Advancing Load Frequency Control in Multi-Resource Energy Systems Through Superconducting Magnetic Energy Storage
Abstract
1. Introduction
2. Superconducting Magnetic Energy Storage System
3. Load Frequency Control
4. Configuration and Modeling of the Studied System
4.1. Linearized Multi-Resource Energy System Model
4.2. State-Space Equations Representation
5. Simulation Results
5.1. Multi-Resource Energy System Without SMES
5.2. Multi-Resource Energy System with SMES
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Subsystem | Parameter | Value |
---|---|---|
Gas turbine power plant | TF | 0.24 |
TS | 0.01 | |
TD | 0.2 | |
TL | 0.6 | |
TG | 1.1 | |
SgG | 0.2 | |
CV | 1 | |
TV | 0.05 | |
Steam turbine power plant | TT | 1 |
SgS | 0.2 | |
TG | 0.2 | |
FH | 0.3 | |
TH | 7 | |
Hydro turbine power plant | TW | 1.1 |
SgH | 0.2 | |
TG | 0.2 | |
TR | 4.9 | |
TP | 9.31 | |
Equivalent system of rotating mass and charge (first-area) | MI1 | 10 |
CD1 | 1 | |
Equivalent system of rotating mass and charge (second-area) | MI2 | 8 |
CD2 | 1 | |
Equivalent to SMES (first-area) | KSMES1 | 0.6 |
TSMES1 | 0.1 | |
Equivalent to SMES (second-area) | KSMES2 | 0.6 |
TSMES2 | 0.1 | |
Coefficient of synchronization between areas | TTL | 0.3 |
PID controllers | KP1 | 2 |
KI1 | 0.7 | |
KD1 | 1 | |
KP2 | 2 | |
KI2 | 0.7 | |
KD2 | 1 |
References
- Prakash, A.; Moursi, M.S.E.; Parida, S.K.; Kumar, K.; El-Saadany, E.F. Damping of Inter-Area Oscillations With Frequency Regulation in Power Systems Considering High Penetration of Renewable Energy Sources. IEEE Trans. Ind. Appl. 2024, 60, 1665–1679. [Google Scholar] [CrossRef]
- Fathollahi, A.; Gheisarnejad, M.; Boudjadar, J.; Homayounzadeh, M.; Khooban, M.H. Optimal Design of Wireless Charging Electric Buses-Based Machine Learning: A Case Study of Nguyen-Dupuis Network. IEEE Trans. Veh. Technol. 2023, 72, 8449–8458. [Google Scholar] [CrossRef]
- Dimoulkas, I.; Amelin, M.; Levihn, F. District heating system operation in power systems with high share of wind power. J. Mod. Power Syst. Clean Energy 2017, 5, 850–862. [Google Scholar] [CrossRef]
- Chowdhury, M.R.A.; Saleh, S.A.; Betancourt, O.A.; Cardenas-Barrera, J.L.; Castillo-Guerra, E. Employing Battery Storage Systems to Improve Power System Survivability. IEEE Trans. Ind. Appl. 2022, 58, 1858–1868. [Google Scholar] [CrossRef]
- Wang, G.; Wang, C.; Hao, Q.; Shahidehpour, M. Load frequency control method for cyber-physical power systems with 100% renewable energy. IEEE Trans. Power Syst. 2024, 39, 4684–4698. [Google Scholar] [CrossRef]
- Mokhtar, M.; Marei, M.I.; Sameh, M.A.; Attia, M.A. An adaptive load frequency control for power systems with renewable energy sources. Energies 2022, 15, 573. [Google Scholar] [CrossRef]
- Du, C.; Du, X.; Tong, C.; Li, Y.; Zhou, P. Stability Analysis for DFIG-Based Wind Farm Grid-Connected System Under All Wind Speed Conditions. IEEE Trans. Ind. Appl. 2023, 59, 2430–2445. [Google Scholar] [CrossRef]
- Shahgholian, G.; Fathollahi, A. Analyzing small-signal stability in a multi-source single-area power system with a load-frequency controller coordinated with a photovoltaic system. AppliedMath 2024, 4, 452–467. [Google Scholar] [CrossRef]
- Rajaguru, V.; Annapoorani, K.I. Virtual synchronous generator based superconducting magnetic energy storage unit for load frequency control of micro-grid using african vulture optimization algorithm. J. Energy Storage 2023, 65, 107343. [Google Scholar] [CrossRef]
- Shukla, R.R.; Garg, M.M.; Panda, A.K.; Das, D. Enhancing load frequency control with plug-in electric vehicle integration in non-reheat thermal power systems. Electr. Eng. 2024, 106, 3305–3320. [Google Scholar] [CrossRef]
- Yousef, M.Y.; Mosa, M.A.; Ali, A.A.; Masry, S.M.E.; Ghany, A.M.A. Frequency response enhancement of an AC micro-grid has renewable energy resources based generators using inertia controller. Electr. Power Syst. Res. 2021, 196, 107194. [Google Scholar] [CrossRef]
