Some Properties of a Concircular Curvature Tensor on Generalized Sasakian-Space-Forms
Abstract
:1. Introduction
2. Generalized Sasakian-Space-Form
3. ϕ-Concircularly Flat Generalized Sasakian-Space-Forms
- (i)
- If , then M is conformally flat if and only if .
- (ii)
- If is conformally flat and is a Killing vector field, then is locally symmetric and has constant -sectional curvature.
4. ϕ-Concircularly Semisymmetric Generalized Sasakian-Space-Forms
- (i)
- is ϕ-concircularly semisymmtric,
- (ii)
- is ϕ-concircularly flat,
- (iii)
- is concircularly flat,
- (iv)
- is Ricci semisymmetric,
- (v)
- holds on .
5. Locally Concircularly Symmetric and Locally Concircularly ϕ-Symmetric Generalized Sasakian-Space-Forms
- (i)
- is locally concircularly symmetric,
- (ii)
- is locally concircularly ϕ-symmetric,
- (iii)
- is conformally flat,
- (iv)
- holds on .
6. Examples
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Alegre, P.; Blair, D.E.; Carriazo, A. Generalized Sasakian-space-forms. Israel J. Math. 2004, 14, 157–183. [Google Scholar] [CrossRef]
- Alegre, P.; Carriazo, A. Structures on generalized Sasakian-space-forms. Differ. Geom. Its Appl. 2008, 26, 656–666. [Google Scholar] [CrossRef] [Green Version]
- Alegre, P.; Carriazo, A. Submanifolds generalized Sasakian-space-forms. Taiwan. J. Math. 2009, 13, 923–941. [Google Scholar] [CrossRef]
- Alegre, P.; Carriazo, A. Generalized Sasakian-space-forms and conformal change of metric. Results Math. 2011, 59, 485–493. [Google Scholar] [CrossRef]
- Chaubey, S.K.; Yildiz, A. On Ricci tensor in the generalized Sasakian-space-forms. Int. J. Maps Math. 2019, 2, 131–147. [Google Scholar]
- Chaubey, S.K.; Yadav, S.K. W-semisymmetric generalized Sasakian-space-forms. Adv. Pure Appl. Math. 2018, 10, 427–436. [Google Scholar] [CrossRef]
- De, U.C.; Majhi, P. ϕ-semisymmetric generalized Sasakian-space-forms. Arab. J. Math. Sci. 2015, 21, 170–178. [Google Scholar]
- De, U.C.; Majhi, P. On Q-curvature tensor of generalized Sasakian-space-forms. Kravagujevac J. Maths. 2019, 43, 333–349. [Google Scholar]
- De, U.C.; Sarkar, A. On the projective curvature tensor of generalized Sasakian-space-forms. Quaest. Math. 2010, 33, 245–252. [Google Scholar] [CrossRef]
- EL-Sayied, H.K.; Shenawy, S.; Syied, N. Conformal vector fields on doubly warped product manifolds and applications. Adv. Math. Phys. 2016, 2016, 6508309. [Google Scholar] [CrossRef]
- EL-Sayied, H.K.; Shenawy, S.; Syied, N. Locally symmetric f-associated standard static spacetimes. Math. Methods Appl. Sci. 2018, 41, 5733–5736. [Google Scholar] [CrossRef]
- Hui, S.K.; Sarkar, A. On the W2-curvature tensor of generalized Sasakian-space-forms. Math. Pannonica 2012, 23, 113–124. [Google Scholar]
- Kim, U.K. Conformally flat generalized Sasakian-space-forms and locally symmetric generalized Sasakian-space-forms. Note Mat. 2006, 26, 55–67. [Google Scholar]
- Olteanu, A. Multiply warped product submanifolds in generalized Sasakian space forms. In Proceedings of the Conference RIGA (Riemannian Geometry and Applications), Editura Universitatii din Bucuresti, Bucharest, Romania, 10–14 May 2011; pp. 217–228. [Google Scholar]
- Olteanu, A. Doubly warped product submanifolds in generalized Sasakian space forms. In Proceedings of the International Conference Riemannian Geometry and Applications to Engineering and Economics—RIGA; Editura Universitatii din Bucuresti: București, Romania, 2014; pp. 174–184. [Google Scholar]
- Prakasha, D.G. On generalized Sasakian-space-forms with Weyl-conformal curvature tensor. Lobachevskii J. Math. 2012, 33, 223–228. [Google Scholar] [CrossRef]
- Prakasha, D.G.; Chavan, V. E-Bochner curvature tensor on generalized Sasakian-space-forms. C. R. Acad. Sci. Paris Ser. I 2016, 354, 835–841. [Google Scholar] [CrossRef]
