Next Article in Journal
On Critical Unicyclic Graphs with Cutwidth Four
Previous Article in Journal
Approximate Nonlocal Symmetries for a Perturbed Schrödinger Equation with a Weak Infinite Power-Law Memory
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Some Properties of a Concircular Curvature Tensor on Generalized Sasakian-Space-Forms

Department of Mathematics, Sri J.C.B.M. College, Sringeri, Chickmagaluru 577139, India
AppliedMath 2022, 2(4), 609-620; https://doi.org/10.3390/appliedmath2040035
Submission received: 11 September 2022 / Revised: 1 October 2022 / Accepted: 18 October 2022 / Published: 3 November 2022

Abstract

:
The aim of the present paper is to study and investigate the geometrical properties of a concircular curvature tensor on generalized Sasakian-space-forms. In this manner, we obtained results for ϕ -concircularly flat, ϕ -semisymmetric, locally concircularly symmetric and locally concircularly ϕ -symmetric generalized Sasakian-space-forms. Finally, we construct examples of the generalized Sasakian-space-forms to verify some results.

1. Introduction

In [1], the authors introduced and studied the notion of generalized Sasakian-space-forms with geometrical and physical significance. A generalized Sasakian-space-form is an almost contact metric manifold ( M , ϕ , ξ , η , g ) , whose curvature tensor is defined as follows:
R ( X , Y ) Z = f 1 { g ( Y , Z ) X g ( X , Z ) Y } + f 2 { g ( X , ϕ Z ) ϕ Y g ( Y , ϕ Z ) ϕ X + 2 g ( X , ϕ Y ) ϕ Z } + f 3 { η ( X ) η ( Z ) Y η ( Y ) η ( Z ) X + g ( X , Z ) η ( Y ) ξ g ( Y , Z ) η ( X ) ξ } ,
where f 1 , f 2 , f 3 are differentiable functions and X , Y , Z for vector fields on M 2 n + 1 ( f 1 , f 2 , f 3 ) . The Sasakian manifold with constant ϕ -sectional curvature is a Sasakian-space-form, and cosymplectic and Kenmotsu space-forms are also considered particular types of generalized Sasakian-space-forms. Additionally, the generalized Sasakian-space-forms have been investigated in [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21] and many others.
In Riemannian geometry, numerous researchers have studied curvature properties and how much they affected the manifold itself. Symmetry and flatness are two important curvature properties of the Riemannian manifold, which has many applications not only in mathematics but in many other sciences as well. In recent years, the notion of symmetric manifold has been studied by many authors by extending it to other sciences, such as the spacetime of general relativity [22] and locally symmetric f-associated standard static spacetimes [11]; for more detail, refer to [10,23].
In the context of generalized Sasakian-space-forms, Kim [13] investigated conformally flat and locally symmetric generalized Sasakian-space-forms. Generalized Sasakian-Space-Forms with Projective Curvature Tensor were explored by De and Sarkar [24] for some of their symmetric characteristics. Prakasha proved in [16] that every generalized Sasakian-space-form is Weyl-pseudo-symmetric. Further, Prakasha and Nagaraja [25] investigated quasi-conformally semisymmetric and quasi-conformally flat generalized Sasakian-space-forms. Sarkar and Akbar [26] constructed generalized Sasakian-space-forms that are conharmonically flat and conharmonically locally-symmetric. Hui and Prakasha [27] briefly looked at certain symmetric aspects of generalized Sasakian-space-forms using the C-Bochner curvature tensor. We investigated a generalized Sasakian-space-form that satisfies a specific curvature requirement on the concircular curvature tensor in the current research.
The paper is set up as follows: The definitions, basic formulas, and preliminary results of generalized Sasakian-space-forms are included in Section 1. In Section 2, we investigate ϕ -concircularly flat generalized Sasakian-space-forms and establish that a generalized Sasakian-space-form is ϕ -concircularly flat if and only if it is concircularly flat. In Section 3, we investigate ϕ -concircularly semisymmetric generalized Sasakian-space-forms and establish necessary and sufficient conditions for a generalized Sasakian-space-form to be ϕ -concircularly semisymmetric. The study of locally concircular symmetric and locally concircularly ϕ -symmetric generalized Sasakian-space-forms is covered in Section 4. Here it is shown that a generalized Sasakian-space-form is locally concircularly symmetric if and only if it is conformally flat. Additionally, we discover that a locally concircularly ϕ -symmetric generalized Sasakian-space-form is also conformally flat and hence, locally concircularly symmetric. Finally, some examples of generalized Sasakian-space-form with f 1 = 1 and f 2 = f 3 = 0 are given.

