria spp., Planktothrix rubescens, and Raphidiopsis mediterranea) have also been documented [39].
Data on cyanobacteria in Spanish reservoirs seem to indicate that blooms have been increased in recent years (Figure 2). This can be associated with many causes still as the increasing eutrophication, river regulation, or the gradual temperature increase as consequence of climate change [15,27,36]. The increasing monitoring effort, especially in water supply reservoirs, should not be dismissed. In addition, studies on the toxicity of these blooms, including measurements on the dissolved cyanotoxins in water, should be implemented. While increased monitoring efforts are leading to more records of the presence of these organisms and the formation of blooms, progress is still needed in the implementation of standardized measures to understand their consequences and facilitate management.
For this work, we considered a bloom an episode where the recorded cyanobacterial abundance was higher than 20,000 cells per milliliter, which corresponds to 10 μg of chlorophyll “a” per liter.

3.4. Cyanobacteria and Geology

On a broad geographic scale, it has been demonstrated that phytoplankton, in Spanish reservoirs, is mainly influenced by two environmental factors: the mineral water contents, depending on bedrock geology and climate [40,75,76,77,78], and the trophic state of the water body (see references in [78]).
During the analysis of the information, it emerged a derived objective: investigating the relation between the cyanobacteria recorded in the Spanish water reservoirs and the geological area where the reservoirs are located. Reservoirs with cyanobacterial occurrence (252 reservoirs) belong to 21 different specific geological areas that can be distinguished in two main types: siliceous zones (types I: Gneiss, schist, marble, and vulcanite; J: Granitoid; O: Peridotite; P: Quartzite, slate, sandstone, limestone, and vulcanite; S: Schist and limestone; and U: Slate, schist, and paragneiss) and calcareous zones (types A: Calcareous turbidite; B: Conglomerate, sandstone, clay, and limestone. Evaporite; C: Conglomerate, sandstone, clay, limestone, and evaporite. Basic vulcanite; D: Conglomerate, sandstone, limestone, gypsum, and versicolor clay; E: Conglomerate, sandstone, lutite, limestone, and gypsum; F: Conglomerate, sandstone, lutite, limestone, loam, and gypsum; G: Conglomerate, sandstone, slate, limestone, and vulcanite. Coal; H: Dolomite, limestone, and calcarenite; K: Limestone; L: Limestone and gypsum; M: Limestone, dolomite, and loam. Conglomerate and sandstone; N: Loam and limestone; Q: Sandstone and limestone; R: Sandstone, slate, and limestone; T: Schist, grey wake, paragneiss, and basic vulcanite) (Figure 3). Consequently, 118 of the 252 reservoirs with cyanobacterial records (46.83%) are in siliceous areas and 134 (53.17%) in calcareous zones. Of the 91 reservoirs with reported blooms, 51.69% are in siliceous zones, whereas only the 22.39% belong to calcareous areas (Supplementary Material—Tables S1 and S3). These results are consistent with those reported by De Hoyos et al. (2004): cyanobacterial blooms in the Iberian Peninsula are more frequent in reservoirs located to the west, with less soluble rocks (siliceous zone), than in those located in the east, where rocks are more soluble.
Therefore, to determinate if the blooms records were related or have a higher incidence in function on the geology of the area (siliceous or calcareous) where the reservoirs were located, a similarity dendrogram was performed. The dendrogram (Figure 4) shows two main groups, one group with the genera related with reservoirs located on areas with granitoid (siliceous) materials (Microcystis, Woronichinia, Aphanizomenon, Anabaena, Merismopedia, Aphanocapsa, Chroococcus, Pseudanabaena, and Oscillaroria), and a second group in which all the remaining genera are bounded together. Being the genera linked to the granitoid areas, the most frequent ones in blooms (>25%) (Table 4).

4. Conclusions

Once the data was compilated and analyzed, it became evident that the available information for each reservoir is variable and scattered. Standardizing the information is an important target in order to be able to make comparisons. Uniform information is also helpful when it comes to the development of monitoring and control programs.
Species identification and nomenclature in some of the consulted works (mainly technical reports) is sometimes not precise. Greater effort in this sense would be desirable.
Cyanobacterial species with a greatest distribution in Spanish reservoirs are Anabaena spp. (38.49%), Microcystis aeruginosa (34.13%), Woronichinia naegeliana (32.54%), and Aphanizomenon flos-aquae (30.16%). Blooms have been dominated most frequently by Microcystis aeruginosa (17.90%), Aphanizomenon flos-aquae (12.84%), Microcystis spp. (11.28%), and Woronichinia naegeliana (9.34%). All of them can potentially produce cyanotoxins, so their proliferation is of great concern.
Even though a slightly higher percentage of cyanobacterial records were made in calcareous areas (53.17% against 46.83% in siliceous areas), blooms have been recorded mainly in siliceous areas.
It is known that blooms have sometimes gone unnoticed, so the number of these episodes in Spanish reservoirs could be considered higher. The increase of bloom records during the last decade may be due to an improvement in the monitoring effort. Nevertheless, the effect of anthropogenic actions and climate change cannot be ruled out.
An increased monitoring efforts as well as standardization of sampling and analysis are desirable to mitigate the potential adverse effects of blooms, especially the toxic or potentially toxic ones.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/hydrobiology1010009/s1, Table S1: Characterization of the 252 Spanish reservoirs with cyanobacteria records, Table S2: Cyanobacteria in Spanish reservoirs and their distribution range (% of reservoirs of species with cyanobacterial records in which the genera/species have appeared), Table S3: Dominant species in each recorded bloom in Spanish reservoirs. Refs. [1,22,23,25,28,29,30,31,32,33,35,36,37,39,42,43,44,45,47,50,51,52,54,55,56,57,58,59,60,61,62,64,68,79,80,81,82,83,84,85,86,87,88,89].

