A Study on Geometrical Consistency of Surfaces Using Partition-Based PCA and Wavelet Transform in Classification
Abstract
1. Introduction
2. Proposed Work
3. Illustrated Examples
4. Leaf Image Classification Using Partition
4.1. Classification by Random Forest Method
4.2. Classification by Support Vector Machine
4.3. Robustness to Additive Noise
4.4. Noise Robustness Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PCA | Principal Component Analysis |
TIFV | Transformation Invariant Feature Vector |
SVM | Support Vector Machine |
SVC | Support Vector Classifier |
MV | Measured Values |
HOG | Histogram of Oriented Gradient |
Appendix A
References
- Liu, W.; Sun, J.; Zhang, B.; Chu, J. Wavelet feature parameters representations of open planar curves. Appl. Math. Model. 2018, 57, 614–624. [Google Scholar] [CrossRef]
- Vignesh, D.; Palanisamy, T. Invariance Of Geometry Of Planar Curves Using Atypical Wavelet Coefficients. J. Appl. Sci. Eng. 2022, 26, 731–737. [Google Scholar] [CrossRef]
- Vignesh, D.; Palanisamy, T. Transformation invariant features of space curves and its application in classification problems. J. Appl. Sci. Eng. 2024, 27, 2825–2832. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, D.; Frangi, A.F.; Yang, J.y. Two-dimensional PCA: A new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhu, Y. Subpattern-based principle component analysis. Pattern Recognit. 2004, 37, 1081–1083. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, Z.H. (2D) 2PCA: Two-directional two-dimensional PCA for efficient face representation and recognition. Neurocomputing 2005, 69, 224–231. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, Z.H.; Chen, S. Diagonal principal component analysis for face recognition. Pattern Recognit. 2006, 39, 140–142. [Google Scholar] [CrossRef]
- Kumar, K.V.; Negi, A. Novel approaches to principal component analysis of image data based on feature partitioning framework. Pattern Recognit. Lett. 2008, 29, 254–264. [Google Scholar] [CrossRef]
- Freudenstein, F. Harmonic analysis of crank-and-rocker mechanisms with application. J. Appl. Mech. 1959, 26, 673–675. [Google Scholar] [CrossRef]
- McGarva, J.; Mullineux, G. A new methodology for rapid synthesis of function generators. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 1992, 206, 391–398. [Google Scholar] [CrossRef]
- McGarva, J.; Mullineux, G. Harmonic representation of closed curves. Appl. Math. Model. 1993, 17, 213–218. [Google Scholar] [CrossRef]
- Jianwei, S.; Jinkui, C.; Baoyu, S. A unified model of harmonic characteristic parameter method for dimensional synthesis of linkage mechanism. Appl. Math. Model. 2012, 36, 6001–6010. [Google Scholar] [CrossRef]