2. Generalized Sasakian-Space-Form

A ( 2 n + 1 ) -dimensional Riemannian manifold ( M 2 n + 1 , g ) is said to be an almost contact metric manifold [28], if there exists on M 2 n + 1 ( f 1 , f 2 , f 3 ) a ( 1 , 1 ) tensor field ϕ , a vector field ξ (called the structure vector field) and a 1-form η such that
ϕ 2 ( X ) = X + η ( X ) ξ , η ( ξ ) = 1 ,
g ( ϕ X , ϕ Y ) = g ( X , Y ) η ( X ) η ( Y ) ,
for any vector fields X, Y on M 2 n + 1 ( f 1 , f 2 , f 3 ) .
For a ( 2 n + 1 ) -dimensional ( n > 1 ) generalized Sasakian-space-form M 2 n + 1 ( f 1 , f 2 , f 3 ) , the following relations exist in addition to relation (1) [1]:
R ( X , Y ) ξ = ( f 1 f 3 ) { η ( Y ) X η ( X ) Y } ,
R ( ξ , X ) Y = ( f 1 f 3 ) { g ( X , Y ) ξ η ( Y ) X } ,
η ( R ( X , Y ) Z ) = ( f 1 f 3 ) { g ( Y , Z ) η ( X ) g ( X , Z ) η ( Y ) } ,
S ( X , Y ) = ( 2 n f 1 + 3 f 2 f 3 ) g ( X , Y ) { 3 f 2 + ( 2 n 1 ) f 3 } η ( X ) η ( Y ) ,
r = 2 n ( 2 n + 1 ) f 1 + 6 n f 2 4 n f 3 .
In [29], the authors compute the concircular curvature tensor Z ˜ ˜ for a ( 2 n + 1 ) -dimensional ( n > 1 ) almost contact metric manifold:
Z ˜ ( X , Y ) Z = R ( X , Y ) Z r 2 n ( 2 n + 1 ) { g ( Y , Z ) X g ( X , Z ) Y } ,
for any vector fields X, Y, Z T ( M ) .
By virtue of (1) in (9), we obtain
Z ˜ ( X , Y ) Z = f 1 { g ( Y , Z ) X g ( X , Z ) Y } + f 2 { g ( X , ϕ Z ) ϕ Y g ( Y , ϕ Z ) ϕ X + 2 g ( X , ϕ Y ) ϕ Z } + f 3 { η ( X ) η ( Z ) Y η ( Y ) η ( Z ) X + g ( X , Z ) η ( Y ) ξ g ( Y , Z ) η ( X ) ξ } r 2 n ( 2 n + 1 ) { g ( Y , Z ) X g ( X , Z ) Y } .
Here, we recollect some results that will be required for further sections.
Theorem 1
([30]). A ( 2 n + 1 ) -dimensional ( n > 1 ) generalized Sasakian-space-form M 2 n + 1 ( f 1 , f 2 , f 3 ) is concircularly flat if and only if f 3 = 3 f 2 1 2 n .
Theorem 2 
([24]). A ( 2 n + 1 ) -dimensional ( n > 1 ) generalized Sasakian-space-form M 2 n + 1 ( f 1 , f 2 , f 3 ) is Ricci semisymmetric if and only if f 3 = 3 f 2 1 2 n .
Theorem 3 
([13]). A ( 2 n + 1 ) -dimensional ( n > 1 ) generalized Sasakian-space-form M 2 n + 1 ( f 1 , f 2 , f 3 ) is conformally flat if and only if f 2 = 0 .