Author Contributions

R.V.-L.: tables and figures, drafting manuscript; S.B.: recompilation of data, drafting manuscript. M.C.C.: drafting and editing manuscript; F.C.: original concept, drafting and editing manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Almodóvar, A.; Nicola, G.G.; Nuevo, M. Effects of a bloom of Planktothrix rubescens on the fish community of a Spanish reservoir. Limnetica 2004, 23, 167–178. [Google Scholar] [CrossRef]
  2. Cobo, F.; Lago, L.; Barca, S.; Vieira-Lanero, R.; Servia, M.J. Cianobacterias y medioambiente. In Aspectos Ecotoxicológicos De Sus Floraciones En Aguas Continentales; AGAIA (Asociación Galega de Investigadores da Auga): Santiago de Compostela, Spain, 2012; p. 131. [Google Scholar]
  3. Cobo, F. Métodos de control de las floraciones de cianobacterias en aguas continentals. Limnetica 2015, 34, 247–268. [Google Scholar]
  4. Brittain, S.; Mohamed, Z.; Wang, J.; Lehmann, V.; Carmichael, W.; Rinehart, K. Isolation and characterization of microcystins from a River Nile strain of Oscillatoria tenuis Agardh ex Gomont. Toxicon 2000, 38, 1759–1771. [Google Scholar] [CrossRef]
  5. Hitzfeld, B.; Lampert, C.; Spaeth, N.; Mountfort, D.; Kaspar, H.; Dietrich, D. Toxin production in cyanobacterial mats from ponds on the McMurdo Ice Shelf, Antarctica. Toxicon 2000, 38, 1731–1748. [Google Scholar] [CrossRef] [Green Version]
  6. Freitas de Magalhães, V.F.; Soares, R.M.; Azevedo, S.M. Microcystin contamination in fish from the Jacarepaguá Lagoon (Rio de Janeiro, Brazil): Ecological implication and human health risk. Toxicon 2001, 39, 1077–1085. [Google Scholar] [CrossRef]
  7. Park, H.; Namikoshi, M.; Brittain, S.; Carmichael, W.; Murphy, T. [d-Leu1] microcystin-LR, a new microcystin isolated from waterbloom in a Canadian prairie lake. Toxicon 2001, 39, 855–862. [Google Scholar] [CrossRef]
  8. Humpage, A. Toxin Types, Toxicokinetics and Toxicodynamics. In Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs; Springer: Berlin/Heidelberg, Germany, 2008; pp. 383–415. [Google Scholar]
  9. Bláha, L.; Babica, P.; Maršálek, B. Toxins produced in cyanobacterial water blooms—Toxicity and risks. Interdiscip. Toxicol. 2009, 2, 36. [Google Scholar] [CrossRef] [Green Version]
  10. Paerl, H.W.; Otten, T.G. Harmful Cyanobacterial Blooms: Causes, Consequences, and Controls. Microb. Ecol. 2013, 65, 995–1010. [Google Scholar] [CrossRef]
  11. Svirčev, Z.; Lalić, D.; Savić, G.B.; Tokodi, N.; Backović, D.D.; Chen, L.; Meriluoto, J.; Codd, G.A. Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Arch. Toxicol. 2019, 93, 2429–2481. [Google Scholar] [CrossRef]
  12. Sivonen, K.; Jones, G. Chapter 3: Cyanobacterial toxins. In Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management; Chorus, I., Bartram, J., Eds.; Taylor & Francis: Abingdon, UK, 1999; pp. 14–111. [Google Scholar]
  13. Jones, G.J. Cyanobacterial Research in Australia; CSIRO: Melbourne, Australia, 1994; p. 193. [Google Scholar]
  14. Chorus, I.; Bartram, J. Toxic Cyanobateria in Water: A Guide to Their Public Health Consequences, Monitoring and Management; World Health Organization: London, UK, 1999; p. 416. [Google Scholar]
  15. Niamien-Ebrottie, J.E.; Bhattacharyya, S.; Deep, P.R.; Nayak, B. Cyanobacteria and cyanotoxins in the World: Review. Int. J. Appl. Res. 2015, 1, 563–569. [Google Scholar]
  16. Chorus, I.; Welker, M. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management; Taylor & Francis: Abingdon, UK, 2021; p. 858. [Google Scholar]
  17. Huisman, J.; Codd, G.A.; Paerl, H.W.; Ibelings, B.W.; Verspagen, J.M.; Visser, P.M. Cyanobacterial blooms. Nat. Rev. Microbiol. 2018, 16, 471–483. [Google Scholar] [CrossRef]
  18. Lucena, E. Aspectos sanitarios de las cianotoxinas. Hig. Sanid. Ambient. 2008, 8, 291–302. [Google Scholar]
  19. Cameán Fernandez, A.M.; Moreno Navarro, I.; Repetto Kuhn, G.; Pichardo Sánchez, S.; Prieto Ortega, A.I. Ciano-bacterias y cianotoxinas: Necesidad de su control en el agua de consumo humano. Rev. Salud Ambient. 2005, 5, 137–141. [Google Scholar]
  20. Kapsalis, V.C.; Kalavrouziotis, I.K. Eutrophication—A worldwide water quality issue. In Chemical Lake Restoration; Springer: Cham, Switzerland, 2021; pp. 1–21. [Google Scholar]
  21. Sivonen, K. Cyanobacterial toxins and toxin production. Phycology 1996, 35, 12–24. [Google Scholar] [CrossRef]
  22. Dasí, M.J.; Miracle, M.R.; Camacho, A.; Soria, J.M.; Vicente, E. Summer phytoplankton assemblages across trophic gradients in hard-water reservoirs. Phytoplankton Trophic Gradients 1998, 369, 27–43. [Google Scholar] [CrossRef]
  23. Sanchis, D.; Padilla, C.; Fernández-Valiente, E.; Del Campo, F.F.; Carrasco, D.; Leganés, F.; Quesada, A. Spatial and temporal heterogeneity in succession of cyanobacterial blooms in a Spanish reservoir. Ann. Limnol. Int. J. Limnol. 2002, 38, 173–183. [Google Scholar] [CrossRef] [Green Version]
  24. Cook, C.M.; Vardaka, E.; Lanaras, T. Toxic Cyanobacteria in Greek Freshwaters, 1987—2000: Occurrence, Toxicity, and Impacts in the Mediterranean Region. Acta Hydrochim. Hydrobiol. 2004, 32, 107–124. [Google Scholar] [CrossRef]
  25. Carvalho, L.; Poikane, S.; Solheim, A.L.; Phillips, G.; Borics, G.; Catalan, J.; De Hoyos, C.; Drakare, S.; Dudley, B.J.; Jarvinen, M.; et al. Strength and uncertainty of phytoplankton metrics for assessing eutrophication impacts in lakes. Hydrobiologia 2013, 704, 127–140. [Google Scholar] [CrossRef] [Green Version]
  26. Xia, R.; Zhang, Y.; Critto, A.; Wu, J.; Fan, J.; Zheng, Z.; Zhang, Y. The Potential Impacts of Climate Change Factors on Freshwater Eutrophication: Implications for Research and Countermeasures of Water Management in China. Sustainability 2016, 8, 229. [Google Scholar] [CrossRef] [Green Version]
  27. Paerl, H.W.; Huisman, J. Blooms Like It Hot. Science 2008, 320, 57–58. [Google Scholar] [CrossRef] [Green Version]
  28. Confederación Hidrográfica del Ebro. Diagnóstico y Gestión Ambiental de Embalses en el Ámbito de la Cuenca Hidrográfica del Ebro. Embalse de Ullivarri. 1996; pp. 602–612. Available online: https://hispagua.cedex.es/documentacion/documento/32331 (accessed on 11 October 2017).