- Wu, J.; Ge, Q.; Gao, F. An efficient method for synthesizing crank-rocker mechanisms for generating low harmonic curves. In Proceedings of the ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, San Diego, CA, USA, 30 August–2 September 2009; Volume 49040, pp. 531–538. [Google Scholar] [CrossRef]
- Yue, C.; Su, H.J.; Ge, Q.J. A hybrid computer-aided linkage design system for tracing open and closed planar curves. Comput.-Aided Des. 2012, 44, 1141–1150. [Google Scholar] [CrossRef]
- Uesaka, Y. A new Fourier descriptor applicable to open curves. Electron. Commun. Jpn. (Part I Commun.) 1984, 67, 1–10. [Google Scholar] [CrossRef]
- Anusha, S.; Sriram, A.; Palanisamy, T. A Comparative Study on Decomposition of Test Signals Using Variational Mode Decomposition and Wavelets. Int. J. Electr. Eng. Inform. 2016, 8, 886. [Google Scholar] [CrossRef]
- Anand, R.; Veni, S.; Aravinth, J. Robust classification technique for hyperspectral images based on 3D-discrete wavelet transform. Remote Sens. 2021, 13, 1255. [Google Scholar] [CrossRef]
- Sun, J.; Liu, W.; Chu, J. Synthesis of spherical four-bar linkage for open path generation using wavelet feature parameters. Mech. Mach. Theory 2018, 128, 33–46. [Google Scholar] [CrossRef]
- Hung, K.C.; Truong, T.K.; Jeng, J.H.; Yao, J.T. Uniqueness wavelet descriptor for plane closed curves. In Proceedings of the 1997 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Victoria, BC, Canada, 20–22 August 1997; Volume 1, pp. 294–297. [Google Scholar] [CrossRef]
- Tieng, Q.M.; Boles, W.W.; Deriche, M. Space curve recognition based on the wavelet transform and string-matching techniques. In Proceedings of the IEEE International Conference on Image Processing, Washington, DC, USA, 23–26 October 1995; Volume 2, pp. 643–646. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; Volume 25. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. arXiv 2016. [Google Scholar] [CrossRef]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar] [CrossRef]
- Lin, W.; Hasenstab, K.; Moura Cunha, G.; Schwartzman, A. Comparison of handcrafted features and convolutional neural networks for liver MR image adequacy assessment. Sci. Rep. 2020, 10, 20336. [Google Scholar] [CrossRef]
- Olver, P.J. Equivalence, Invariants and Symmetry; Cambridge University Press: New York, NY, USA, 1995. [Google Scholar]
- Olver, P.J. Differential invariants of surfaces. Differ. Geom. Its Appl. 2009, 27, 230–239. [Google Scholar] [CrossRef]
- Figueroa, C.B.; Mercuri, F.; Pedrosa, R.H. Invariant surfaces of the Heisenberg groups. Ann. Mat. Pura Appl. 1999, 177, 173–194. [Google Scholar] [CrossRef]
- Montaldo, S.; Onnis, I.I. INVARIANT CMC SURFACES IN H 2× R. Glasg. Math. J. 2004, 46. [Google Scholar] [CrossRef]