3. ϕ-Concircularly Flat Generalized Sasakian-Space-Forms

Definition 1.
A ( 2 n + 1 ) -dimensional ( n > 1 ) generalized Sasakian-space-form M 2 n + 1 ( f 1 , f 2 , f 3 ) is called ϕ-concircularly flat if it satisfies
ϕ 2 Z ˜ ( ϕ X , ϕ Y ) ϕ Z = 0 ,
for any vector fields X, Y, Z T ( M ) [31].
As per the definition, it follows that every concircularly flat generalized Sasakian -space-form is ϕ -concircularly flat, but the converse never holds. Interestingly, in this section, we prove that the converse also holds good for a generalized Sasakian-space-form of dimension greater than three. The importance of studying ϕ -concircularly flat generalized Sasakian space forms can be seen in this section.
Let us consider that M 2 n + 1 ( f 1 , f 2 , f 3 ) is concircularly flat. Then, by using (9) and Definition 1, we have
ϕ 2 [ R ( ϕ X , ϕ Y ) ϕ Z r 2 n ( 2 n + 1 ) { g ( ϕ Y , ϕ Z ) ϕ X g ( ϕ X , ϕ Z ) ϕ Y } ] = 0 .
Making use of (1) in (12), we obtain
ϕ 2 [ f 1 ( g ( ϕ Y , ϕ Z ) ϕ X g ( ϕ X , ϕ Z ) ϕ Y ) + f 2 ( g ( ϕ X , ϕ 2 Z ) ϕ 2 Y g ( ϕ Y , ϕ 2 Z ) ϕ 2 X + 2 g ( ϕ X , ϕ 2 Y ) ϕ 2 Z ) ] = r 2 n ( 2 n + 1 ) ϕ 2 [ g ( Y , Z ) ϕ X η ( Y ) η ( Z ) ϕ X g ( X , Z ) ϕ Y + η ( X ) η ( Z ) ϕ Y ] .
Again, by virtue of (2) and (8) in (13), we have
f 1 { g ( Y , Z ) ϕ X η ( Y ) η ( Z ) ϕ X g ( X , Z ) ϕ Y + η ( X ) η ( Z ) ϕ Y } + f 2 { g ( X , ϕ Z ) ϕ 2 Y g ( Y , ϕ Z ) ϕ 2 X + 2 g ( X , ϕ Y ) ϕ 2 Z } = 1 ( 2 n + 1 ) ( ( 2 n + 1 ) f 1 + 3 f 2 2 f 3 ) [ g ( Y , Z ) ϕ X η ( Y ) η ( Z ) ϕ X g ( X , Z ) ϕ Y + η ( X ) η ( Z ) ϕ Y ] .
Taking the inner product with arbitrary vector field U in (14), we obtain
f 1 { g ( Y , Z ) g ( ϕ X , U ) η ( Y ) η ( Z ) g ( ϕ X , U ) g ( X , Z ) g ( ϕ Y , U ) + η ( X ) η ( Z ) g ( ϕ Y , U ) } + f 2 { g ( X , ϕ Z ) g ( ϕ 2 Y , U ) g ( Y , ϕ Z ) g ( ϕ 2 X , U ) + 2 g ( X , ϕ Y ) g ( ϕ 2 Z , U ) } = 1 ( 2 n + 1 ) ( ( 2 n + 1 ) f 1 + 3 f 2 2 f 3 ) [ g ( Y , Z ) g ( ϕ X , U ) η ( Y ) η ( Z ) g ( ϕ X , U ) g ( X , Z ) g ( ϕ Y , U ) + η ( X ) η ( Z ) g ( ϕ Y , U ) ] .
Setting Y = Z = e i in (15), where e i is an orthogonal basis of the tangent space at each point of the manifold and taking summation over i, i = 1 , 2 , , 2 n + 1 , we have
3 f 2 g ( ϕ X , U ) = 3 f 2 2 f 3 2 n + 1 ( 2 n 1 ) g ( ϕ X , U ) ,
which gives
3 f 2 = 3 f 2 2 f 3 2 n + 1 ( 2 n 1 ) ,
provided g ( ϕ X , U ) 0 , which implies that
f 3 = 3 f 2 1 2 n .
Hence, we can state the following:
Theorem 4.
For a ( 2 n + 1 ) -dimensional ϕ-concircularly flat ( n > 1 ) generalized Sasakian-space-form M 2 n + 1 ( f 1 , f 2 , f 3 ) , f 3 = 3 f 2 1 2 n holds.
Suppose f 3 = 3 f 2 1 2 n holds. Then by virtue of Theorem 1, M 2 n + 1 ( f 1 , f 2 , f 3 ) is concircularly flat. Therefore, Z ˜ ( X , Y ) Z = 0 , and hence ϕ 2 ( Z ˜ ( ϕ X , ϕ Y ) ϕ Z ) = 0 . Thus, we state the following:
Theorem 5.
A ( 2 n + 1 ) -dimensional ( n > 1 ) generalized Sasakian-space-form M 2 n + 1 ( f 1 , f 2 , f 3 ) is ϕ-concircularly flat if and only if f 3 = 3 f 2 1 2 n .
Using Theorems 1 and 5, we conclude the following Corollary:
Corollary 1.
A ( 2 n + 1 ) -dimensional ( n > 1 ) generalized Sasakian-space-form M 2 n + 1 ( f 1 , f 2 , f 3 ) is ϕ-concircularly flat if and only if it is concircularly flat.
Again, from (12), we have
g ( R ( ϕ X , ϕ Y ) ϕ Z ) , ϕ U ) r 2 n ( 2 n + 1 ) { g ( ϕ Y , ϕ Z ) g ( ϕ X , ϕ U ) g ( ϕ X , ϕ Z ) g ( ϕ Y , ϕ U ) } = 0 .
Using (1) and (2) in (19), we yield
( f 1 r 2 n ( 2 n + 1 ) ) [ g ( ϕ Y , ϕ Z ) g ( ϕ X , ϕ U ) g ( ϕ X , ϕ Z ) g ( ϕ Y , ϕ U ) ] + f 2 [ g ( ϕ X , Z ) g ( y , ϕ U ) g ( ϕ Y , Z ) g ( X , ϕ U ) + 2 g ( ϕ X , Y ) g ( Z , ϕ W ) ] = 0 .
Setting Y = Z = e i in (20) and taking summation over i, 1 i 2 n + 1 , we obtain
( f 1 r 2 n ( 2 n + 1 ) ) [ 2 n g ( ϕ X , ϕ U ) g ( ϕ 2 X , ϕ 2 U ) ] + f 2 [ g ( ϕ X , ϕ U ) + 2 g ( ϕ X , ϕ U ) ] = 0 .
Using (2) in (21), we have
( f 1 r 2 n ( 2 n + 1 ) ) [ 2 n g ( ϕ X , ϕ U ) g ( X , U ) + η ( X ) η ( U ) ] + f 2 [ g ( ϕ X , ϕ U ) + 2 g ( ϕ X , ϕ U ) ] = 0 .
Again using (3) and (8) in (22), we obtain
( 2 n 1 ) f 2 g ( ϕ X , ϕ U ) = 0 .
which implies
f 2 = 0 .
Provided g ( ϕ X , ϕ U ) 0 , we have the following:
Theorem 6.
If a ( 2 n + 1 ) -dimensional ( n > 1 ) generalized Sasakian-space-form M 2 n + 1 ( f 1 , f 2 , f 3 ) is ϕ-concircularly flat, then f 2 = 0 .
For a ( 2 n + 1 ) -dimensional generalized Sasakian-space-form, U.K. Kim [13] showed the following results:
(i)
If n > 1 , then M is conformally flat if and only if f 2 = 0 .
(ii)
If M 2 n + 1 ( f 1 , f 2 , f 3 ) is conformally flat and ξ is a Killing vector field, then M 2 n + 1 ( f 1 , f 2 , f 3 ) is locally symmetric and has constant ϕ -sectional curvature.
In the perspective of the first part of the above hypothesis of Kim, we obtain the following:
Corollary 2.
For a ( 2 n + 1 ) -dimensional ( n > 1 ) generalized Sasakian-space-form M 2 n + 1 ( f 1 , f 2 , f 3 ) ϕ-concircularly flat and conformally flat are equivalent.
In the perspective of the second part of the above hypothesis of Kim, we obtain the following:
Corollary 3.
A ϕ-concircularly flat ( 2 n + 1 ) -dimensional ( n > 1 ) generalized Sasakian-space-form M 2 n + 1 ( f 1 , f 2 , f 3 ) with ξ as a Killing vector field is locally symmetric and has constant ϕ- sectional curvature.
Suppose f 2 = 0 . Then from (18), we must have f 3 = 0 ; therefore, we obtain from (1) that
R ( X , Y ) Z = f 1 { g ( Y , Z ) X g ( X , Z ) Y } .
In [1], P. Alegre et al. demonstrated that a Sasakian manifold with constant ϕ -sectional curvature is a Sasakian-space-form M 2 n + 1 ( f 1 , f 2 , f 3 ) with specific form, f 1 1 = f 2 = f 3 . In this case f 2 = 0 implies f 3 = 0 and f 1 = 1 . Thus, from (25), we obtain R ( X , Y ) Z = g ( Y , Z ) X g ( X , Z ) Y , indicating that the manifold has constant curvature 1. If a ( 2 n + 1 ) -dimensional ( n > 1 ) Riemannian manifold has constant curvature, it is known to be concircularly flat. Furthermore, concircular flatness implies ϕ -concircularly flat. Consequently, we can claim:
Corollary 4.
A ( 2 n + 1 ) -dimensional ( n > 1 ) Sasakian manifold is ϕ-concircularly flat if and only if the manifold is of constant curvature 1.

