Approximate Nonlocal Symmetries for a Perturbed Schrödinger Equation with a Weak Infinite Power-Law Memory
Abstract
:1. Introduction
2. Perturbed Schrödinger Equation with a Weak Infinite Memory
3. Approximate Symmetries for PSE
3.1. Problem Statement
3.2. Groups of Translations and Rotations
3.3. Galilean Transformations
3.4. Group of Phase Transformation
3.5. Groups of Dilations
3.6. Group of Projective Transformations
4. Nonlocally Perturbed Nonlinear Schrödinger Equation
5. An Example of Approximate Solution
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fermi, E. Notes on Quantum Mechanics; University of Chicago Press: Chicago, IL, USA, 1995. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics (Non-Relativistic Theory). Volume 3 of Course of Theoretical Physics; Butterworth-Heinemann: Oxford, UK, 2003. [Google Scholar]
- Zakharov, V.E. Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 1968, 9, 190–194. [Google Scholar] [CrossRef]
- Hasegawa, A.; Kodama, Y. Amplification and reshaping of optical solitons in a glass fiber-I. Opt. Lett. 1982, 7, 285–287. [Google Scholar] [CrossRef]
- Goldman, M.V. Strong turbulence of plasma waves. Rev. Mod. Phys. 1984, 56, 709–735. [Google Scholar] [CrossRef]
- Ding, Y.; Lin, F. Solutions of perturbed Schrödinger equations with critical nonlinearity. Calc. Var. Partial Differ. Equ. 2007, 30, 231–249. [Google Scholar] [CrossRef]
- Bartsch, T.; Pankov, A.; Wang, Z.Q. Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 2001, 3, 549–569. [Google Scholar] [CrossRef]
- Laskin, N. Fractional Schrödinger equation. Phys. Rev. E 2002, 66, 056108. [Google Scholar] [CrossRef] [Green Version]
- Naber, M. Time fractional Schrödinger equation. J. Math. Phys. 2004, 45, 3339–3352. [Google Scholar] [CrossRef]
- Longhi, S. Fractional Schrödinger equation in optics. Opt. Lett. 2015, 40, 1117–1120. [Google Scholar] [CrossRef]
- Malomed, B.A. Optical solitons and vortices in fractional media: A mini-review of recent results. Photonics 2021, 8, 353. [Google Scholar] [CrossRef]
- Samko, S.; Kilbas, A.; Marichev, O. Fractional Integrals and Derivatives. Theory and Applications; Gordon & Breach Sci. Publishers: London, UK, 1993. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Ovsyannikov, L.V. Group Analysis of Differential Equations; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Olver, P. Applications of Lie Groups to Differential Equations; Springer: New York, NY, USA, 1986. [Google Scholar]
- Bluman, G.; Kumei, S. Symmetries and Differential Equations; Springer: Berlin, Germany, 1989. [Google Scholar]
- Ibragimov, N.H. Transformation Groups and Lie Algebras; World Scientific: Singapore, 2013. [Google Scholar]
- Niederer, U. The maximal kinematical invariance group of the free Schrödinger equation. Helv. Phys. Acta 1972, 45, 802–810. [Google Scholar]
- Niederer, U. The maximal kinematical invariance groups of Schrödinger equations with arbitrary potentials. Helv. Phys. Acta 1974, 47, 167–172. [Google Scholar]
- Boyer, C.P. The maximal kinematical invariance group for an arbitrary potential. Helv. Phys. Acta 1974, 47, 589–605. [Google Scholar]
- Nikitin, A. The maximal "kinematical" invariance group for an arbitrary potential revised. J. Math. Phys. Anal. Geom. 2018, 14, 519–531. [Google Scholar] [CrossRef]
- Bagrov, V.G.; Shapovalov, V.N.; Meshkov, A.G. Separation of variables in the stationary Schrödinger equation. Sov. Phys. J. 1972, 15, 1115–1119. [Google Scholar]
- Shapovalov, V.; Sukhomlin, N. Separation of variables in the nonstationary Schrödinger equation. Sov. Phys. J. 1974, 17, 1718–1722. [Google Scholar] [CrossRef]