  29. Jaurlaritza, E.; Vasco, G. Caracterización de las Masas de Aguas Superficiales de la CAPV. Tomo III: Caracterización de los Embalses de la CAPV. 2002; p. 197. Available online: http://www.uragentzia.euskadi.eus/contenidos/libro/caracterizacion_masas_agua/es_12298/adjuntos/T03_1EmbalsesMemoria.pdf (accessed on 11 October 2017).
  30. Confederación Hidrográfica del Duero. Informe Sobre Estado Trófico de los Embalses de la Cuenca del Duero. 2006. Available online: http://www.chduero.es/descarga.aspx?fich=/CalidadAguas/Estado_trofico_embalses_2006.pdf (accessed on 11 October 2017).
  31. Infraeco & Confederación Hidrográfica del Ebro. Ejecución de Trabajos Relacionados con los Requisitos de la Directiva Marco (2000/60/CE) en el Ámbito de la Confederación Hidrográfica del Ebro Referidos a: Elaboración del Registro de Zonas Protegidas, Determinación del Potencial Ecológico de los Embalses, Desarrollo de Programas Específicos de Investigación. Documento I: Memoria. 2006; p. 234. Available online: https://www.chebro.es/es/web/guest/search?q=2006_Embalses_Memoria.pdf (accessed on 11 October 2017).
  32. Infraeco & Confederación Hidrográfica del Ebro. Ejecución de Trabajos Relacionados con los Requisitos de la Directiva Marco (2000/60/CE) en el Ámbito de la Confederación Hidrográfica del Ebro Referidos a: Elaboración del Registro de Zonas Protegidas, Determinación del Potencial Ecológico de los Embalses, Desarrollo de Programas Específicos de Investigación. Embalse de Urrúnaga. 2006; p. 41. Available online: https://www.chebro.es/documents/20121/49621/Informe_Final_Embalse_de_Urrunaga_2004_2005.pdf (accessed on 11 October 2017).
  33. UTE Red Biológica Ebro & Confederación Hidrográfica del Ebro. Informe Final del Embalse de Mequinenza, Pena y Rialp, año 2007. Available online: http://195.55.247.234/webcalidad/estudios/embalses/2007embalsesbio/2007_reservoir_name.pdf (accessed on 28 September 2017).
  34. Confederación Hidrográfica del Júcar. Explotación de la Red de Control Biológico de Lagos y Embalses de la Confederación Hidrográfica del Júcar. Informe Anual de Embalses 2016. Available online: http://www.chj.es/es-es/medioambiente/redescontrol/InformesAguasSuperficiales/Biol%C3%B3gico%20Embalses%20anual%202016.pdf (accessed on 2 October 2017).
  35. Junta de Andalucía. Programa de Seguimiento del Estado de Calidad de las Aguas Continentales de las Cuencas Intra-Comunitarias de la Comunidad Autónoma de Andalucía. Demarcación Hidrográfica de las Cuencas Mediterráneas Andaluzas. Diseño y Explotación del Programa de Control de Calidad Biológica e Hidromorfológica de las Aguas Superficiales en la Demarcación de las Cuencas Mediterráneas Andaluzas. Informe Resultados Segunda Campaña 2014. Available online: https://www.juntadeandalucia.es/medioambiente/portal_web/web/temas_ambientales/agua/2_calidad/superficiales_continentales/datos/informes_calidad_dmed/2014/sp_md_2c_bhm_2014.pdf (accessed on 2 October 2017).
  36. Confederación Hidrográfica del Tajo. Resultados/Informes: Aguas Superficiales Potencial Ecológico en Empalses. 2017; p. 68. Available online: http://www.chtajo.es/LaCuenca/CalidadAgua/Resultados_Informes/Paginas/RISupPotencialEmbalses.aspx (accessed on 5 October 2017).
  37. Xunta de Galicia. SIAM: Seguimento de Cianobacterias nos Encoros. 2017. Available online: http://siam.xunta.gal/resultados-do-seguimento-de-cianobacterias (accessed on 10 October 2017).