4. ϕ-Concircularly Semisymmetric Generalized Sasakian-Space-Forms

A (2n + 1)-dimensional (n > 1) generalized Sasakian-space-form is said to be ϕ -concircularly semisymmetric if it satisfies Z ˜ ( X , Y ) · ϕ = 0 , which implies ([7,32]),
( Z ˜ ( X , Y ) ϕ ) Z = Z ˜ ( X , Y ) ϕ Z ϕ Z ˜ ( X , Y ) Z = 0 ,
for all vector fields X, Y, Z χ ( M ) .
Now, from (9) it follows that
Z ˜ ( X , Y ) ϕ Z = R ( X , Y ) ϕ Z r 2 n ( 2 n + 1 ) { g ( Y , ϕ Z ) X g ( X , ϕ Z ) Y } .
By taking account of (1) in (27), we obtain
Z ˜ ( X , Y ) ϕ Z = f 1 { g ( Y , ϕ Z ) X g ( X , ϕ Z ) Y } + f 2 { g ( X , ϕ 2 Z ) ϕ Y g ( Y , ϕ 2 Z ) ϕ X + 2 g ( X , ϕ Y ) ϕ 2 Z } + f 3 { η ( X ) η ( ϕ Z ) Y η ( Y ) η ( ϕ Z ) X + g ( X , ϕ Z ) η ( Y ) ξ g ( Y , ϕ Z ) η ( X ) ξ } r 2 n ( 2 n + 1 ) { g ( Y , ϕ Z ) X g ( X , ϕ Z ) Y } .
Again, by virtue of (2) and (8) in (28), we obtain
Z ˜ ( X , Y ) ϕ Z = ( 3 f 2 2 f 3 ) 2 n + 1 { g ( Y , ϕ Z ) X g ( X , ϕ Z ) Y } + f 2 { g ( Y , Z ) ϕ X g ( X , Z ) ϕ Y + η ( X ) η ( Z ) ϕ Y η ( Y ) η ( Z ) ϕ X 2 g ( X , ϕ Y ) Z + 2 g ( X , ϕ Y ) η ( Z ) ξ } + f 3 { g ( X , ϕ Z ) η ( Y ) ξ g ( Y , ϕ Z ) η ( X ) ξ } .
Similarly,
ϕ Z ˜ ( X , Y ) Z = ( 3 f 2 2 f 3 ) 2 n + 1 { g ( Y , Z ) ϕ X g ( X , Z ) ϕ Y } + f 2 { g ( Y , ϕ Z ) X g ( X , ϕ Z ) Y + g ( X , ϕ Z ) η ( Y ) ξ g ( Y , ϕ Z ) η ( X ) ξ 2 g ( X , ϕ Y ) Z + 2 g ( X , ϕ Y ) η ( Z ) ξ } + f 3 { η ( X ) η ( Z ) ϕ Y η ( Y ) η ( Z ) ϕ X } .
Substituting (29), (30) in (26)
( 3 f 2 2 f 3 ) 2 n + 1 + f 2 { g ( Y , Z ) ϕ X g ( X , Z ) ϕ Y g ( Y , ϕ Z ) X + g ( X , ϕ Z ) Y } + ( f 2 f 3 ) { g ( Y , ϕ Z ) η ( X ) ξ g ( X , ϕ Z ) η ( Y ) ξ η ( X ) η ( Z ) ϕ Y η ( Y ) η ( Z ) ϕ X } = 0 .
Setting Y = ξ in (31), we obtain
[ 3 f 2 + ( 2 n 1 ) f 3 ] { g ( X , ϕ Z ) ξ + η ( Z ) ϕ X } = 0 .
The above relation implies that
f 3 = 3 f 2 1 2 n .
Hence, we can state the following:
Theorem 7.
For a ( 2 n + 1 ) -dimensional ( n > 1 ) ϕ-concircularly semisymmetric generalized Sasakian-space-form, M 2 n + 1 ( f 1 , f 2 , f 3 ) , f 3 = 3 f 2 1 2 n holds.
Thus, in virtue of (33) and Theorem 1, we can state the following:
Theorem 8.
A ( 2 n + 1 ) -dimensional ( n > 1 ) generalized Sasakian-space-form M 2 n + 1 ( f 1 , f 2 , f 3 ) is ϕ-concircularly semisymmetric if and only if f 3 = 3 f 2 1 2 n .
In virtue of Theorems 2 and 8, we can state the following:
Corollary 5.
A ( 2 n + 1 ) -dimensional ( n > 1 ) generalized Sasakian-space-form M 2 n + 1 ( f 1 , f 2 , f 3 ) is ϕ-concircularly semisymmetric if and only if it is Ricci semisymmetric.
By combining Theorems 1, 5, 8 and Corollary 5, we can state the following:
Corollary 6.
Let M 2 n + 1 ( f 1 , f 2 , f 3 ) be a ( 2 n + 1 ) -dimensional ( n > 1 ) generalized Sasakian-space-form. Then, the following statements are equivalent:
(i) 
M 2 n + 1 ( f 1 , f 2 , f 3 ) is ϕ-concircularly semisymmtric,
(ii) 
M 2 n + 1 ( f 1 , f 2 , f 3 ) is ϕ-concircularly flat,
(iii) 
M 2 n + 1 ( f 1 , f 2 , f 3 ) is concircularly flat,
(iv) 
M 2 n + 1 ( f 1 , f 2 , f 3 ) is Ricci semisymmetric,
(v) 
f 3 = 3 f 2 1 2 n holds on M 2 n + 1 ( f 1 , f 2 , f 3 ) .

