Extensions of Weighted Integral Inequalities for GA-Convex Functions in Connection with Fejér’s Result
Abstract
1. Introduction and Motivation
- To introduce a unified family of functionals (, , , , , , ) that serve as natural geometric counterparts to the well-known mappings for classical convex functions.
- To establish a comprehensive set of Fejér-type inequalities that interrelate these functionals, providing refined bounds and revealing their properties, such as -convexity, monotonicity, and symmetry.
2. Preliminaries and Literature Review
3. Main Results
- (i)
- is -convex and increases monotonically on .
- (ii)
- The following hold:
- (i)
- The following identities hold:
- (ii)
- is -convex on .
- (iii)
- The following identities hold:and
- (iv)
- The following inequality is valid:
- (v)
- increases monotonically on and decreases monotonically on .
- (vi)
- for all .
- (i)
- is -convex on .
- (ii)
- The following inequalities hold for all :and
- (iii)
- The following bound is true:
- (i)
- is -convex on .
- (ii)
- The following inequalities hold for all :and
- (iii)
- The following identity holds:
- (i)
- is -convex on and symmetric about .
- (ii)
- is decreasing on and increasing on .and
- (iii)
- Inequalitiesand
4. Examples for the Validity of the Results
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hermite, C. Sur deux limites d’une int’egrale d’efinie. Mathesis 1893, 3, 82. [Google Scholar]
- Hadamard, J. ’Etude sur les propri’et’es des fonctions enti’eres en particulier d’une function consid’er’ee par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
- Ardic, M.A.; Akdemir, A.O.; Set, E. New Ostrowski like inequalities for GG-convex and GA-convex functions. Math. Inequal. Appl. 2016, 19, 1159–1168. [Google Scholar]
- Ardic, M.A.; Akdemir, A.O.; Yildiz, K. On some new inequalities via GG-convexity and GA-convexity. Filomat 2018, 32, 5707–5717. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Latif, M.A.; Momoniat, E. Fej’er type integral inequalities related with geometrically-arithmetically convex functions with applications. Acta Comment. Univ. Tartu. Math. 2019, 23, 51–64. [Google Scholar]
- Dragomir, S.S. Some new inequalities of Hermite-Hadamard type for GA-convex functions. Annales Universitatis Mariae Curie-Sklodowska Lublin-Polonia 2018, LXXII, 55–68. [Google Scholar] [CrossRef]
- Dragomir, S.S. Iequalities of Hermite-Hadamard type for GA-convex functions. Ann. Math. Silesianae 2018, 32, 145–168. [Google Scholar] [CrossRef]
- Dragomir, S.S. Inequalities of Jensen type for GA-convex functions. RGMIA Res. Rep. Collect. 2015, 18, 1–26. [Google Scholar]
- Dragomir, S.S.; Cho, Y.J.; Kim, S.S. Inequalities of Hadamard’s type for Lipschitzian mappings and their applications. J. Math. Anal. Appl. 2000, 245, 489–501. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Milosevic, D.S.; Sándor, J. On some refinements of Hadamard’s inequalities and applications. Univ. Belgrad. Publ. Elek. Fak. Sci. Math. 1993, 4, 3–10. [Google Scholar]
- Dragomir, S.S. On Hadamard’s inequality for convex functions. Mat. Balk. 1992, 6, 215–222. [Google Scholar] [CrossRef]
- Dragomir, S.S. On Hadamard’s inequality for the convex mappings defined on a ball in the space and applications. Math. Ineq. Appl. 2000, 3, 177–187. [Google Scholar] [CrossRef]
- Dragomir, S.S. On some integral inequalities for convex functions. Zb.-Rad. (Kragujevac) 1996, 18, 21–25. [Google Scholar]
- Dragomir, S.S.; Agarwal, R.P. Two new mappings associated with Hadamard’s inequalities for convex functions. Appl. Math. Lett. 1998, 11, 33–38. [Google Scholar] [CrossRef]
- Dragomir, S.S. Two mappings in connection to Hadamard’s inequalities. J. Math. Anal. Appl. 1992, 167, 49–56. [Google Scholar] [CrossRef]
- Kunt, M.; Işcan, I. Fractional Hermite-Hadamard-Fej’er type inequalities for GA-convex functions. Turk. J. Ineq. 2018, 2, 1–20. [Google Scholar]
- Işcan, I. Hermite-Hadamard type inequalities for GA-s-convex functions. Le Mat. 2014, 69, 129–146. [Google Scholar]
- Latif, M.A.; Kalsoom, H.; Khan, Z.A.; Al-moneef, A.A. Refinement mappings related to Hermite-Hadamard type inequalities for GA-convex function. Mathematics 2022, 10, 1398. [Google Scholar] [CrossRef]
- Latif, M.A.; Dragomir, S.S.; Momoniat, E. Some Fej’er type integral inequalities for geometrically-arithmetically-convex functions with applications. Filomat 2018, 32, 2193–2206. [Google Scholar] [CrossRef]
- Latif, M.A. Extensions of Fej’er type inequalities for GA-convex functions and related results. Filomat 2023, 37, 8041–8055. [Google Scholar] [CrossRef]