  38. Forján-Lozano, E.; Domínguez Vargas, M.J.; Vilchez Lobato, C.; Miguel, R.; Costa, C.; Reis, M.P. Cianoalerta: Estra-tegia para predecir el desarrollo de Cianobacterias tóxicas en embalses. Ecosistemas 2008, 17, 37–45. [Google Scholar]
  39. Lago, L. Tratamientos de Inhibición de las Floraciones de Cianobacterias en Condiciones Controladas Mediante el uso de Limnocorrales. Ph.D. Thesis, University of Santiago de Compostela, Galicia, Spain, 2015. (In Spanish). [Google Scholar]
  40. Planas, D. Distribution and productivity of the phytoplankton in Spanish reservoirs. SIL Proc. 1975, 19, 1860–1870. [Google Scholar] [CrossRef]
  41. Quesada, A.; Carrasco, D.; Sanchis, D.; De Hoyos, C. Abundancia de cianobacterias y cianotoxinas en embalses españoles. Rev. Salud Ambient. 2005, 1, 99. [Google Scholar]
  42. Bennasar, G.; Frau, C.; García, L.; Gómez, M.; Moyá, G.; Ramón, G. Composición cualitativa del fitoplancton de los embalses de Cúber y Gorg Blau (Serra de Tramuntana, Mallorca) I. Cyanophyta Dinophyta. Bolletí Soc. D’història Nat. Balear. 1990, 33, 87–98. [Google Scholar]
  43. Carrasco, D.; Moreno, E.; Sanchis, D.; Wörmer, L.; Paniagua, T.; Del Cueto, A.; Quesada, A. Cyanobacterial abundance and microcystin occurrence in Mediterranean water reservoirs in Central Spain: Microcystins in the Madrid area. Eur. J. Phycol. 2006, 41, 281–291. [Google Scholar] [CrossRef]
  44. Caputo, L.; Naselli-Flores, L.; Ordoñez, J.; Armengol, J. Phytoplankton distribution along trophic gradients within and among reservoirs in Catalonia (Spain). Freshw. Biol. 2008, 53, 2543–2556. [Google Scholar] [CrossRef]
  45. Negro, A.I.; De Hoyos, C.; Del Rio, A.; Le Cohu, R. Comparación de las comunidades fitoplanctónicas en dos embalses de reciente creación: Riaño y Valparaíso (España). Limnetica 1994, 10, 115–121. [Google Scholar] [CrossRef]
  46. López, P.; Marcé, R.; Ordóñez, J.; Urrutia, I.; Armengol, J. Sedimentary phosphorus in a cascade of five reservoirs (Lozoya River, Central Spain). Lake Reserv. Manag. 2009, 25, 39–48. [Google Scholar] [CrossRef] [Green Version]
  47. Alonso-Fernández, J.R.A.; Nieto, P.J.G.; Muñiz, C.D.; Antón, J.C.Á. Modeling eutrophication and risk prevention in a reservoir in the Northwest of Spain by using multivariate adaptive regression splines analysis. Ecol. Eng. 2014, 68, 80–89. [Google Scholar] [CrossRef]
  48. Lago, L.; Barca, S.; Vieira-Lanero, R.; Cobo, F. Floraciones de cianobacterias y valores de microcistina-LR sestónica y disuelta en embalses de la cuenca hidrográfica del Miño-Sil (NW-España). MOL 2016, 16, 113–125. [Google Scholar]
  49. Vidal-Celma, A. Evolution d’un lac de barrage dans le NE. de l’Espagne pendant les quatre premières années de service. SIL Proc. 1969, 17, 191–200. [Google Scholar] [CrossRef]
  50. Toja, J.; Casco, M.A. Contribution of phytoplankton and periphyton to the production in a reservoir of S.W. Spain. Oecologia Aquat. 1991, 10, 61–76. [Google Scholar]
  51. Negro, A.I.; De Hoyos, C.; Vega, J.C. Phytoplankton structure and dynamics in Lake Sanabria and Valparaíso reservoir (NW Spain). Trophic Spectr. Revisit. 2000, 424, 25–37. [Google Scholar] [CrossRef]
  52. Gomá, J. El fitopláncton de l´embassament de Foix: Estudi del cicle annual (1996), Trobada d´Estudiosos del Foix; Barcelona Provincial Council: Barcelona, Spain, 2005; pp. 35–41.
  53. Moreno, I.M.; Pereira, P.; Franca, S.; Cameán, A. Toxic cyanobacteria strains isolated from blooms in the Guadiana river (southwestern Spain). Biol. Res. 2004, 37, 405–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  54. Moreno, I.; Repetto, G.; Carballal, E.; Gago, A.; Cameán, A.M. Cyanobacteria and microcystins occurrence in the Guadiana River (SW Spain). Int. J. Environ. Anal. Chem. 2005, 85, 461–474. [Google Scholar] [CrossRef]
  55. Moreno-Ostos, E.; Elliott, J.A.; Cruz-Pizarro, L.; Escot, C.; Basanta, A.; George, G. Using a numerical model (PRO-TECH) to examine the impact of water transfers on phytoplankton dynamics in a Mediterranean reservoir. Limnetica 2007, 26, 1–11. [Google Scholar] [CrossRef]
  56. Moreno-Ostos, E.; Palomino-Torres, R.L.; Escot, C.; Blanco, J.M. Planktonic metabolism in a Mediterranean res-ervoir during a near-surface cyanobacterial bloom. Limnetica 2016, 35, 117–130. [Google Scholar]
  57. Padilla, C.; Sanz-Alférez, S.; Del Campo, F.F. Toxin characterisation and identification of a Microcystis flos-aquae strain from a Spanish drinking-water reservoir. Arch. Für Hydrobiol. 2006, 165, 383–399. [Google Scholar] [CrossRef]
  58. Quesada, A.; Moreno, E.; Carrasco, D.; Paniagua, T.; Wörmer, L.; De Hoyos, C.; Sukenik, A. Toxicity of Aphanizomenon ovalisporum(Cyanobacteria) in a Spanish water reservoir. Eur. J. Phycol. 2006, 41, 39–45. [Google Scholar] [CrossRef]
  59. Becker, V.; Caputo, L.; Ordóñez, J.; Marcé, R.; Armengol, J.; Crossetti, L.O.; Huszar, V.L. Driving factors of the phytoplankton functional groups in a deep Mediterranean reservoir. Water Res. 2010, 44, 3345–3354. [Google Scholar] [CrossRef]