5. Locally Concircularly Symmetric and Locally Concircularly ϕ-Symmetric Generalized Sasakian-Space-Forms

If curvature tensor R of a Riemannian manifold M 2 n + 1 ( f 1 , f 2 , f 3 ) is parallel, then the manifold is said to be locally symmetric, i.e., R = 0 , where denotes the Levi–Civita connection. The concept of semisymmetric manifolds was introduced as an appropriate generalization of locally symmetric manifolds
( R ( X , Y ) · R ) ( U , V ) W = 0 , X , Y , U , V , W T ( M )
and studied by many authors (e.g., [33,34,35,36]). A complete intrinsic classification of these spaces was given by Z.I. Szabo [37]. A ( 2 n + 1 ) -dimensional ( n > 1 ) generalized Sasakian-space-forms M 2 n + 1 ( f 1 , f 2 , f 3 ) is said to be locally concircularly symmetric if
( W Z ˜ ) ( X , Y ) Z = 0 ,
for all vector fields, X, Y, Z are orthogonal to ξ . It is called locally concircularly ϕ -symmetric if
ϕ 2 ( ( W Z ˜ ) ( X , Y ) Z ) = 0 ,
for all vector fields, X, Y, Z are orthogonal to ξ . First, by taking covariant differentiation on both sides of the Equation (10) with respect to the arbitrary vector field W, we obtain
( W Z ˜ ) ( X , Y ) Z = d f 1 ( W ) { g ( Y , Z ) X g ( X , Z ) Y } + d f 2 ( W ) { g ( X , ϕ Z ) ϕ Y g ( Y , ϕ Z ) ϕ X + 2 g ( X , ϕ Y ) ϕ Z } + f 2 { g ( X , ϕ Z ) ( W ϕ ) Y + g ( X , ( W ϕ ) Z ) ϕ Y g ( Y , ϕ Z ) ( W ϕ ) X g ( Y , ( W ϕ ) Z ) ϕ X + 2 g ( X , ϕ Y ) ( W ϕ ) Z + 2 g ( X , ( W ϕ ) Y ) ϕ Z } + d f 3 ( W ) { η ( X ) η ( Z ) Y η ( Y ) η ( Z ) X + g ( X , Z ) η ( Y ) ξ g ( Y , Z ) η ( X ) ξ } + f 3 { ( W η ) ( X ) η ( Z ) Y + η ( X ) ( W η ) ( Z ) Y ( W η ) ( Y ) η ( Z ) X η ( Y ) ( W η ) ( Z ) X + g ( X , Y ) ( W η ) ( Y ) ξ + g ( X , Y ) η ( Y ) ( W ξ ) g ( Y , Z ) ( W η ) ( X ) ξ g ( Y , Z ) η ( X ) ( W ξ ) } d r ( W ) 2 n ( 2 n + 1 ) { g ( Y , Z ) X g ( X , Z ) Y } .
If the vector fields X, Y, Z are orthogonal to ξ , then obtain from (36) that
( W Z ˜ ) ( X , Y ) Z = d f 1 ( W ) { g ( Y , Z ) X g ( X , Z ) Y } + d f 2 ( W ) { g ( X , ϕ Z ) ϕ Y g ( Y , ϕ Z ) ϕ X + 2 g ( X , ϕ Y ) ϕ Z } + f 2 { g ( X , ϕ Z ) ( W ϕ ) Y + g ( X , ( W ϕ ) Z ) ϕ Y g ( Y , ϕ Z ) ( W ϕ ) X g ( Y , ( W ϕ ) Z ) ϕ X + 2 g ( X , ϕ Y ) ( W ϕ ) Z + 2 g ( X , ( W ϕ ) Y ) ϕ Z } d ( 2 n ( 2 n + 1 ) f 1 + 6 n f 2 4 n f 3 ) ( W ) 2 n ( 2 n + 1 ) { g ( Y , Z ) X g ( X , Z ) Y } .
Let M 2 n + 1 ( f 1 , f 2 , f 3 ) be locally concircularly symmetric. Then from (34), we have
d f 1 ( W ) { g ( Y , Z ) X g ( X , Z ) Y } + d f 2 ( W ) { g ( X , ϕ Z ) ϕ Y g ( Y , ϕ Z ) ϕ X + 2 g ( X , ϕ Y ) ϕ Z } + f 2 { g ( X , ϕ Z ) ( W ϕ ) Y + g ( X , ( W ϕ ) Z ) ϕ Y g ( Y , ϕ Z ) ( W ϕ ) X g ( Y , ( W ϕ ) Z ) ϕ X + 2 g ( X , ϕ Y ) ( W ϕ ) Z + 2 g ( X , ( W ϕ ) Y ) ϕ Z } 1 2 n + 1 d ( ( 2 n + 1 ) f 1 + 3 f 2 2 f 3 ) ( W ) ) { g ( Y , Z ) X g ( X , Z ) Y } = 0 .
Taking the inner product with respect to vector field U in (38), we obtain
d f 1 ( W ) { g ( Y , Z ) g ( X , U ) g ( X , Z ) g ( Y , U ) } + d f 2 ( W ) { g ( X , ϕ Z ) g ( ϕ Y , U ) g ( Y , ϕ Z ) g ( ϕ X , U ) + 2 g ( X , ϕ Y ) g ( ϕ Z , U ) } + f 2 { g ( X , ϕ Z ) g ( ( W ϕ ) Y , U ) + g ( X , ( W ϕ ) Z ) g ( ϕ Y , U ) g ( Y , ϕ Z ) g ( ( W ϕ ) X , U ) g ( Y , ( W ϕ ) Z ) g ( ϕ X , U ) + 2 g ( X , ϕ Y ) g ( ( W ϕ ) Z , U ) + 2 g ( X , ( W ϕ ) Y ) g ( ϕ Z , U ) } 1 2 n + 1 d ( ( 2 n + 1 ) f 1 + 3 f 2 2 f 3 ) ( W ) ) { g ( Y , Z ) g ( X , U ) g ( X , Z ) g ( Y , U ) } = 0 .
Let { e i : i = 1 , 2 , 2 n + 1 } be an orthonormal basis of the tangent space at each point of the manifold. Setting Z = U = e i in (39) and taking summation over i, 1 i 2 n + 1 , we obtain
f 2 { g ( ϕ X , ( W ϕ ) Y ) + 1 2 n + 1 g ( X , ( W ϕ ) e i ) g ( ϕ Y , e i ) + g ( ϕ Y , ( W ϕ ) X ) 1 2 n + 1 g ( Y , ( W ϕ ) e i ) g ( ϕ X , e i ) + 2 1 2 n + 1 g ( X , ϕ Y ) g ( ( W ϕ ) e i , e i ) } = 0 .
We now recall that ( W g ) ( X , Y ) = 0 , yielding