- Hernández-Callejo, L.; Gallardo-Saavedra, S.; Alonso-Gómez, V. A review of photovoltaic systems: Design, operation and maintenance. Sol. Energy 2019, 188, 426–440. [Google Scholar] [CrossRef]
- Khalil, A.E.; Boghdady, T.A.; Alham, M.H.; Ibrahim, D.K. A novel cascade-loop controller for load frequency control of isolated microgrid via dandelion optimizer. Ain Shams Eng. J. 2024, 15, 102526. [Google Scholar] [CrossRef]
- Fattollahi, A.; Dehghani, M.; Yousefi, M.R. Analysis and Simulation Dynamic Behavior of Power System Equipped with PSS and Excitation System Stabilizer. Signal Process. Renew. Energy 2022, 6, 99–111. [Google Scholar]
- Poursaberi, M.; Barati, H. Optimal reconfiguration of radial distribution system with the aim of reducing losses and improving voltage profiles using the improved lightning search algorithm. J. Nov. Res. Smart Power Syst. 2021, 10, 1–12. Available online: http://dorl.net/dor/20.1001.1.23222468.1400.10.1.2.7 (accessed on 12 March 2021).
- Rothe, A.; Kern, T.A. Design and impedance control of a hydraulic robot for paralyzed people. In Proceedings of the 8th RSI International Conference on Robotics and Mechatronics, ICRoM, Online, 19 November 2020. [Google Scholar]
- Abbasi Moshaei, A.R.; Mohammadi Moghaddam, M.; Dehghan Neistanak, V. Analytical model of hand phalanges desired trajectory for rehabilitation and design a sliding mode controller based on this model. Modares Mech. Eng. 2020, 20, 129–137. [Google Scholar]
- Fattollahi, A. Intelligent Control Framework for Improving Energy System Stability Through Deep Learning-Based Modal Optimization Scheme. Sustainability 2024, 16, 9392. [Google Scholar] [CrossRef]
- Jaberolansar, M.; Rezaei, M.M.; Khodadadi, H.; Madani, S.M. Optimizing the control of dfig based wind turbines using sensitivity analysis and particle swarm optimization method. Technovations Electr. Eng. Green Energy Syst. 2022, 1, 75–90. [Google Scholar] [CrossRef]
- Aghadavoodi, E.; Shahgholian, G. A new practical feed-forward cascade analyze for close loop identification of combustion control loop system through RANFIS and NARX. Appl. Therm. Eng. 2018, 133, 381–395. [Google Scholar] [CrossRef]
- Boudia, A.; Messalti, S.; Harrag, A.; Boukhnifer, M. New hybrid photovoltaic system connected to superconducting magnetic energy storage controlled by PID-fuzzy controller. Energy Convers. Manag. 2021, 244, 114435. [Google Scholar] [CrossRef]
- Fathollahi, A.; Andresen, B. Multi-machine power system transient stability enhancement utilizing a fractional order-based nonlinear stabilizer. Fractal Fract. 2023, 7, 808. [Google Scholar] [CrossRef]
- Zamani, M.; Shahgholian, G.; Fathollahi, A.; Mosavi, A.; Felde, I. Improving interarea mode oscillation damping in multi-machine energy systems through a coordinated PSS and FACTS controller framework. Sustainability 2023, 15, 16070. [Google Scholar] [CrossRef]
- Shouran, M.; Anayi, F.; Packianather, M. The bees algorithm tuned sliding mode control for load frequency control in two-area power system. Energies 2021, 14, 5701. [Google Scholar] [CrossRef]
- Zhu, F.; Zhou, X.; Zhang, Y.; Xu, D.; Fu, J. A load frequency control strategy based on disturbance reconstruction for multi-area interconnected power system with hybrid energy storage system. Energy Rep. 2021, 7, 8849–8857. [Google Scholar] [CrossRef]
- Dar, S.Z.N.; Mufti, M.D. Enhanced load frequency control response with integration of supervisory controlled superconducting magnetic energy storage system in wind-penetrated two-area power system. Wind Eng. 2017, 41, 330–342. [Google Scholar] [CrossRef]