  60. Barco, M.; Flores, C.; Rivera, J.; Caixach, J. Determination of microcystin variants and related peptides present in a water bloom of Planktothrix (Oscillatoria) rubescens in a Spanish drinking water reservoir by LC/ESI-MS. Toxicon 2004, 44, 881–886. [Google Scholar] [CrossRef]
  61. Lago, L.; Barca, S.; Vieira-Lanero, R.; Cobo, F. Características ambientales, composición del fitoplancton y variación temporal de microcistina-LR disuelta en el embalse de As Forcadas (Galicia, NW España). Limnetica 2015, 34, 187–204. [Google Scholar]
  62. De Hoyos, C.; Negro, A.I.; Avilés, J. Las Cianobacterias en los embalses españoles: Situación actual. Centro de estudios hidrográficos del CEDEX. Ing. Civ. 2003, 129, 93. [Google Scholar]
  63. Quesada, A.; Sanchis, D.; Carrasco, D. Cyanobacteria in Spanish reservoirs. How frequently are they toxic? Limnetica 2004, 23, 109–118. [Google Scholar] [CrossRef]
  64. Aboal, M. Aportación al conocimiento de las algas epicontinentales del sudeste de España. III. Cianofíceas (Cyanop-hyceae, Schaffner, 1909). An. Del Jardín Botánico De Madr. 1988, 45, 3–46. [Google Scholar]
  65. Armengol, J.; Catalán, J.; Gabellone, N.; Jaume, D.; de Manuel, J.; Martí, E.; Morguí, J.A.; Nolla, J.; Peñuelas, J.; Real, M.; et al. A comparative limnological study of the Guadalhorce reservoirs system (Málaga, S.E. Spain). Sci. Gerund. 1990, 16, 27–41. [Google Scholar]
  66. Álvarez Cobelas, M.; Arauzo, M. Phytoplankton responses to varying time scales in a eutrophic reservoir. Arch. Für Hydrobiol.-Monogr. Beiträge 1994, 40, 69–80. [Google Scholar]
  67. Arauzo, M.; Álvarez Cobelas, M. Respuesta de la comunidad fitoplanctónica a la estacionalidad en un embalse eutrófico. Limnetica 1994, 10, 37–42. [Google Scholar] [CrossRef]
  68. Aboal, M.; Puig, M. Intracellular and dissolved microcystin in reservoirs of the river Segura basin, Murcia, SE Spain. Toxicon 2005, 45, 509–518. [Google Scholar] [CrossRef]
  69. Cirés, S.; Quesada, A. Catálogo de Cianobacterias Planctónicas Potencialmente Tóxicas de las Aguas Continentales Españolas; Ministerio de Medio Ambiente y Medio Rural y Marino, Secretaría General Técnica Centro de Publicaciones: Madrid, Spain, 2011; ISBN 978-84-491-1072-6S. [Google Scholar]
  70. Agha Frías, R. Chemotypical Subpopulations in Planktonic Cyanobacteria. Ecology and Application in Advanced Monitoring Tools. Doctoral Thesis, Universidad Autónoma de Madrid, Madrid, Spain, 2013. (In Spanish). [Google Scholar]
  71. Cirés, S.; Wörmer, L.; Carrasco, D.; Quesada, A. Sedimentation Patterns of Toxin-Producing Microcystis Morphospecies in Freshwater Reservoirs. Toxins 2013, 5, 939–957. [Google Scholar] [CrossRef] [Green Version]
  72. Cirés, S.; Wörmer, L.; Agha, R.; Quesada, A. Overwintering populations of Anabaena, Aphanizomenon and Microcystis as potential inocula for summer blooms. J. Plankton Res. 2013, 35, 1254–1266. [Google Scholar] [CrossRef] [Green Version]
  73. Mehnert, G.; Leunert, F.; Cirés, S.; Jöhnk, K.; Rücker, J.; Nixdorf, B.; Wiedner, C. Competitiveness of invasive and native cyanobacteria from temperate freshwaters under various light and temperature conditions. J. Plankton Res. 2010, 32, 1009–1021. [Google Scholar] [CrossRef]
  74. KomárekJ. A polyphasic approach for the taxonomy of cyanobacteria: Principles and applications. Eur. J. Phycol. 2016, 51, 346–353. [Google Scholar] [CrossRef]
  75. Margalef, R.; Planas, D.; Armengol, J.; Vidal, A.; Prat, N.; Guisset, A.; Toja, J.; Estrada, M. Limnología de los embalses españoles. In Dirección General de Obras Hidraúlicas; M.O.P.: Madrid, Spain, 1976; p. 123. [Google Scholar]
  76. Sabater, S.; Nolla, J. Distributional patterns of phytoplankton in Spanish reservoirs: First results and comparison after fifteen years. SIL Proc. 1991, 24, 1371–1375. [Google Scholar] [CrossRef]
  77. Riera, J.L.; Jaume, D.; de Manuel, J.; Morgui, J.A.; Armengol, J. Patterns of variation in the limnology of Spanish reservoirs: A regional study. Limnetica 1992, 8, 111–123. [Google Scholar] [CrossRef]
  78. Negro, A.I.; De Hoyos, C. Relationships between diatoms and the environment in Spanish reservoirs. Limnetica 2005, 24, 133–144. [Google Scholar] [CrossRef]
  79. Junta de Andalucía. Programa de Seguimiento del Estado de Calidad de las Aguas Continentales de las Cuencas Intra-Comunitarias de la Comunidad Autónoma de Andalucía. Demarcación Hidrográfica de las Cuencas Mediterráneas Andaluzas. Control de la Calidad de las Aguas Superficiales. Evaluación de Organismos y de Índices Biológicos e Hidromorfológicos. Segundo Semestre de 2012 (Julio-Diciembre). 2012. Available online: https://www.juntadeandalucia.es/medioambiente/portal_web/gestion_integral_agua/actuaciones/mejora_calidad_agua/calidad_medio_hidrico/contenido_calidad_continentales/calidad_aguas%20superficiales/informes_calidad_dmed/2012/sp_md_2s_bhm_2012.pdf (accessed on 2 October 2017).