W g ( X , Y ) g ( W X , Y ) g ( X , W Y ) = 0 .
Putting X = e i and Y = ϕ e i in (41), we have g ( e i , ϕ W e i ) g ( e i , W ϕ e i ) = 0 .
Thus, we have
g ( e i , ( W ϕ ) e i ) = 0 .
By virtue of (40) and (42), we obtain
f 2 { g ( ϕ X , ( W ϕ ) Y ) + 1 2 n + 1 g ( X , ( W ϕ ) e i ) g ( ϕ Y , e i ) + g ( ϕ Y , ( W ϕ ) X ) 1 2 n + 1 g ( Y , ( W ϕ ) e i ) g ( ϕ X , e i ) } = 0 .
Equation (43) is true for any vector fields X, Y on the manifold. X Y gives
f 2 = 0 .
Conversely, suppose that f 2 = 0 . In addition, if we consider X, Y, Z orthogonal to ξ , then from (1), we find
R ( X , Y ) Z = f 1 { g ( Y , Z ) X g ( X , Z ) Y } .
From (44), we have
r = 2 n ( 2 n + 1 ) f 1 .
By virtue of (8) and (45), we obtain f 3 = 0 ; hence, from (37), we obtain
( W Z ˜ ) ( X , Y ) Z = 0 .
Therefore, M 2 n + 1 ( f 1 , f 2 , f 3 ) is locally concircularly symmetric. The above discussion helps us to state the following:
Theorem 9.
A ( 2 n + 1 ) -dimensional ( n > 1 ) generalized Sasakian-space-form M 2 n + 1 ( f 1 , f 2 , f 3 ) is locally concircularly symmetric if and only if f 2 = 0 .
Combining the results of Theorems 3 and 9, we obtain the following Corollary:
Corollary 7.
A ( 2 n + 1 ) -dimensional ( n > 1 ) generalized Sasakian-space-form M 2 n + 1 ( f 1 , f 2 , f 3 ) is locally concircularly symmetric if and only if it is conformally flat.
Next, suppose that M 2 n + 1 ( f 1 , f 2 , f 3 ) is locally concircularly ϕ -symmetric. Then from the (2) and (35), we obtain
( W Z ˜ ) ( X , Y ) Z + η ( ( W Z ˜ ) ( X , Y ) Z ) ξ = 0 .
Taking the inner product of Equation (47) with respect to an arbitrary vector field U, we have
g ( ( W Z ˜ ) ( X , Y ) Z , U ) + η ( ( W Z ˜ ) ( X , Y ) Z ) η ( U ) = 0 .
By considering U is orthogonal to ξ , from (48), we obtain
g ( ( W Z ˜ ) ( X , Y ) Z , U ) = 0 .
The above equation is true for all vector fields U orthogonal to ξ . If we choose U 0 and orthogonal to ( W Z ˜ ) ( X , Y ) Z , then it follows that
( W Z ˜ ) ( X , Y ) Z = 0 .
Hence, M 2 n + 1 ( f 1 , f 2 , f 3 ) is locally concircularly symmetric, and hence, by Theorem 7, it is conformally flat.
Conversely, let M 2 n + 1 ( f 1 , f 2 , f 3 ) be conformally flat, and hence, f 2 = 0 . Again, for X, Y, Z orthogonal to ξ , f 2 = 0 implies f 3 = 0 . Therefore we obtain from (37), using (2) and considering X, Y, Z orthogonal to ξ ,
ϕ 2 ( W Z ˜ ) ( X , Y ) Z = d f 1 ( W ) { g ( Y , Z ) X g ( X , Z ) Y } + d f 2 ( W ) { g ( X , ϕ Z ) ϕ Y g ( Y , ϕ Z ) ϕ X + 2 g ( X , ϕ Y ) ϕ Z } + f 2 { g ( X , ϕ Z ) ( W ϕ ) Y + g ( X , ( W ϕ ) Z ) ϕ Y g ( Y , ϕ Z ) ( W ϕ ) X g ( Y , ( W ϕ ) Z ) ϕ X + 2 g ( X , ϕ Y ) ( W ϕ ) Z + 2 g ( X , ( W ϕ ) Y ) ϕ Z } 1 2 n + 1 d ( ( 2 n + 1 ) f 1 + 3 f 2 2 f 3 ) ( W ) ) { g ( Y , Z ) X g ( X , Z ) Y } .
Hence, for f 2 = f 3 = 0 , from (50), we obtain
ϕ 2 ( W Z ˜ ) ( X , Y ) Z = 0 .
Therefore, M 2 n + 1 ( f 1 , f 2 , f 3 ) is locally concircularly ϕ -symmetric.
This leads to the following Theorem:
Theorem 10.
A ( 2 n + 1 ) -dimensional ( n > 1 ) generalized Sasakian-space-form M 2 n + 1 ( f 1 , f 2 , f 3 ) is locally concircularly ϕ-symmetric if and only if it is conformally flat.
Combining the results of Theorem 10 and Corollary 7, we find the following:
Theorem 11.
A ( 2 n + 1 ) -dimensional ( n > 1 ) generalized Sasakian-space-form M 2 n + 1 ( f 1 , f 2 , f 3 ) is locally concircularly ϕ-symmetric if and only if it is locally concircularly symmetric.
Theorem 12.
In a ( 2 n + 1 ) -dimensional ( n > 1 ) generalized Sasakian-space-form M 2 n + 1 ( f 1 , f 2 , f 3 ) , the following conditions are equivalent:
(i) 
M 2 n + 1 ( f 1 , f 2 , f 3 ) is locally concircularly symmetric,
(ii) 
M 2 n + 1 ( f 1 , f 2 , f 3 ) is locally concircularly ϕ-symmetric,
(iii) 
M 2 n + 1 ( f 1 , f 2 , f 3 ) is conformally flat,
(iv) 
f 2 = 0 holds on M 2 n + 1 ( f 1 , f 2 , f 3 ) .