- Onnis, I.I. Invariant surfaces with constant mean curvature in. Ann. Mat. Pura Appl. 2008, 187, 667–682. [Google Scholar] [CrossRef]
- Montaldo, S.; Onnis, I.I. Invariant surfaces of a three-dimensional manifold with constant Gauss curvature. J. Geom. Phys. 2005, 55, 440–449. [Google Scholar] [CrossRef]
- Aydin, M.E. Classification results on surfaces in the isotropic 3-space. arXiv 2016, arXiv:1601.03190. [Google Scholar] [CrossRef]
- Sahoo, T.K.; Banka, H.; Negi, A. Novel approaches to one-directional two-dimensional principal component analysis in hybrid pattern framework. Neural Comput. Appl. 2020, 32, 4897–4918. [Google Scholar] [CrossRef]
- Xu, G.; Li, C. Plant leaf classification and retrieval using multi-scale shape descriptor. J. Eng. 2021, 2021, 467–475. [Google Scholar] [CrossRef]
- Wagle, S.A.; Harikrishnan, R.; Ali, S.H.M.; Faseehuddin, M. Classification of plant leaves using new compact convolutional neural network models. Plants 2021, 11, 24. [Google Scholar] [CrossRef] [PubMed]
- Azlah, M.A.F.; Chua, L.S.; Rahmad, F.R.; Abdullah, F.I.; Wan Alwi, S.R. Review on techniques for plant leaf classification and recognition. Computers 2019, 8, 77. [Google Scholar] [CrossRef]
- Bist, U.S.; Singh, N. Analysis of recent advancements in support vector machine. Concurr. Comput. Pract. Exp. 2022, 34, e7270. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Oo, L.M.; Aung, N.Z. A simple and efficient method for automatic strawberry shape and size estimation and classification. Biosyst. Eng. 2018, 170, 96–107. [Google Scholar] [CrossRef]
- Ishikawa, T.; Hayashi, A.; Nagamatsu, S.; Kyutoku, Y.; Dan, I.; Wada, T.; Oku, K.; Saeki, Y.; Uto, T.; Tanabata, T.; et al. Classification of strawberry fruit shape by machine learning. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 463–470. [Google Scholar] [CrossRef]
- Baghdadi, S.; Aboutabit, N. View-independent vehicle category classification system. Int. J. Adv. Comput. Sci. Appl. 2021, 12. [Google Scholar] [CrossRef]
(−6.3940, 12.720, 12.720) | (19.7091, −0.2755, −0.2755) | (−12.716, −2.0028, −2.0028) | (0.3200, −1.6752, −1.6752) | ||
(−6.6829, −0.7732, −0.7732) | (12.409, −2.8985, −2.8985) | (−2.9784, 0.4966, 0.4966) | (1.7980, 6.1948, 6.1948) | ||
(6.7078, 10.620, 10.620) | (11.557, −2.7910, −2.7910) | (−15.194, 5.7163, 5.7163) | (−1.3212, −1.6752, −1.6752) | ||
(1.7269, 1.2054, 1.2054) | (8.5331, −2.6410, −2.6410) | (3.6799, −1.6949, −1.6949) | (7.8671, 6.1948, 6.1948) | ||
(−0.6086, 0.3685, 0.3685) | (5.9457, −2.6410, −2.6410) | (−10.340, 6.1948, 6.1948) | (−2.9624, −1.6752, −1.6752) | ||
(−0.0740, −0.2106, −0.2106) | (3.3767 −2.6358 −2.6358) | (1.9612 −1.6752 −1.6752) | (13.9361 6.1948 6.1948) | ||