  80. Confederación Hidrográfica Guadiana. Red Biológica de Embalses y Lagos 2007–2008. Available online: http://www.chguadiana.es/corps/chguadiana/data/resources/file/red_ica/red_bio_embalses_lagos_2007_2008/resultados.pdf (accessed on 20 October 2017).
  81. Confederación Hidrográfica Guadiana. Elementos de Calidad Fisicoquímicos y Elementos de Calidad Biológica: Fitoplancton de los Años 2007 y 2008. Available online: http://www.chguadiana.es/corps/chguadiana/data/resources/file/red_ica/red_bio_embalses_lagos_2007_2008/resultados_por_embalse/reservoir_name.pdf (accessed on 20 October 2017).
  82. Confederación Hidrográfica del Júcar. Explotación de la red de Control Biológico de Lagos y Embalses de la Confede-Ración Hidrográfica del Júcar. Informe Anual de Embalses 2015. Available online: http://www.chj.es/es-es/medioambiente/redescontrol/InformesAguasSuperficiales/Biol%C3%B3gico%20Embalses%20anual%202015.pdf (accessed on 2 October 2017).
  83. Junta de Andalucía. Servicio para la Explotación de los Programas de Control de Calidad Biológicos e Hidromorfológricos de las Aguas Superficiales en las Demarcaciones de las Cuencas de los ríos Guadalete y Barbate y Tinto, Odiel y Piedras. Demarcación Hidrográfica Tinto, Odiel y Piedras. Datos Obtenidos en la Identificación de Muestras y Resultados de los Indicadores Biológicos e Idromorfológicos. Informe de Resultados de la 2º Campaña 2014. 2015. Available online: http://www.juntadeandalucia.es/medioambiente/portal_web/web/temas_ambientales/agua/2_calidad/superficiales_continentales/datos/informes_calidad_top/2014/sp_top_2c_bhm_2014.pdf (accessed on 2 October 2017).
  84. De Hoyos, C.; Negro, A.; Aldasoro, J.J. Cianobacteria distribution and abundance in the Spanish water reservoirs during thermal stratification. Limnetica 2004, 23, 119–132. [Google Scholar] [CrossRef]
  85. Confederación Hidrográfica Miño-Sil. Capítulo 8. Diagnóstico del Cumplimiento de los Objetivos Medioambientales. Plan Hidrológico del Ciclo 2009–2015. 2015, p. 187. Available online: https://www.chminosil.es/es/chms/planificacionhidrologica/planhidrologico (accessed on 11 October 2017).
  86. Confederación Hidrográfica Miño-Sil. Capítulo 8. Objetivos Medioambientales y Exenciones. Plan Hidrológico del ciclo 2016–2021. 2015; p. 391. Available online: https://www.chminosil.es/es/ide-mino-sil/80-chms/1359-plan-hidrologico-2015-2021-rd-1-2016 (accessed on 11 October 2017).
  87. García-Nieto, P.; Fernández, J.A.; Juez, F.D.C.; Lasheras, F.S.; Muñiz, C.D. Hybrid modelling based on support vector regression with genetic algorithms in forecasting the cyanotoxins presence in the Trasona reservoir (Northern Spain). Environ. Res. 2013, 122, 1–10. [Google Scholar] [CrossRef]
  88. Cobo, F. Floracións de Cianobacterias tóxicas en augas continentais. CERNA 2008, 54, 24–28. [Google Scholar]
  89. Komarek, J. Cyanobacterial taxonomy: Current problems and prospects for the integration of traditional and molecular approaches. Algae 2006, 21, 349–375. [Google Scholar] [CrossRef] [Green Version]
Figure 1. Map of Spain showing the reservoirs with records of cyanobacteria. Numbers correspond to reservoirs (see Supplementary Material—Table S1). Green dots indicate reservoirs with cyanobacteria but without registered blooms. Red dots indicate reservoirs with cyanobacterial blooms registered at least once. River Basin Districts (RBD) indicated and represented by background colors.
Figure 1. Map of Spain showing the reservoirs with records of cyanobacteria. Numbers correspond to reservoirs (see Supplementary Material—Table S1). Green dots indicate reservoirs with cyanobacteria but without registered blooms. Red dots indicate reservoirs with cyanobacterial blooms registered at least once. River Basin Districts (RBD) indicated and represented by background colors.
Hydrobiology 01 00009 g001
Figure 2. Cyanobacterial blooms (bars) and cumulative number of Cyanobacterial blooms (line) registered in Spanish reservoirs since 1990.
Figure 2. Cyanobacterial blooms (bars) and cumulative number of Cyanobacterial blooms (line) registered in Spanish reservoirs since 1990.
Hydrobiology 01 00009 g002
Figure 3. Percentage of reservoirs with cyanobacteria records according to the geology area type where they are located (Only types I, J, O, P, S, and U correspond to siliceous areas (A: Calcareous turbidite; B: Conglomerate, sandstone, clay, and limestone. Evaporite; C: Conglomerate, sandstone, clay, limestone, and evaporite. Basic vulcanite; D: Conglomerate, sandstone, limestone, gypsum, and versicolor clay; E: Conglomerate, sandstone, lutite, limestone, and gypsum; F: Conglomerate, sandstone, lutite, limestone, loam, and gypsum; G: Conglomerate, sandstone, slate, limestone, and vulcanite. Coal; H: Dolomite, limestone, and calcarenite; I: Gneiss, schist, marble, and vulcanite; J: Granitoid; K: Limestone; L: Limestone and gypsum; M: Limestone, dolomite, and loam. Conglomerate and sandstone; N: Loam and limestone; O: Peridotite; P: Quartzite, slate, sandstone, limestone, and vulcanite; Q: Sandstone and limestone; R: Sandstone, slate, and limestone; S: Schist and limestone; T: Schist, grey wake, paragneiss, and basic vulcanite; U: Slate, schist, and paragneiss).