- Boyer, C.; Kalnins, E.; Miller, W., Jr. Lie theory and separation of variables, 6: The equation iUt + Δ2U = 0. J. Math. Phys. 1975, 16, 499–511. [Google Scholar] [CrossRef]
- Miller, W., Jr. Symmetry and Separation of Variables; Addison-Wesley Publishing Co., Inc.: Reading, MA, USA, 1977. [Google Scholar]
- Ibragimov, N.H. Transformation Groups Applied to Mathematical Physics; Reidel: Dordrecht, The Netherlands, 1985. [Google Scholar]
- Beckers, J.; Debergh, N.; Nikitin, A.G. More on symmetries of the Schrödinger equation. J. Phys. A Math. Gen. 1991, 24, L1269–L1275. [Google Scholar] [CrossRef]
- Nikitin, A.G.; Onufriichuk, S.P.; Fushchich, V.I. Higher symmetries of the Schrödinger equation. Theor. Math. Phys. 1992, 91, 514–521. [Google Scholar] [CrossRef]
- Fushchych, W.I.; Nikitin, A.G. Higher symmetries and exact solutions of linear and nonlinear Schrödinger equation. J. Math. Phys. 1997, 38, 5944–5959. [Google Scholar] [CrossRef]
- Cervero, J.M.; Polo, P.P. The one dimensional Schrödinger equation: Symmetries, solutions and Feynman propagators. Eur. J. Phys. 2016, 37, 055401. [Google Scholar] [CrossRef]
- Boldyreva, M.; Magazev, A. Symmetry of the time-dependent Schrödinger equation in electromagnetic fields invariant under three-dimensional E(3) subgroups. Russ. Phys. J. 2019, 62, 224–231. [Google Scholar] [CrossRef]
- Nikitin, A. Symmetries of Schrödinger equation with scalar and vector potentials. J. Phys. A Math. Theor. 2020, 53, 455202. [Google Scholar] [CrossRef]
- Magazev, A.A.; Boldyreva, M.N. Schrödinger equations in electromagnetic fields: Symmetries and noncommutative integration. Symmetry 2021, 13, 1527. [Google Scholar] [CrossRef]
- Gagnon, L.; Winternitz, P. Lie symmetries of a generalised non-linear Schrödinger equation: I. The symmetry group and its subgroups. J. Phys. A Math. Gen. 1988, 21, 1493–1511. [Google Scholar] [CrossRef]
- Gagnon, L.; Winternitz, P. Lie symmetries of a generalised non-linear Schrödinger equation: II. Exact solutions. J. Phys. A Math. Gen. 1989, 22, 469–497. [Google Scholar] [CrossRef]
- Gagnon, L.; Winternitz, P. Exact solutions of the cubic and quintic nonlinear Schrödinger equation for a cylindrical geometry. Phys. Rev. A 1989, 39, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, L.; Winternitz, P. Symmetry classes of variable coefficient nonlinear Schrödinger equations. J. Phys. A Math. Gen. 1993, 26, 7061–7076. [Google Scholar] [CrossRef]
- Fuschich, W.I.; Serov, N.I. On some exact solutions of the three-dimensional non-linear Schrödinger equation. J. Phys. A Math. Gen. 1987, 20, L929–L934. [Google Scholar] [CrossRef]
- Fushchich, V.I.; Cherniga, R.M. Galilei invariant non-linear equations of Schrödinger type and their exact solutions. I Ukr. Math. J. 1989, 41, 1161–1167. [Google Scholar] [CrossRef]
- Fushchich, W.I.; Shtelen, W.M.; Serov, N.I. Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics; Springer: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Zhdanov, R.; Roman, O. On preliminary symmetry classification of nonlinear Schrödinger equation with some applications of Doebner–Goldin models. Rep. Math. Phys. 2000, 45, 273–291. [Google Scholar] [CrossRef]
- Nikitin, A.G.; Popovych, R.O. Group classification of nonlinear Schrödinger equations. Ukr. Math. J. 2001, 53, 1255–1265. [Google Scholar] [CrossRef]
- Ivanova, N. Symmetry of nonlinear Schrödinger equations with harmonic oscillator type potential. Proc. Inst. Math. NAS Ukr. 2002, 43 Part 1, 149–150. [Google Scholar]