(−4.0898, 5.5290, 5.5290) | (−0.6016, −2.8946, −2.8946) | (−4.2710, 6.1948, 6.1948) | (−4.6036, −1.6752, −1.6752) | ||
(2.2002, −1.3324, −1.3324) | (−0.1387, 0.0964, 0.0964) | (−1.7159, −1.3324, −1.3324) | (0.1447, 0.0964, 0.0964) | ||
(0.2350, 0.1150, 0.1150) | (3.1476, −2.0965, −2.0965) | (0.5730, 0.1150, 0.1150) | (−3.0144, −2.0965, −2.0965) | ||
(−0.2332, 0.0964, 0.0964) | (−0.4105, −1.3324, −1.3324) | (0.0502, 0.0964, 0.0964) | (−4.3266, −1.3324, −1.3324) | ||
(5.2016, −2.0965, −2.0965) | (0.4603, 0.1150, 0.1150) | (−0.9604, −2.0965, −2.0965) | (0.7984, 0.1150, 0.1150) | ||
(0.8949, −1.3324, −1.3324) | (−0.0442, 0.0964, 0.0964) | (−3.0213, −1.3324, −1.3324) | (0.2392, 0.0964, 0.0964) | ||
(0.3477, 0.1150, 0.1150) | (1.0936, −2.0965, −2.0965) | (0.6857, 0.1150, 0.1150) | (−5.0684, −2.0965, −2.0965) | ||
(−5.6320, −1.3324, −1.3324) | (19.9277, 6.1750, 6.1750) | (22.0319, −12.7201, 0.0000) | (0.6383, −0.3685, 0.0000) | ||
(0.9111, 0.1150, 0.1150) | (−8.6555, −2.3382, −2.3382) | (−1.3392, 0.7732, 0.0000) | (−0.3648, 0.2106, 0.0000) | ||
(0.3337, 0.0964, 0.0964) | (2.7943, 1.1865, 1.1865) | (18.3949, −10.6203, 0.0000) | (9.5765, −5.5290, 0.0000) | ||
(0.1898, −0.2329, −0.2329) | (0.0987, 0.0128, 0.0128) | (2.0877, −1.2054, 0.0000) | (7.6548, 0.2755, 0.0000) |
(−12.782, 24.395, −26.441) | (39.373, 8.8521, 0.1949) | (−25.412, 5.5603, 3.7806) | (0.6390, 2.7376, 3.2431) | ||
(−13.353, −1.4943, 1.6111) | (24.802, 3.8225, 5.6474) | (−5.9771, 6.9093, −1.2732) | (3.5951, −10.126, −11.992) | ||
(13.405, 20.370, −22.077) | (23.124, 4.0297, 5.4236) | (−30.358, −11.043 −10.997) | (−2.6599, 2.7256, 3.2469) | ||
(3.4716, 2.3143, −2.5064) | (17.059, 4.3182, 5.1116) | (7.3770, 2.6975, 3.2847) | (15.715, −10.138, −11.989) | ||
(−1.2196, 0.7027, −0.7648) | (11.899, 4.3329, 5.1072) | (−20.692, −10.131, −11.990) | (−5.9124, 2.7528, 3.2385) | ||
(−0.1640, −0.4276, 0.4452) | (6.7274, 4.3093, 5.1070) | (3.9324, 2.7393, 3.2425) | (27.859, −10.116, −11.996) | ||
(−8.1874, 10.613, −11.496) | (−1.2150, 3.8435, 5.6357) | (−8.5093, −10.124, −11.992) | (−9.2255, 2.7484, 3.2400) | ||
(4.3930, 2.1776, 2.5793) | (−0.2772, −0.1578,−0.1866) | (−3.3833, 2.1793, 2.5790) | (0.2876, −0.1581, −0.1866) | ||
0.4690, −0.1880, −0.2227) | (6.2660, 3.4265, 4.0586) | (1.1370, −0.1885, −0.2225) | (−6.0287, 3.4058, 4.0653) | ||
(−0.4983, −0.1598, −0.1860) | (−0.8457, 2.1775, 2.5795) | (0.1056, −0.1575, −0.1867) | (−8.5945, 2.1783, 2.5795) | ||
(10.352, 3.4287, 4.0578) | (0.9318, −0.1880,−0.2227) | (−1.8871, 3.4559, 4.0497) | (1.6102, −0.1845, −0.2238) | ||
(1.7988, 2.1789, 2.5790) | (−0.0975, −0.1576, −0.1867) | (−6.0279, 2.1778, 2.5796) | (0.4796, −0.1155, −0.1998) | ||