Figure 3. Percentage of reservoirs with cyanobacteria records according to the geology area type where they are located (Only types I, J, O, P, S, and U correspond to siliceous areas (A: Calcareous turbidite; B: Conglomerate, sandstone, clay, and limestone. Evaporite; C: Conglomerate, sandstone, clay, limestone, and evaporite. Basic vulcanite; D: Conglomerate, sandstone, limestone, gypsum, and versicolor clay; E: Conglomerate, sandstone, lutite, limestone, and gypsum; F: Conglomerate, sandstone, lutite, limestone, loam, and gypsum; G: Conglomerate, sandstone, slate, limestone, and vulcanite. Coal; H: Dolomite, limestone, and calcarenite; I: Gneiss, schist, marble, and vulcanite; J: Granitoid; K: Limestone; L: Limestone and gypsum; M: Limestone, dolomite, and loam. Conglomerate and sandstone; N: Loam and limestone; O: Peridotite; P: Quartzite, slate, sandstone, limestone, and vulcanite; Q: Sandstone and limestone; R: Sandstone, slate, and limestone; S: Schist and limestone; T: Schist, grey wake, paragneiss, and basic vulcanite; U: Slate, schist, and paragneiss).
Hydrobiology 01 00009 g003
Figure 4. Similarity dendrogram based on the relation between cyanobacterial genera and the geological area where reservoirs in which they were recorded are located (A: Calcareous turbidite; B: Conglomerate, sandstone, clay, and limestone. Evaporite; C: Conglomerate, sandstone, clay, limestone, and evaporite. Basic vulcanite; D: Conglomerate, sandstone, limestone, gypsum, and versicolor clay; E: Conglomerate, sandstone, lutite, limestone, and gypsum; F: Conglomerate, sandstone, lutite, limestone, loam, and gypsum; G: Conglomerate, sandstone, slate, limestone, and vulcanite. Coal; H: Dolomite, limestone, and calcarenite; I: Gneiss, schist, marble, and vulcanite; J: Granitoid; K: Limestone; L: Limestone and gypsum; M: Limestone, dolomite, and loam. Conglomerate and sandstone; N: Loam and limestone; O: Peridotite; P: Quartzite, slate, sandstone, limestone, and vulcanite; Q: Sandstone and limestone; R: Sandstone, slate, and limestone; S: Schist and limestone; T: Schist, grey wake, paragneiss, and basic vulcanite; U: Slate, schist, and paragneiss).
Figure 4. Similarity dendrogram based on the relation between cyanobacterial genera and the geological area where reservoirs in which they were recorded are located (A: Calcareous turbidite; B: Conglomerate, sandstone, clay, and limestone. Evaporite; C: Conglomerate, sandstone, clay, limestone, and evaporite. Basic vulcanite; D: Conglomerate, sandstone, limestone, gypsum, and versicolor clay; E: Conglomerate, sandstone, lutite, limestone, and gypsum; F: Conglomerate, sandstone, lutite, limestone, loam, and gypsum; G: Conglomerate, sandstone, slate, limestone, and vulcanite. Coal; H: Dolomite, limestone, and calcarenite; I: Gneiss, schist, marble, and vulcanite; J: Granitoid; K: Limestone; L: Limestone and gypsum; M: Limestone, dolomite, and loam. Conglomerate and sandstone; N: Loam and limestone; O: Peridotite; P: Quartzite, slate, sandstone, limestone, and vulcanite; Q: Sandstone and limestone; R: Sandstone, slate, and limestone; S: Schist and limestone; T: Schist, grey wake, paragneiss, and basic vulcanite; U: Slate, schist, and paragneiss).
Hydrobiology 01 00009 g004
Table 1. Reservoirs with cyanobacteria and bloom records regarding to the River Basin District (RBD) where they are located (AMB: Andalucía Mediterranean; BCB: Basque Country; BI: Balearic Islands; C: Cantabrian; CIB: Catalonia Interna; D: Duero; E: Ebro; G-B: Guadalete-Barbate; G-C: Galicia-Costa; Gd: Guadiana; J: Júcar; M-S: Minho-Sil; S: Segura; T: Tajo; TOP: Tinto, Odiel Piedras).
Table 1. Reservoirs with cyanobacteria and bloom records regarding to the River Basin District (RBD) where they are located (AMB: Andalucía Mediterranean; BCB: Basque Country; BI: Balearic Islands; C: Cantabrian; CIB: Catalonia Interna; D: Duero; E: Ebro; G-B: Guadalete-Barbate; G-C: Galicia-Costa; Gd: Guadiana; J: Júcar; M-S: Minho-Sil; S: Segura; T: Tajo; TOP: Tinto, Odiel Piedras).
RBDReservoirs in the RBDWith Cyanobateria% With Registered Blooms%
G-C271866.671037.04
M-S601118.331016.67
C46715.2212.17
BCB14428.5700.00
D802531.2567.50
E1753620.5721.14
CIB13430.77215.38
T2176931.84118.89
Gd922426.091111.96
J461532.6136.52
TOP33618.1800.00
Gq9655.2111.04
S34617.6512.94
G-B15533.3316.67
AMB381539.4722.26
BI22100.0000.00
Total988252 91
Table 2. Reservoirs with cyanobacteria and bloom records regarding to the main water use of the reservoirs (Aqu: Aquaculture; Fd: Flood defence; Fish: Fishing; Hyd: Hydroelectric; Ind: Industrial; Irr: Irrigation; Liv: Livestock sector; Rec: Recreational; Sto: Storage; Wd: Water derivation; Ws: Water supply).
