Tripled Fixed Points and Tripled Best Proximity Points in Modular Function Spaces
Abstract
1. Introduction
2. Preliminaries
- 1.
- ;
- 2.
- ρ is monotone in the sense that for all implies , where ;
- 3.
- ρ is orthogonally subadditive, , where with and ;
- 4.
- ρ possesses the Fatou property whenever for every entails , for ;
- 5.
- ρ is order-continuous on , as and imply ;
- 1.
- if ;
- 2.
- is ρ-Cauchy if as ;
- 3.
- is said to be ρ-complete whenever every ρ-Cauchy sequence is ρ-convergent;
- 4.
- is ρ-closed if the limit f of every ρ-convergent sequence belongs to A;
- 5.
- is ρ-bounded if there is and a constant M such that for every ;
- 6.
- ρ has the property if implies .
- 1.
- is complete;
- 2.
- If for some , then a subsequence converges ρ–a.e. to 0;
- 3.
- (Fatou property) If ρ–a.e., then .
- 1.
- ;
- 2.
- For every , there exists such that for every , the inequality holds;
- 1.
- ;
- 2.
- ;
- 1.
- ;
- 2.
- ;
3. Results
3.1. Tripled Fixed Points for Kannan-Type Mappings in Modular Function Spaces
- 1.
- F possesses a unique tripled fixed point ;
- 2.
- For any initially chosen triple , the iterative sequences , , and converge (in the modular sense) to the unique tripled fixed point .
3.2. Tripled Best Proximity Points in Modular Function Spaces
4. Examples
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Bhaskar, T.G.; Lakshmikantham, V. Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 2006, 65, 1379–1393. [Google Scholar] [CrossRef]
- Berinde, V. Generalized coupled fixed point theorems for mixed monotone mappings in partially ordered metric spaces. Nonlinear Anal. 2011, 74, 7347–7355. [Google Scholar] [CrossRef]
- Berinde, V. Coupled fixed point theorems for ϕ–contractive mixed monotone mappings in partially ordered metric spaces. Nonlinear Anal. 2012, 75, 3218–3228. [Google Scholar] [CrossRef]
- Lakshmikantham, V.; Ćirić, L. Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal. 2009, 70, 4341–4349. [Google Scholar] [CrossRef]
- Berzig, M.; Samet, B. An extension of coupled fixed point’s concept in higher dimension and applications. Comput. Math. Appl. 2012, 63, 1319–1334. [Google Scholar] [CrossRef]
- Eldred, A.A.; Veeramani, P. Existence and convergence of best proximity points. J. Math. Anal. Appl. 2006, 323, 1001–1006. [Google Scholar] [CrossRef]
- Sahney, B.N.; Singh, K.L.; Whitfield, J.H.M. Best approximations in locally convex spaces. J. Approx. Theory 1983, 38, 182–187. [Google Scholar] [CrossRef]
- Choudhury, B.S.; Kundu, A. On coupled generalised Banach and Kannan type contractions. J. Nonlinear Sci. Appl. 2012, 5, 259–270. [Google Scholar] [CrossRef]
- Harjani, J.; Sadarangani, K. Generalized contractions in partially ordered metric spaces and applications. Nonlinear Anal. 2010, 72, 1188–1197. [Google Scholar] [CrossRef]
- Berinde, V. Coupled coincidence point theorems for mixed monotone nonlinear operators. Comput. Math. Appl. 2012, 64, 1770–1777. [Google Scholar] [CrossRef]
- Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α–ψ–contractive type mappings. Nonlinear Anal. 2012, 75, 2154–2165. [Google Scholar] [CrossRef]
- Kozłlowski, W.M. Notes on modular function spaces. I. Ann. Soc. Math. Pol. Ser. I Commentat. Math. 1988, 28, 87–100. Available online: https://eudml.org/doc/291891 (accessed on 24 November 2025).
- Kozłlowski, W.M. Notes on modular function spaces. II. Ann. Soc. Math. Pol. Ser. I Commentat. Math. 1988, 28, 101–116. Available online: https://bibliotekanauki.pl/articles/746034.pdf (accessed on 24 November 2025).