(0.6851, −0.1853, −0.2235) | (2.1508, 3.4270, 4.0585) | (1.3680, −0.1869,−0.2230) | (−10.1380, 3.4025, 4.0665) | ||
(−11.293, 2.1922, 2.5752) | (39.847, −10.180, −11.947) | (66.082, −38.159, 0.0000) | 1.9152, −1.1062, 0.0000) | ||
(1.8096, −0.1448, −0.2362) | (−17.270, 1.4552, 4.6251) | (−4.0264, 2.3168, 0.0000) | (−1.0767, 0.6249, 0.0000) | ||
(0.6245, −0.1947, −0.1752) | (5.5673, −19.749, −1.5760) | (55.207, −31.860, 0.0000) | (28.744, −16.589, 0.0000) | ||
(0.3877, 6.9877, 0.1890) | (0.2423, −0.3848, −0.0099) | (6.2650, −3.6192, 0.0000) | (22.955, 0.8265, 0.0000) |
L | TIFV | |||
---|---|---|---|---|
(1.0000, 1.0000, 1.0000) | (1.0000, 1.0000, 1.0000) | (1.0000, 1.0000, 1.0000) | (1.0000, 1.0000, 1.0000) | |
(1.0447, −0.0613, −0.0609) | (0.6299, 0.4318, 28.9813) | (0.2352, 1.2426, −0.3368) | (5.6265, −3.6988, −3.6978) | |
(−1.0487, 0.8350, 0.8350) | (0.5873, 0.4552, 27.8328) | (1.1946, −1.9861, −2.9087) | (−4.1628, 0.9956, 1.0012) | |
(−0.2716, 0.0949, 0.0948) | (0.4333, 0.4878 26.2319) | (−0.2903, 0.4851, 0.8688) | (24.5943, −3.7033, −3.6967) | |
(0.0954, 0.0288, 0.0289) | (0.3022, 0.4895, 26.2091) | (0.8143, −1.8220, −3.1715) | (−9.2530, 1.0056, 0.9986) | |
(0.0128, −0.0175, −0.0168) | (0.1709, 0.4868, 26.2082) | (−0.1547, 0.4926, 0.8577) | (43.6002, −3.6953, −3.6989) | |
(0.6406, 0.4351, 0.4348) | (−0.0309, 0.4342, 28.9214) | (0.3349, −1.8208, −3.1721) | (−14.4382, 1.0040, 0.9990) | |
(1.0000, 1.0000, 1.0000) | (1.0000, 1.0000, 1.0000) | (1.0000, 1.0000, 1.0000) | (1.0000, 1.0000, 1.0000) | |
(0.1068, −0.0863, −0.0863) | (−22.6087, −21.7112, −21.7464) | (−0.3361, −0.0865, −0.0863) | (−20.9589, −21.5400, −21.7916) | |
(−0.1134, −0.0734, −0.0721) | (3.0513, −13.7972, −13.8215) | (−0.0312, −0.0723, −0.0724) | (−29.8788, −13.7765, −13.8269) | |
(1.0000, 1.0000, 1.0000) | (1.0000, 1.0000, 1.0000) | (1.0000, 1.0000, 1.0000) | (1.0000, 1.0000, 1.0000) | |
(0.1738, 0.6355, 0.6356) | (−0.1046, 0.8385, 0.8383) | (3.1942, 0.6302, 0.6370) | (0.2979, 0.6264, 0.8928) | |
(0.0662, −0.0541, −0.0551) | (2.3081, −18.2317, −18.2240) | (−0.7249, −0.0541, −0.0551) | (−6.2959, −18.4467, −18.1688) | |
(1.0000, 1.0000, 1.0000) | (1.0000, 1.0000, 1.0000) | (1.0000, 1.0000, 1.0000) | (1.0000, 1.0000, 1.0000) | |
(1.0000, 1.0000, 1.0000) | (1.0000, 1.0000, 1.0000) | (1.0000, 1.0000, 1.0000) | (1.0000, 1.0000, 1.0000) | |
(1.0000, 1.0000, 1.0000) | (1.0000, 1.0000, 1.0000) | (1.0000, 1.0000, 1.0000) | (1.0000, 1.0000, 1.0000) | |
(1.0000, 1.0000, 1.0000) | (1.0000, 1.0000, 1.0000) | (1.0000, 1.0000, 1.0000) | (1.0000, 1.0000, 1.0000) |
Classifier | Features | Accuracy |
---|---|---|
Random Forest | MVs | 51.21% |
MVs + HOGs | 93.15% | |
MVs + TIFVs | 100% | |
HOGs | 92.94% | |
HOGs + TIFVs | 100% | |
TIFVs | 100% | |