- Khan, I.A.; Mokhlis, H.; Mansor, N.N.; Illias, H.A.; Daraz, A.; Ramasamy, A.K.; Marsadek, M.; Afzal, A.R. Load frequency control in power systems with high renewable energy penetration: A strategy employing PIλ(1+PDF) controller, hybrid energy storage, and IPFC-FACTS. Alex. Eng. J. 2024, 106, 337–366. [Google Scholar] [CrossRef]
- Das, C.K.; Bass, O.; Kothapalli, G.; Mahmoud, T.S.; Habibi, D. Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality. Renew. Sustain. Energy Rev. 2018, 91, 1205–1230. [Google Scholar] [CrossRef]
- Pothiya, S.; Ngamroo, I. Optimal fuzzy logic-based PID controller for load–frequency control including superconducting magnetic energy storage units. Energy Convers. Manag. 2008, 49, 2833–2838. [Google Scholar] [CrossRef]
- Mohamed, E.A.; Yasunori, M. Load frequency control enhancement of islanded micro-grid considering high wind power penetration using superconducting magnetic energy storage and optimal controller. Wind Eng. 2019, 43, 609–6024. [Google Scholar] [CrossRef]
- Mufti, M.; Lone, S.A.; Iqbal, S.J. Improved load frequency control with superconducting magnetic energy storage in interconnected power system. IEEJ Trans. 2007, 2, 387–397. [Google Scholar] [CrossRef]
- Turky, R.A.; Abdelsalam, T.S.; Hasanien, H.M.; Alharbi, M.; Ullah, Z.; Muyeen, S.M.; Abdeen, A.M. Adaptive controlled superconducting magnetic energy storage devices for performance enhancement of wind energy systems. Ain Shams Eng. J. 2023, 14, 102343. [Google Scholar] [CrossRef]
- Yao, W.; Jiang, L.; Fang, J.; Wen, J.; Cheng, S.; Wu, Q.H. Adaptive power oscillation damping controller of superconducting magnetic energy storage device for interarea oscillations in power system. Int. J. Electr. Power Energy Syst. 2016, 78, 555–562. [Google Scholar] [CrossRef]
- Çelik, D.; Ahmed, H. Enhanced control of superconducting magnetic energy storage integrated UPQC for power quality improvement in EV charging station. J. Energy Storage 2023, 62, 106843. [Google Scholar] [CrossRef]
- Noori, A.; Shahbazadeh, M.J.; Eslami, M. Designing of wide-area damping controller for stability improvement in a large-scale power system in presence of wind farms and SMES compensator. Int. J. Electr. Power Energy Syst. 2020, 119, 105936. [Google Scholar] [CrossRef]
- Gyawali, N.; Ohsawa, Y.; Yamamoto, O. Power management of double-fed induction generator-based wind power system with integrated smart energy storage having superconducting magnetic energy storage/fuel-cell/electrolyser. IET Renew. Power Gener. 2011, 5, 407–421. [Google Scholar] [CrossRef]
- Rajamand, S. Load frequency control and dynamic response improvement using energy storage and modeling of uncertainty in renewable distributed generators. J. Energy Storage 2021, 37, 102467. [Google Scholar] [CrossRef]
- Zahid Nabi Dar, S. Intelligently Controlled Scheme for Integration of SMES in Wind Penetrated Power System for Load Frequency Control. In Intelligent Sustainable Systems: Proceedings of ICISS; Springer: Berlin/Heidelberg, Germany, 2022; pp. 737–746. [Google Scholar] [CrossRef]
- Sitompul, S.; Fujita, G. Impact of advanced load-frequency control on optimal size of battery energy storage in islanded microgrid system. Energies 2021, 14, 2213. [Google Scholar] [CrossRef]
- Kumar, N.K.; Gopi, R.S.; Kuppusamy, R.; Nikolovski, S.; Teekaraman, Y.; Vairavasundaram, L.; Venkateswarulu, S. Fuzzy logic-based load frequency control in an island hybrid power system model using artificial bee colony optimization. Energies 2022, 15, 2199. [Google Scholar] [CrossRef]
- Kerdphol, T.; Watanabe, M.; Mitani, Y.; Phunpeng, V. Applying virtual inertia control topology to SMES system for frequency stability improvement of low-inertia microgrids driven by high renewables. Energies 2019, 12, 3902. [Google Scholar] [CrossRef]