- Sarkar, A.; Akbar, A. Generalized Sasakian-space-forms with projective curvature tensor. Demonstr. Math. 2014, 47, 726–738. [Google Scholar] [CrossRef] [Green Version]
- Shanmukha, B.; Venkatesha. Some results on Generalized Sasakian-space-forms with quarter symmetric metric connection. Asian J. Math. Comput. Res. 2018, 25, 183–191. [Google Scholar]
- Shanmukha, B.; Venkatesha; Vishnuvardhana, S.V. Some results on Generalized (k,μ) space forms. New Trend Math. Sci. 2018, 6, 48–56. [Google Scholar] [CrossRef]
- Venkatesha; Shanmukha, B. W2-curvature tensor on Generalized Sasakian-space-forms. Cubo 2018, 20, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Ahsan, Z. On a geometrical symmetry of the spacetime of general relativity. Bull. Cal. Math. Soc. 2005, 97, 191–200. [Google Scholar]
- Catino, G.; Mantegazza, C.; Mazzieri, L. A note on Codazzi tensors. Math. Ann. 2015, 362, 629–638. [Google Scholar] [CrossRef]
- Sarkar, A.; De, U.C. Some properties of generalized Sasakian-space-forms. Lobachevskii J. Math. 2012, 33, 22–27. [Google Scholar] [CrossRef]
- Prakasha, D.G.; Nagaraja, H.G. On quasi-conformally flat and quasi-conformally semisymmetric generalized Sasakian-space-forms. Cubo 2013, 15, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, A.; Sen, M.; Akbar, A. Generalized Sasakian-space-forms with conharmonic curvature tensor. Palestine J. Math. 2015, 4, 84–90. [Google Scholar]
- Hui, S.K.; Prakasha, D.G. On the C-Bochner curvature tensor of generalized Sasakian-space-forms. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2015, 85, 401–405. [Google Scholar] [CrossRef]
- Blair, D.E. Contact manifolds in Riemannian geometry. In Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1976; Volume 509. [Google Scholar]
- Yano, K.; Kon, M. Structures on Manifolds; Series in Pure Mathematics; World Scientific: Singapore, 1984; Volume 3. [Google Scholar]
- Shukla, N.V.C.; Shah, R.J. Generalized Sasakian-space-forms with concircular curvature tensor. J. Rajasthan Acad. Phy. Sci. 2011, 10, 11–24. [Google Scholar]
- Özgür, C. On ϕ-conformally flat LP-Sasakian manifolds. Rad. Mat. 2003, 12, 99–106. [Google Scholar]
- Prakasha, D.G.; Amruthalashmi, M.R.; Mofarreh, F.; Haseeb, A. Generalized Lorentzian Sasakian-Space-forms with M-Projective Curvature Tensor. Mathematics 2022, 10, 2869. [Google Scholar] [CrossRef]
- Blair, D.E.; Kim, J.S.; Tripathi, M.M. On the concircular curvature tensor of a contact metric manifold. J. Korean Math. Soc. 2005, 42, 883–892. [Google Scholar] [CrossRef] [Green Version]
- Nomizu, K. On hypersurfaces satisfying a certain condition on the curvature tensor. Tohoku Math. J. 1968, 20, 46–59. [Google Scholar] [CrossRef]
- Ogawa, Y.A. Condition for a compact Kahlerian space to be locally symmetric. Nat. Sci. Rep. Ochanomizu Univ. 1971, 28, 21–23. [Google Scholar]
- Tanno, S. Locally symmetric K-contact Riemannian manifold. Proc. Jpn. Acad. 1967, 43, 581–583. [Google Scholar] [CrossRef]
- Szabo, Z.I. Structure theorems on Riemannian spaces satisfying R(X,Y)·R=0, The local version. J. Differ. Geom. 1982, 17, 531–582. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chavan, V. Some Properties of a Concircular Curvature Tensor on Generalized Sasakian-Space-Forms. AppliedMath 2022, 2, 609-620. https://doi.org/10.3390/appliedmath2040035
Chavan V. Some Properties of a Concircular Curvature Tensor on Generalized Sasakian-Space-Forms. AppliedMath. 2022; 2(4):609-620. https://doi.org/10.3390/appliedmath2040035
Chicago/Turabian StyleChavan, Vasant. 2022. "Some Properties of a Concircular Curvature Tensor on Generalized Sasakian-Space-Forms" AppliedMath 2, no. 4: 609-620. https://doi.org/10.3390/appliedmath2040035
APA StyleChavan, V. (2022). Some Properties of a Concircular Curvature Tensor on Generalized Sasakian-Space-Forms. AppliedMath, 2(4), 609-620. https://doi.org/10.3390/appliedmath2040035