- Musielak, J. Orlicz Spaces and Modular Spaces; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar] [CrossRef]
- Musielak, J. Orlicz Spaces; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar] [CrossRef]
- Khamsi, M.A.; Kozlowski, W.M.; Reich, S. Fixed point theory in modular function spaces. Nonlinear Anal. 1990, 14, 935–953. [Google Scholar] [CrossRef]
- Khamsi, M.A.; Kozlowski, W.M. Fixed Point Theory in Modular Function Spaces; Birkhauser: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Zlatanov, B. Best proximity points in modular function spaces. Arab. J. Math. 2015, 4, 215–227. [Google Scholar] [CrossRef]
- Cui, Y.; Zhao, L. Kadec–Klee Property in Musielak–Orlicz Function Spaces Equipped with the Orlicz Norm. Aequationes Math. 2022, 96, 167–184. [Google Scholar] [CrossRef]
- Kozlowski, W.M. Contractive Semigroups in Topological Vector Spaces, on the 100th Anniversary of Stefan Banach’s Contraction Principle. Bull. Aust. Math. Soc. 2023, 108, 331–338. [Google Scholar] [CrossRef]
- Nowakowski, A.; Plebaniak, R. Existence of Solutions for Transport Equation in Musielak–Orlicz Type Spaces. Adv. Differ. Equ. 2025, 30, 93–114. [Google Scholar] [CrossRef]
- El Amri, A.; Khamsi, M.A. New Modular Fixed-Point Theorem in the Variable Exponent Spaces ℓp(·). Mathematics 2022, 10, 869. [Google Scholar] [CrossRef]
- Khamsi, M.A.; Méndez, O.D.; Reich, S. Modular Geometric Properties in Variable Exponent Spaces. Mathematics 2022, 10, 2509. [Google Scholar] [CrossRef]
- Bachar, M. The Variation of Constants Formula in Lebesgue Spaces with Variable Exponents. Symmetry 2024, 16, 978. [Google Scholar] [CrossRef]
- Calderón, K.; Khamsi, M.A. Fixed Point Theorems for Pointwise Kannan Mappings in Variable Exponent Spaces ℓp(·). J. Nonlinear Convex Anal. 2025, 26, 1283–1291. [Google Scholar]
- Cho, Y.J.; Gupta, A.; Karapinar, E.; Kumam, P.; Sintunavarat, W. Tripled best proximity point theorem in metric spaces. Math. Inequalities Appl. 2013, 16, 1197–1216. [Google Scholar] [CrossRef]
- Borcut, M.; Berinde, V. Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces. Appl. Math. Comput. 2012, 16, 5929–5936. [Google Scholar] [CrossRef]
- Ali, A.; Dinkova, C.; Kulina, H.; Ilchev, A.; Zlatanov, B. Tripled Fixed Points, Obtained by Ran-Reunrings Theorem for Monotone Maps in Partially Ordered Metric Spaces. Mathematics 2025, 13, 760. [Google Scholar] [CrossRef]
- Ali, A.; Ilchev, A.; Ivanova, V.; Kulina, H.; Zlatanov, B. Modeling the Tripodal Mobile Market Using Response Functions Instead of Payoff Maximization. Mathematics 2025, 13, 171. [Google Scholar] [CrossRef]
- Kannan, R. Some results on fixed points. Bull. Calcutta Math. Soc. 1968, 60, 71–76. [Google Scholar]
- Guo, D.; Lakshmikantham, V. Coupled Fixed Points of Nonlinear Operators with Applications. Nonlinear Anal. 1987, 11, 623–632. [Google Scholar] [CrossRef]
- Petruşel, A. Fixed Points vs. Coupled Fixed Points. J. Fixed Point Theory Appl. 2018, 20, 150. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.; Hristov, M.; Ilchev, A.; Nedelcheva, D.; Zlatanov, B. Tripled Fixed Points and Tripled Best Proximity Points in Modular Function Spaces. AppliedMath 2025, 5, 167. https://doi.org/10.3390/appliedmath5040167
Ali A, Hristov M, Ilchev A, Nedelcheva D, Zlatanov B. Tripled Fixed Points and Tripled Best Proximity Points in Modular Function Spaces. AppliedMath. 2025; 5(4):167. https://doi.org/10.3390/appliedmath5040167
Chicago/Turabian StyleAli, Aynur, Miroslav Hristov, Atanas Ilchev, Diana Nedelcheva, and Boyan Zlatanov. 2025. "Tripled Fixed Points and Tripled Best Proximity Points in Modular Function Spaces" AppliedMath 5, no. 4: 167. https://doi.org/10.3390/appliedmath5040167
APA StyleAli, A., Hristov, M., Ilchev, A., Nedelcheva, D., & Zlatanov, B. (2025). Tripled Fixed Points and Tripled Best Proximity Points in Modular Function Spaces. AppliedMath, 5(4), 167. https://doi.org/10.3390/appliedmath5040167