- Annapoorani, K.I.; Rajaguru, V.; Padmanabhan, S.A.; Kumar, K.M.; Venkatachalam, S. Fuzzy logic-based integral controller for load frequency control in an isolated micro-grid with superconducting magnetic energy storage unit. Mater. Today Proc. 2022, 58, 244–250. [Google Scholar] [CrossRef]
- Yadav, V.V.; Saravanan, B. Multimachine stability improvement with hybrid renewable energy systems using a superconducting magnetic energy storage in power systems. J. Energy Storage 2023, 57, 106255. [Google Scholar] [CrossRef]
- Farahani, M.; Ganjefar, S. Solving LFC problem in an interconnected power system using superconducting magnetic energy storage. Phys. C Supercond. 2013, 487, 60–66. [Google Scholar] [CrossRef]
- Pappachen, A.; Fathima, A.P. Load frequency control in deregulated power system integrated with SMES–TCPS combination using ANFIS controller. Int. J. Electr. Power Energy Syst. 2016, 82, 519–534. [Google Scholar] [CrossRef]
- Ali, M.H.; Murata, T.; Tamura, J. Transient stability enhancement by fuzzy logic-controlled SMES considering coordination with optimal reclosing of circuit breakers. IEEE Trans. Power Syst. 2008, 23, 631–640. [Google Scholar] [CrossRef]
- Esmaeili, M.S.; Mehrpooya, M. Modeling and exergy analysis of an integrated cryogenic refrigeration system and superconducting magnetic energy storage. J. Energy Storage 2023, 73, 109033. [Google Scholar] [CrossRef]
- Mukherjee, P.; Rao, V.V. Design and development of high temperature superconducting magnetic energy storage for power applications—A review. Phys. C Supercond. Its Appl. 2019, 563, 67–73. [Google Scholar] [CrossRef]
- Sharma, M.; Bansal, R.K.; Prakash, S. Robustness analysis of LFC for multi area power system integrated with SMES–TCPS by artificial intelligent technique. J. Electr. Eng. Technol. 2019, 14, 97–110. [Google Scholar] [CrossRef]
- Deepak, M. Improving the dynamic performance in load frequency control of an interconnected power system with multi source power generation using superconducting magnetic energy storage (SMES). In Proceedings of the 2014 International Conference on Advances in Green Energy (ICAGE), IEEE/ICAGE, Thiruvananthapuram, India, 17–18 December 2014; pp. 106–111. [Google Scholar] [CrossRef]
- Djalal, M.R.; Kadir, N. Optimal design of energy storage for load frequency control in micro hydro power plant using Bat Algorithm. Sinergi 2022, 26, 7–14. [Google Scholar] [CrossRef]
- Ngamroo, I.; Taeratanachai, C.; Dechanupaprittha, S.; Mitani, Y. Enhancement of load frequency stabilization effect of superconducting magnetic energy storage by static synchronous series compensator based on H∞ control. Energy Convers. Manag. 2007, 48, 1302–1312. [Google Scholar] [CrossRef]
- Elsisi, M.; Soliman, M.; Aboelela, M.A.S.; Mansour, W. Optimal design of model predictive control with superconducting magnetic energy storage for load frequency control of nonlinear hydrothermal power system using bat inspired algorithm. J. Energy Storage 2017, 12, 311–318. [Google Scholar] [CrossRef]
- Bhatt, P.; Roy, R.; Ghoshal, S.P. Comparative performance evaluation of SMES–SMES, TCPS–SMES and SSSC–SMES controllers in automatic generation control for a two-area hydro–hydro system. Electr. Power Energy Syst. 2011, 33, 1585–1597. [Google Scholar] [CrossRef]
- Bhatt, P.; Ghoshal, S.P.; Roy, R. Load frequency stabilization by coordinated control of thyristor-controlled phase shifters and superconducting magnetic energy storage for three types of interconnected two-area power systems. Int. J. Electr. Power Energy Syst. 2010, 32, 1111–1124. [Google Scholar] [CrossRef]
- Kumar, A.; Suhag, S. Effect of TCPS, SMES, and DFIG on load frequency control of a multi-area multi-source power system using multi-verse optimized fuzzy-PID controller with derivative filter. J. Vib. Control 2017, 24, 5922–5937. [Google Scholar] [CrossRef]