- Nikitin, A.G.; Zasadko, T.M. Group classification of Schrödinger equations with position dependent mass. J. Phys. A Math. Theor. 2016, 49, 365204. [Google Scholar] [CrossRef] [Green Version]
- Paliathanasis, A.; Leon, G.; Leach, P.G.L. Lie symmetry classification and qualitative analysis for the fourth-order Schrödinger equation. arXiv 2022, arXiv:2205.14873. [Google Scholar] [CrossRef]
- Shui-Ying, X.; Ji, L. Approximate symmetry reduction for perturbed nonlinear Schrödinger equation. Chin. Phys. B 2010, 19, 0540201. [Google Scholar] [CrossRef]
- Bansal, A.; Biswas, A.; Zhou, Q.; Babatin, M. Lie symmetry analysis for cubic-quartic nonlinear Schrödinger’s equation. Optik 2018, 169, 12–15. [Google Scholar] [CrossRef]
- Rizvi, S.; Afzal, I.; Ali, K.; Younis, M. Stationary solutions for nonlinear Schrödinger’s equations by Lie group analysis. Acta Phys. Pol. A 2019, 136, 187–189. [Google Scholar] [CrossRef]
- Devi, P.; Singh, K. Lie Symmetry analysis of the nonlinear Schrödinger equation with time dependent variable coefficients. Int. J. Appl. Comput. Math. 2021, 7, 23. [Google Scholar] [CrossRef]
- Gazizov, R.K.; Kasatkin, A.A.; Lukashchuk, S.Y. Symmetries and group invariant solutions of fractional ordinary differential equations. In Handbook of Fractional Calculus with Applications. Volume 2 Fractional Differential Equations; Kochubei, A., Luchko, Y., Eds.; De Gruyter: Berlin, Germany, 2019; pp. 65–90. [Google Scholar]
- Gazizov, R.K.; Kasatkin, A.A.; Lukashchuk, S.Y. Symmetries, conservation laws and group invariant solutions of fractional PDEs. In Handbook of Fractional Calculus with Applications. Volume 2 Fractional Differential Equations; Kochubei, A., Luchko, Y., Eds.; De Gruyter: Berlin, Germany, 2019; pp. 353–382. [Google Scholar]
- Hashemi, M.S.; Baleanu, D. Lie Symmetry Analysis of Fractional Differential Equation; Chapman and Hall/CRC: New York, NY, USA, 2020. [Google Scholar]
- Zedan, H.A.; Shapll, S.; Abdel-Malek, A. Invariance of the nonlinear generalized NLS equation under the Lie group of scaling transformations. Nonlinear Dyn. 2015, 82, 2001–2005. [Google Scholar] [CrossRef]
- Lashkarian, E.; Hejazi, S.R. Exact solutions of the time fractional nonlinear Schrödinger equation with two different methods. Math. Methods Appl. Sci. 2018, 41, 2664–2672. [Google Scholar] [CrossRef]
- Fu, C.; Lu, C.N.; Yang, H.W. Time-space fractional (2+1) dimensional nonlinear Schrödinger equation for envelope gravity waves in baroclinic atmosphere and conservation laws as well as exact solutions. Adv. Diff. Equ. 2018, 2018, 56. [Google Scholar] [CrossRef] [Green Version]
- Hussain, Q.; Zaman, F.D.; Kara, A.H. Invariant analysis and conservation laws of time fractional Schrödinger equations. Optik 2020, 206, 164356. [Google Scholar] [CrossRef]
- Hussain, Q.; Zaman, F.D.; Bokhari, A.H.; Kara, A.H. On a study of symmetries and conservation laws of a class of time fractional Schrödinger equations with nonlocal nonlinearities. Optik 2020, 224, 165619. [Google Scholar] [CrossRef]
- Yu, J.; Feng, Y. Lie symmetry analysis and exact solutions of space-time fractional cubic Schrödinger equation. Int. J. Geom. Methods Mod. Phys. 2022, 19, 2250077. [Google Scholar] [CrossRef]
- Qin, F.; Feng, W.; Zhao, S. Lie symmetry group, invariant subspace, and conservation law for the time-fractional derivative nonlinear Schrödinger equation. Mathematics 2022, 10, 2170. [Google Scholar] [CrossRef]
- Tarasov, V.E.; Zaslavsky, G.M. Dynamics with low-level fractionality. Phys. A 2006, 368, 399–415. [Google Scholar] [CrossRef] [Green Version]
- Tofighi, A.; Golestani, A. A perturbative study of fractional relaxation phenomena. Phys. A 2008, 387, 1807–1817. [Google Scholar] [CrossRef]