6. Examples

In this section, we give some examples on generalized Sasakian-space-form with f 2 = f 3 = 0 and f 1 = 1 .
Example 1.
In [1], it is shown that the warped product R × f C m is a generalized Sasakian-space-form with
f 1 = ( f ) 2 f 2 , f 2 = 0 , f 3 = ( f ) 2 f 2 + ( f ) f .
where f = f ( t ) , t R . If we choose f ( t ) = e t , then M 2 n + 1 ( f 1 , f 2 , f 3 ) is ϕ-concircularly flat generalized Sasakian-space-form, since f 2 = 0 . Furthermore, we see that f 1 is constant. Therefore, Theorem 6 and Corollary 4 are verified.
Example 2.
The generalized Sasakian-space-form M 2 n + 1 ( f 1 , f 2 , f 3 ) is a Sasakian manifold, then it has specific form, i.e., f 1 1 = f 2 = f 3 = 0 , in this case, f 1 = 1 , f 2 = f 3 = 0 since, by the result obtained in this paper, M 2 n + 1 ( f 1 , f 2 , f 3 ) is ϕ-concircularly flat and its scalar curvature is constant.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Acknowledgments

The author is grateful to the reviewers for the valuable comments and suggestions that helped to improve the paper.

Conflicts of Interest

The author declare no conflict of interest.