Table 2. Reservoirs with cyanobacteria and bloom records regarding to the main water use of the reservoirs (Aqu: Aquaculture; Fd: Flood defence; Fish: Fishing; Hyd: Hydroelectric; Ind: Industrial; Irr: Irrigation; Liv: Livestock sector; Rec: Recreational; Sto: Storage; Wd: Water derivation; Ws: Water supply).
Water UseTotal ReservoirsReservoirs with CyanobacteriaReservoirs with Registered BloomsNumber of Blooms Registered
Aqu2000
Fd36611
Fish4000
Hyd280582361
Ind329411
Irr193331541
Liv4000
Rec18112
Sto14628
Wd17000
Ws38813945133
Total98825291257
Table 3. Distribution range (% of the reservoirs with cyanobacteria records in which each genus was recorded) of the identified genera of cyanobacteria in the Spanish reservoirs.
Table 3. Distribution range (% of the reservoirs with cyanobacteria records in which each genus was recorded) of the identified genera of cyanobacteria in the Spanish reservoirs.
GenusDistribution Range
Anabaena60.71
Microcystis57.14
Aphanizomenon50.00
Aphanocapsa40.08
Merismopedia38.89
Pseudanabaena37.30
Woronichinia35.32
Oscillatoria30.95
Chroococcus26.98
Aphanothece22.22
Planktothrix21.43
Coelosphaerium9.92
Anabaenopsis8.73
Cylindrospermopsis7.94
Phormidium7.54
Limnothrix7.54
Synechococcus7.54
Geitlerinema7.14
Snowella5.95
Planktolyngbya5.56
Spirulina5.16
Raphidiopsis4.37
Synechocystis4.37
Romeria3.97
Lyngbya2.78
Nostoc2.38
Gomphosphaeria2.38
Cyanogranis1.98
Cylindrospermum1.59
Radiocystis1.59
Jaaginema1.59
Tolypothrix0.79
Arthrospira0.40
Dermocarpella0.40
Gloeocapsa0.40
Schizothrix0.40
Chamaesiphon0.40
Coelomoron0.40
Table 4. Species of cyanobacteria with a distribution range of over 10% (Complete data in Supplementary Material—Table S2) (Distribution range: % of the reservoirs with cyanobacteria records in which each taxon was recorded).
Table 4. Species of cyanobacteria with a distribution range of over 10% (Complete data in Supplementary Material—Table S2) (Distribution range: % of the reservoirs with cyanobacteria records in which each taxon was recorded).
SpeciesDistribution Range
Anabaena spp.38.49
Microcystis aeruginosa34.13
Woronichinia naegeliana32.54
Aphanizomenon flos-aquae30.16
Microcystis spp.26.19
Pseudanabaena spp.23.41
M. tenuissima23.41
Aphanizomenon gracile18.25
Anabaena flos-aquae17.46
Microcystis flos-aquae17.46
Aphanizomenon spp.17.06
Aphanocapsa spp.16.67
Oscillatoria spp.16.27
Oscillatoria limnetica15.87
Planktothrix agardhii15.08
Aphanocapsa holsatica14.29
Anabaena spiroides13.89
Aphanocapsa incerta13.49
Anabaena circinalis13.10
Oscillatoria agardhii13.10
Anabaena planctonica12.70
Merismopedia spp.12.70
Chroococcus spp.12.30
Table 5. Dominant species in blooms. Species which only occurred once (0.39) were not considered (Complete data in Supplementary Material—Table S2).
Table 5. Dominant species in blooms. Species which only occurred once (0.39) were not considered (Complete data in Supplementary Material—Table S2).
SpeciesFrequency of Appearance
Microcystis aeruginosa17.9
Aphanizomenon flos-aquae12.84
Microcystis spp.11.28
Woronichinia naegeliana9.34
Oscillatoria limnetica5.06
Merismopedia tenuissima4.67
Aphanizomenon gracile4.67
Anabaena spp.4.28
Pseudanabaena spp.3.5
Merismopedia spp.3.5
Planktothrix rubescens3.11
Aphanocapsa spp.3.11
Aphanizomenon spp.3.11
Planktothrix agardhii2.72
Microcystis flos-aquae2.72
Anabaena planctonica2.72
Anabaena flos-aquae2.33
Pseudanabaena cfr. limnetica1.95
Aphanocapsa holsatica1.95
Anabaena aphanizomenoides1.95
Oscillatoria agardhii1.56
Geitlerinema spp.1.56
Cyanogranis ferruginea1.56
Woronichinia spp.1.17
Pseudanabaena catenata1.17
Limnothrix spp.1.17
Cylindrospermopsis raciborskii1.17
Anabaena crassa1.17
Anabaena circinalis1.17
Anabaena cfr. spiroides1.17
Synechococcus cfr. nidulans0.78
Microcystis smithii0.78
Microcystis novacekii0.78
Aphanocapsa cfr. grevillei0.78
Aphanizomenon aphanizomenoides0.78
Anabaena bergii0.78
Anabaena affinis0.78
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Vieira-Lanero, R.; Barca, S.; Cobo, M.C.; Cobo, F. Occurrence of Freshwater Cyanobacteria and Bloom Records in Spanish Reservoirs (1981–2017). Hydrobiology 2022, 1, 122-136. https://doi.org/10.3390/hydrobiology1010009

AMA Style

Vieira-Lanero R, Barca S, Cobo MC, Cobo F. Occurrence of Freshwater Cyanobacteria and Bloom Records in Spanish Reservoirs (1981–2017). Hydrobiology. 2022; 1(1):122-136. https://doi.org/10.3390/hydrobiology1010009

Chicago/Turabian Style

Vieira-Lanero, Rufino, Sandra Barca, M. Carmen Cobo, and Fernando Cobo. 2022. "Occurrence of Freshwater Cyanobacteria and Bloom Records in Spanish Reservoirs (1981–2017)" Hydrobiology 1, no. 1: 122-136. https://doi.org/10.3390/hydrobiology1010009

Article Metrics

Back to TopTop