SVM | MVs | 51.62% |
MVs + HOGs | 94.18% | |
MVs + TIFVs | 100% | |
HOGs | 93.67% | |
HOGs + TIFVs | 100% | |
TIFVs | 100% |
Experiment | 3-Fold CV Accuracy (%) | Nested 5 × 3 CV Accuracy (%) |
---|---|---|
MVs only | 51.21 | 49.8 ± 2.1 |
MVs + HOGs | 93.15 | 91.9 ± 1.6 |
MVs + TIFVs | 100.0 | 98.8 ± 0.9 |
HOGs only | 92.94 | 91.7 ± 1.4 |
HOGs + TIFVs | 100.0 | 99.0 ± 0.7 |
TIFVs only | 100.0 | 98.9 ± 0.8 |
Experiment | 3-Fold CV Accuracy (%) | Nested 5 × 3 CV Accuracy (%) |
---|---|---|
MVs only | 51.62 | 50.2 ± 2.3 |
MVs + HOGs | 94.18 | 92.4 ± 1.5 |
MVs + TIFVs | 100.0 | 99.1 ± 0.8 |
HOGs only | 93.67 | 92.1 ± 1.6 |
HOGs + TIFVs | 100.0 | 99.3 ± 0.6 |
TIFVs only | 100.0 | 99.2 ± 0.7 |
Feature | Classifier | Accuracy (%) | Macro F1 (%)/Macro Recall (%) | |
---|---|---|---|---|
MV | RF | 0 | 49.8 ± 2.1 | 48.5 ± 2.3/49.1 ± 2.2 |
SVM | 0 | 50.2 ± 2.3 | 48.9 ± 2.5/49.4 ± 2.4 | |
RF | 20 | 45.2 ± 2.6 | 43.8 ± 2.9/44.7 ± 2.7 | |
SVM | 20 | 45.7 ± 2.7 | 44.3 ± 3.0/44.9 ± 2.8 | |
RF | 30 | 40.9 ± 3.1 | 39.1 ± 3.2/39.8 ± 3.0 | |
SVM | 30 | 41.3 ± 3.2 | 39.6 ± 3.4/40.2 ± 3.3 | |
HOG | RF | 0 | 91.9 ± 1.6 | 91.2 ± 1.8/91.5 ± 1.7 |
SVM | 0 | 92.1 ± 1.6 | 91.4 ± 1.9/91.7 ± 1.8 | |
RF | 20 | 86.7 ± 2.0 | 85.4 ± 2.2/85.9 ± 2.1 | |
SVM | 20 | 87.2 ± 2.1 | 85.8 ± 2.3/86.3 ± 2.2 | |
RF | 30 | 82.1 ± 2.5 | 80.5 ± 2.7/81.1 ± 2.6 | |
SVM | 30 | 82.6 ± 2.6 | 81.0 ± 2.8/81.6 ± 2.7 | |
TIFV | RF | 0 | 98.9 ± 0.8 | 98.8 ± 0.9/98.8 ± 0.9 |
SVM | 0 | 99.2 ± 0.7 | 99.1 ± 0.8/99.1 ± 0.8 | |
RF | 20 | 97.1 ± 1.0 | 96.9 ± 1.1/97.0 ± 1.1 | |
SVM | 20 | 97.5 ± 1.0 | 97.3 ± 1.1/97.4 ± 1.1 | |
RF | 30 | 95.4 ± 1.3 | 95.1 ± 1.4/95.2 ± 1.3 | |
SVM | 30 | 95.8 ± 1.3 | 95.5 ± 1.4/95.6 ± 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devaraj, V.; Palanisamy, T.; Somasundaram, K. A Study on Geometrical Consistency of Surfaces Using Partition-Based PCA and Wavelet Transform in Classification. AppliedMath 2025, 5, 134. https://doi.org/10.3390/appliedmath5040134
Devaraj V, Palanisamy T, Somasundaram K. A Study on Geometrical Consistency of Surfaces Using Partition-Based PCA and Wavelet Transform in Classification. AppliedMath. 2025; 5(4):134. https://doi.org/10.3390/appliedmath5040134
Chicago/Turabian StyleDevaraj, Vignesh, Thangavel Palanisamy, and Kanagasabapathi Somasundaram. 2025. "A Study on Geometrical Consistency of Surfaces Using Partition-Based PCA and Wavelet Transform in Classification" AppliedMath 5, no. 4: 134. https://doi.org/10.3390/appliedmath5040134
APA StyleDevaraj, V., Palanisamy, T., & Somasundaram, K. (2025). A Study on Geometrical Consistency of Surfaces Using Partition-Based PCA and Wavelet Transform in Classification. AppliedMath, 5(4), 134. https://doi.org/10.3390/appliedmath5040134