References

  1. Alegre, P.; Blair, D.E.; Carriazo, A. Generalized Sasakian-space-forms. Israel J. Math. 2004, 14, 157–183. [Google Scholar] [CrossRef]
  2. Alegre, P.; Carriazo, A. Structures on generalized Sasakian-space-forms. Differ. Geom. Its Appl. 2008, 26, 656–666. [Google Scholar] [CrossRef] [Green Version]
  3. Alegre, P.; Carriazo, A. Submanifolds generalized Sasakian-space-forms. Taiwan. J. Math. 2009, 13, 923–941. [Google Scholar] [CrossRef]
  4. Alegre, P.; Carriazo, A. Generalized Sasakian-space-forms and conformal change of metric. Results Math. 2011, 59, 485–493. [Google Scholar] [CrossRef]
  5. Chaubey, S.K.; Yildiz, A. On Ricci tensor in the generalized Sasakian-space-forms. Int. J. Maps Math. 2019, 2, 131–147. [Google Scholar]
  6. Chaubey, S.K.; Yadav, S.K. W-semisymmetric generalized Sasakian-space-forms. Adv. Pure Appl. Math. 2018, 10, 427–436. [Google Scholar] [CrossRef]
  7. De, U.C.; Majhi, P. ϕ-semisymmetric generalized Sasakian-space-forms. Arab. J. Math. Sci. 2015, 21, 170–178. [Google Scholar]
  8. De, U.C.; Majhi, P. On Q-curvature tensor of generalized Sasakian-space-forms. Kravagujevac J. Maths. 2019, 43, 333–349. [Google Scholar]
  9. De, U.C.; Sarkar, A. On the projective curvature tensor of generalized Sasakian-space-forms. Quaest. Math. 2010, 33, 245–252. [Google Scholar] [CrossRef]
  10. EL-Sayied, H.K.; Shenawy, S.; Syied, N. Conformal vector fields on doubly warped product manifolds and applications. Adv. Math. Phys. 2016, 2016, 6508309. [Google Scholar] [CrossRef]
  11. EL-Sayied, H.K.; Shenawy, S.; Syied, N. Locally symmetric f-associated standard static spacetimes. Math. Methods Appl. Sci. 2018, 41, 5733–5736. [Google Scholar] [CrossRef]
  12. Hui, S.K.; Sarkar, A. On the W2-curvature tensor of generalized Sasakian-space-forms. Math. Pannonica 2012, 23, 113–124. [Google Scholar]
  13. Kim, U.K. Conformally flat generalized Sasakian-space-forms and locally symmetric generalized Sasakian-space-forms. Note Mat. 2006, 26, 55–67. [Google Scholar]
  14. Olteanu, A. Multiply warped product submanifolds in generalized Sasakian space forms. In Proceedings of the Conference RIGA (Riemannian Geometry and Applications), Editura Universitatii din Bucuresti, Bucharest, Romania, 10–14 May 2011; pp. 217–228. [Google Scholar]
  15. Olteanu, A. Doubly warped product submanifolds in generalized Sasakian space forms. In Proceedings of the International Conference Riemannian Geometry and Applications to Engineering and Economics—RIGA; Editura Universitatii din Bucuresti: București, Romania, 2014; pp. 174–184. [Google Scholar]
  16. Prakasha, D.G. On generalized Sasakian-space-forms with Weyl-conformal curvature tensor. Lobachevskii J. Math. 2012, 33, 223–228. [Google Scholar] [CrossRef]
  17. Prakasha, D.G.; Chavan, V. E-Bochner curvature tensor on generalized Sasakian-space-forms. C. R. Acad. Sci. Paris Ser. I 2016, 354, 835–841. [Google Scholar] [CrossRef]
  18. Sarkar, A.; Akbar, A. Generalized Sasakian-space-forms with projective curvature tensor. Demonstr. Math. 2014, 47, 726–738. [Google Scholar] [CrossRef] [Green Version]
  19. Shanmukha, B.; Venkatesha. Some results on Generalized Sasakian-space-forms with quarter symmetric metric connection. Asian J. Math. Comput. Res. 2018, 25, 183–191. [Google Scholar]
  20. Shanmukha, B.; Venkatesha; Vishnuvardhana, S.V. Some results on Generalized (k,μ) space forms. New Trend Math. Sci. 2018, 6, 48–56. [Google Scholar] [CrossRef]
  21. Venkatesha; Shanmukha, B. W2-curvature tensor on Generalized Sasakian-space-forms. Cubo 2018, 20, 17–29. [Google Scholar] [CrossRef] [Green Version]
  22. Ahsan, Z. On a geometrical symmetry of the spacetime of general relativity. Bull. Cal. Math. Soc. 2005, 97, 191–200. [Google Scholar]
  23. Catino, G.; Mantegazza, C.; Mazzieri, L. A note on Codazzi tensors. Math. Ann. 2015, 362, 629–638. [Google Scholar] [CrossRef]
  24. Sarkar, A.; De, U.C. Some properties of generalized Sasakian-space-forms. Lobachevskii J. Math. 2012, 33, 22–27. [Google Scholar] [CrossRef]
  25. Prakasha, D.G.; Nagaraja, H.G. On quasi-conformally flat and quasi-conformally semisymmetric generalized Sasakian-space-forms. Cubo 2013, 15, 59–70. [Google Scholar] [CrossRef] [Green Version]
  26. Sarkar, A.; Sen, M.; Akbar, A. Generalized Sasakian-space-forms with conharmonic curvature tensor. Palestine J. Math. 2015, 4, 84–90. [Google Scholar]
  27. Hui, S.K.; Prakasha, D.G. On the C-Bochner curvature tensor of generalized Sasakian-space-forms. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2015, 85, 401–405. [Google Scholar] [CrossRef]
  28. Blair, D.E. Contact manifolds in Riemannian geometry. In Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1976; Volume 509. [Google Scholar]
  29. Yano, K.; Kon, M. Structures on Manifolds; Series in Pure Mathematics; World Scientific: Singapore, 1984; Volume 3. [Google Scholar]
  30. Shukla, N.V.C.; Shah, R.J. Generalized Sasakian-space-forms with concircular curvature tensor. J. Rajasthan Acad. Phy. Sci. 2011, 10, 11–24. [Google Scholar]
  31. Özgür, C. On ϕ-conformally flat LP-Sasakian manifolds. Rad. Mat. 2003, 12, 99–106. [Google Scholar]
  32. Prakasha, D.G.; Amruthalashmi, M.R.; Mofarreh, F.; Haseeb, A. Generalized Lorentzian Sasakian-Space-forms with M-Projective Curvature Tensor. Mathematics 2022, 10, 2869. [Google Scholar] [CrossRef]
  33. Blair, D.E.; Kim, J.S.; Tripathi, M.M. On the concircular curvature tensor of a contact metric manifold. J. Korean Math. Soc. 2005, 42, 883–892. [Google Scholar] [CrossRef] [Green Version]
  34. Nomizu, K. On hypersurfaces satisfying a certain condition on the curvature tensor. Tohoku Math. J. 1968, 20, 46–59. [Google Scholar] [CrossRef]
  35. Ogawa, Y.A. Condition for a compact Kahlerian space to be locally symmetric. Nat. Sci. Rep. Ochanomizu Univ. 1971, 28, 21–23. [Google Scholar]
  36. Tanno, S. Locally symmetric K-contact Riemannian manifold. Proc. Jpn. Acad. 1967, 43, 581–583. [Google Scholar] [CrossRef]
  37. Szabo, Z.I. Structure theorems on Riemannian spaces satisfying R(X,YR=0, The local version. J. Differ. Geom. 1982, 17, 531–582. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Chavan, V. Some Properties of a Concircular Curvature Tensor on Generalized Sasakian-Space-Forms. AppliedMath 2022, 2, 609-620. https://doi.org/10.3390/appliedmath2040035

AMA Style

Chavan V. Some Properties of a Concircular Curvature Tensor on Generalized Sasakian-Space-Forms. AppliedMath. 2022; 2(4):609-620. https://doi.org/10.3390/appliedmath2040035

Chicago/Turabian Style

Chavan, Vasant. 2022. "Some Properties of a Concircular Curvature Tensor on Generalized Sasakian-Space-Forms" AppliedMath 2, no. 4: 609-620. https://doi.org/10.3390/appliedmath2040035

APA Style

Chavan, V. (2022). Some Properties of a Concircular Curvature Tensor on Generalized Sasakian-Space-Forms. AppliedMath, 2(4), 609-620. https://doi.org/10.3390/appliedmath2040035

Article Metrics

Back to TopTop