- Latif, M.A.; Budak, H.; Kashuri, A. Further refinements and inequalities of Fej’er’s type via GA-convexity. Int. J. Optim. Control. Theor. Appl. 2024, 14, 229–248. [Google Scholar] [CrossRef]
- Latif, M.A. Some companions of Fej’er type inequalities using GA-convex functions. Mathematics 2023, 11, 392. [Google Scholar] [CrossRef]
- Niculescu, C.P. Convexity according to the geometric mean. Math. Inequal. Appl. 2000, 3, 155–167. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some inequalities for geometrically-arithmetically h-convex functions. Creat. Math. Inform. 2014, 23, 91–98. [Google Scholar] [CrossRef]
- Obeidat, S.; Latif, M.A. Weighted version of Hermite-Hadamard type inequalities for geometrically quasi-convex functions and their applications. J. Inequal. Appl. 2018, 2018, 307. [Google Scholar] [CrossRef] [PubMed]
- Qi, F.; Xi, B.-Y. Some Hermite-Hadamard type inequalities for geometrically quasi-convex functions. Proc. Indian Acad. Sci. Math. Sci. 2014, 124, 333–342. [Google Scholar] [CrossRef]
- Tseng, K.-L.; Hwang, S.R.; Dragomir, S.S. On some new inequalities of Hermite-Hadamard-Fej’er type involving convex functions. Demonstr. Math. 2007, 40, 51–64. [Google Scholar]
- Tseng, K.-L.; Hwang, S.R.; Dragomir, S.S. Fej’er-Type Inequalities (I). J. Inequal. Appl. 2010, 2010, 531976. [Google Scholar] [CrossRef]
- Tseng, K.-L.; Hwang, S.R.; Dragomir, S.S. Some companions of Fej’er’s inequality for convex functions. RACSAM 2015, 109, 645–656. [Google Scholar] [CrossRef]
- Tseng, K.-L.; Hwang, S.R.; Dragomir, S.S. Fej’er-type Inequalities (II). Math. Slovaca 2017, 67, 109–120. [Google Scholar] [CrossRef]
- Tseng, K.-L.; Hwang, S.R.; Dragomir, S.S. On some weighted integral inequalities for convex functions related Fej’er result. Filomat 2011, 25, 195–218. [Google Scholar] [CrossRef]
- Tseng, K.-L.; Yang, G.-S.; Hsu, K.-C. On some inequalities for Hadamard’s type and applications. Taiwan J. Math. 2009, 13, 1929–1948. [Google Scholar] [CrossRef]
- Xiang, R. Refinements of Hermite-Hadamard type inequalities for convex functions via fractional integrals. J. Appl. Math. Inform. 2015, 33, 119–125. [Google Scholar] [CrossRef]
- Yang, G.S.; Hong, M.C. A note on Hadamard’s inequality. Tamkang J. Math. 1997, 28, 33–37. [Google Scholar] [CrossRef]
- Yang, G.S.; Tseng, K.-L. On certain integral inequalities related to Hermite-Hadamard inequalities. J. Math. Anal. Appl. 1999, 239, 180–187. [Google Scholar] [CrossRef]
- Yang, G.S.; Tseng, K.-L. Inequalities of Hadamard’s type for Lipschitzian mappings. J. Math. Anal. Appl. 2001, 260, 230–238. [Google Scholar] [CrossRef]
- Yang, G.S.; Tseng, K.-L. On certain multiple integral inequalities related to Hermite-Hadamard inequalities. Util. Math. 2002, 62, 131–142. [Google Scholar]
- Yang, G.S.; Tseng, K.-L. Inequalities of Hermite-Hadamard-Fej’er type for convex functions and Lipschitzian functions. Taiwan J. Math. 2003, 7, 433–440. [Google Scholar]
- Zhang, X.-M.; Chu, Y.-M.; Zhang, X.-H. The Hermite-Hadamard type inequality of GA-convex functions and its application. J. Inequal. Appl. 2010, 2010, 507560. [Google Scholar] [CrossRef]
- Fej’er, L. Uber die Fourierreihen, II. Math. Naturwiss. Anz Ungar. Akad. Wiss. 1906, 24, 369–390. [Google Scholar]
- Hwang, D.-Y.; Tseng, K.-L.; Yang, G.S. Some Hadamard’s Inequalities for Coordinated Convex Functions in a Rectangle from the Plane. Taiwan J. Math. 2007, 11, 63–73. [Google Scholar] [CrossRef]



| Classical Functional (Refs.) | New GA-Convex Functional (This Paper) | Key Property / Role |
|---|---|---|
| [15,31] | Endpoint & geometric mean interpolation | |
| [15,31] | New: Double integral, symmetric about | |
| [31] | Weighted endpoint-average link | |
| [11] | Specific weighted average |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latif, M.A. Extensions of Weighted Integral Inequalities for GA-Convex Functions in Connection with Fejér’s Result. AppliedMath 2025, 5, 168. https://doi.org/10.3390/appliedmath5040168
Latif MA. Extensions of Weighted Integral Inequalities for GA-Convex Functions in Connection with Fejér’s Result. AppliedMath. 2025; 5(4):168. https://doi.org/10.3390/appliedmath5040168
Chicago/Turabian StyleLatif, Muhammad Amer. 2025. "Extensions of Weighted Integral Inequalities for GA-Convex Functions in Connection with Fejér’s Result" AppliedMath 5, no. 4: 168. https://doi.org/10.3390/appliedmath5040168
APA StyleLatif, M. A. (2025). Extensions of Weighted Integral Inequalities for GA-Convex Functions in Connection with Fejér’s Result. AppliedMath, 5(4), 168. https://doi.org/10.3390/appliedmath5040168