- Shouran, M.; Anayi, F.; Packianather, M.; Habil, M. Different fuzzy control configurations tuned by the bees algorithm for LFC of two-area power system. Energies 2022, 15, 657. [Google Scholar] [CrossRef]
- Yildirim, B.; Razmi, P.; Fthollahi, A.; Gheisarnejad, M.; Khooban, M.H. Neuromorphic deep learning frequency regulation in stand-alone microgrids. Appl. Soft Comput. 2023, 144, 110418. [Google Scholar] [CrossRef]
- Keyvani-Boroujeni, B.; Fani, B.; Shahgholian, G.; Alhelou, H.H. Virtual impedance-based droop control scheme to avoid power quality and stability problems in VSI-dominated microgrids. IEEE Access 2021, 9, 144999–145011. [Google Scholar] [CrossRef]
- Gu, W.; Chen, Z.; Li, Q.; Yin, M.; Li, Q.; Zou, Y. Torque limit-based inertial control method based on delayed support for primary frequency control of wind turbines. J. Mod. Power Syst. Clean Energy 2024, 12, 561–570. [Google Scholar] [CrossRef]
- Shahgholian, G.; Moazaami, M.; Honarvar, M.A. Small signal stability analysis of dynamic behavior of gas turbine power plant with secondary control loop in electric power system. J. Simul. Anal. Nov. Technol. Mech. Eng. 2024, 16, 23–35. [Google Scholar]
- Fathollahi, A.; Andresen, B. Adaptive Fixed-Time Control Strategy of Generator Excitation and Thyristor-Controlled Series Capacitor in Multi-Machine Energy Systems. IEEE Access 2024, 12, 100316–100327. [Google Scholar] [CrossRef]
- Pham, T.N.; Trinh, H.; Hien, L.V. Load frequency control of power systems with electric vehicles and diverse transmission links using distributed functional observers. IEEE Trans. Smart Grid 2016, 7, 238–252. [Google Scholar] [CrossRef]
Subsystem | Parameter | Symbol |
---|---|---|
Feeding system | Time constant of gas turbine fuel | TF |
Gas turbine ignition reaction time delay | TCR | |
Compressor discharge system | Time constant of compressor discharge volume | TCD |
Speed governor | Time constant controlling the gas turbine speed | TL |
Gas turbine speed governor delay time constant | TG | |
Speed governor adjustment | SgG | |
Valve position | Valve positioner gain | CV |
Valve positioner time constant | TV |
Subsystem | Parameter | Symbol |
---|---|---|
Turbine | Steam turbine time constant | TT |
Speed governor | Speed governor adjustment | SgS |
Governor time constant | TG | |
Reheater | Compressive power section | FH |
Reheater time constant | TH |
Subsystem | Parameter | Symbol |
---|---|---|
Turbine | Water start time | TW |
Speed governor with drop transient compensation | Speed governor adjustment | SgH |
Governor time constant | TG | |
Reset time | TR | |
Slope ratio | TP |
Only Area 1 | Only Area 2 | Two-Area |
---|---|---|
−0.1190 −0.3682 −3.1655 −5.0000 −5.9078 −33.2930 −0.4908 ± j0.6379 (η = 0.6098) | −3.1422 −5.9026 −19.9651 −0.5954 ± j0.6424 (η = 0.6797) | −0.0248 −0.1194 −0.4254 −3.1431 −3.1665 −5.0000 −5.9016 −5.9024 −19.9651 −0.4397 ± j0.6082 (η = 0.5859) −0.5874 ± j0.6449 (η = 0.6734) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahgholian, G.; Fathollahi, A. Advancing Load Frequency Control in Multi-Resource Energy Systems Through Superconducting Magnetic Energy Storage. AppliedMath 2025, 5, 1. https://doi.org/10.3390/appliedmath5010001
Shahgholian G, Fathollahi A. Advancing Load Frequency Control in Multi-Resource Energy Systems Through Superconducting Magnetic Energy Storage. AppliedMath. 2025; 5(1):1. https://doi.org/10.3390/appliedmath5010001
Chicago/Turabian StyleShahgholian, Ghazanfar, and Arman Fathollahi. 2025. "Advancing Load Frequency Control in Multi-Resource Energy Systems Through Superconducting Magnetic Energy Storage" AppliedMath 5, no. 1: 1. https://doi.org/10.3390/appliedmath5010001
APA StyleShahgholian, G., & Fathollahi, A. (2025). Advancing Load Frequency Control in Multi-Resource Energy Systems Through Superconducting Magnetic Energy Storage. AppliedMath, 5(1), 1. https://doi.org/10.3390/appliedmath5010001