- Lukashchuk, S.Y. An approximate solution method for ordinary fractional differential equations with the Riemann–Liouville fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 390–400. [Google Scholar] [CrossRef]
- Lukashchuk, S.Y. Approximation of ordinary frational differential equations by differential equations with a small parameter. Vestn. Udmurt. Univ. Mat. Mekhanika Komp’yuternye Nauk. 2017, 27, 515–531. [Google Scholar] [CrossRef] [Green Version]
- Baikov, V.A.; Gazizov, R.K.; Ibragimov, N.H. Approximate symmetries. Mat. Sb. 1989, 64, 427–441. [Google Scholar] [CrossRef]
- Baikov, V.A.; Gazizov, R.K.; Ibragimov, N.H. Perturbation methods in group analysis. J. Sov. Math. 1991, 55, 1450–1490. [Google Scholar] [CrossRef]
- Gazizov, R.K. Lie algebras of approximate symmetries. Nonlinear Math. Phys. 1996, 3, 96–101. [Google Scholar] [CrossRef]
- Gazizov, R.K.; Lukashchuk, S.Y. Approximations of fractional differential equations and approximate symmetries. IFAC-PapersOnLine 2017, 50, 14022–14027. [Google Scholar] [CrossRef]
- Lukashchuk, S.Y.; Saburova, R.D. Approximate symmetry group classification for a nonlinear fractional filtration equation of diffusion-wave type. Nonlinear Dyn. 2018, 93, 295–305. [Google Scholar] [CrossRef]
- Lukashchuk, S.Y. Approximate conservation laws for fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2019, 68, 147–159. [Google Scholar] [CrossRef]
- Uchaikin, V.V. On time-fractional representation of an open system response. Fract. Calc. Appl. Anal. 2016, 19, 1306–1315. [Google Scholar] [CrossRef]
- Uchaikin, V.V. Atoms and photons: Kinetic equations with delay. J. Math. Sci. 2022, 260, 335–370. [Google Scholar] [CrossRef]
- Dafermos, C.M. An abstract Volterra equation with applications to linear viscoelasticity. J. Differ. Equ. 1970, 7, 554–569. [Google Scholar] [CrossRef] [Green Version]
- Fabrizio, M.; Giorgi, C.; Pata, V. A new approach to equations with memory. Arch. Ration. Mech. Anal. 2010, 198, 189–232. [Google Scholar] [CrossRef] [Green Version]
- Anaya, K.; Messaoudi, S.A.; Mustapha, K. Decay rate of a weakly dissipative viscoelastic plate equation with infinite memory. Arab. J. Math. 2021, 10, 31–39. [Google Scholar] [CrossRef]
- Lu, D.; Seadawy, A.R.; Ali, A. Applications of exact traveling wave solutions of Modified Liouville and the Symmetric Regularized Long Wave equations via two new techniques. Results Phys. 2018, 9, 1403–1410. [Google Scholar] [CrossRef]
- Wu, Q.; Pan, C.; Wang, H. Speed determinacy of the traveling waves for a three species time-periodic Lotka–Volterra competition system. Math. Methods Appl. Sci. 2022, 45, 6080–6095. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lukashchuk, S.Y. Approximate Nonlocal Symmetries for a Perturbed Schrödinger Equation with a Weak Infinite Power-Law Memory. AppliedMath 2022, 2, 585-608. https://doi.org/10.3390/appliedmath2040034
Lukashchuk SY. Approximate Nonlocal Symmetries for a Perturbed Schrödinger Equation with a Weak Infinite Power-Law Memory. AppliedMath. 2022; 2(4):585-608. https://doi.org/10.3390/appliedmath2040034
Chicago/Turabian StyleLukashchuk, Stanislav Yu. 2022. "Approximate Nonlocal Symmetries for a Perturbed Schrödinger Equation with a Weak Infinite Power-Law Memory" AppliedMath 2, no. 4: 585-608. https://doi.org/10.3390/appliedmath2040034
APA StyleLukashchuk, S. Y. (2022). Approximate Nonlocal Symmetries for a Perturbed Schrödinger Equation with a Weak Infinite Power-Law Memory. AppliedMath, 2(4), 585-608. https://doi.org/10.3390/appliedmath2040034