# Resurrecting the Prospect of Supplementary Variableswith the Principle of Local Realism

## Abstract

**:**

## 1. Introduction

## 2. Supplementary Variables’ Explanation of Quantum Behavior

#### 2.1. Formalities of the Supplementary Variables Partition

#### 2.2. On the Substantive Content of an HV Parameterization

#### 2.3. Assessing $E\left(s\right)$ in the Situation of Entangled Distributions for $(\mathbf{A},\mathbf{B})$

## 3. Computational Support for the Bounded Assessment of ${E}_{QM}\left(s\right)$

## 4. Concluding Remarks

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Aspect, A. Bell’s theorem: The naive view of an experimentalist. In Quantum [Un]speakables; Springer: Berlin/Heidelberg, Germany, 2002; pp. 119–153. [Google Scholar]
- Lad, F. Quantum violation of Bell’s inequality: A misunderstanding based on a mathematical error of neglect. J. Mod. Phys.
**2021**, 12, 1109–1144. [Google Scholar] [CrossRef] - Clauser, J.F.; Horne, M.A.; Shimony, A.; Holt, R.A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett.
**1969**, 23, 880–884. [Google Scholar] [CrossRef] [Green Version] - Jaynes, E.T. Predictive statistical mechanics. In Frontiers of Nonequilibrium Statistical Physics; Springer: Berlin/Heidelberg, Germany, 1986; Volume 135. [Google Scholar]
- Ball, P. Physicist proposes deeper layer of reality. Nature
**2003**. [Google Scholar] [CrossRef] - Fine, A. Hidden variables, joint probability, and the Bell inequalities. Phys. Rev. Lett.
**1982**, 48, 291–295. [Google Scholar] [CrossRef] - Garg, A.; Mermin, N.D. Comment on hidden variables, joint probability, and the Bell inequalities, with reply. Phys. Rev. Lett.
**1982**, 49, 242. [Google Scholar] [CrossRef] - Mermin, N.D. Hidden variables and two theorems of John Bell. Rev. Mod. Phys.
**1993**, 65, 803–815. [Google Scholar] [CrossRef] - Mermin, N.D.; Schack, R. Homer nodded: Von Neumann’s surprising oversight. Found. Phys.
**2018**, 48, 1007–1020. [Google Scholar] [CrossRef] [Green Version] - Greenberger, D.M.; Horne, M.A.; Shimony, A.; Zeilinger, A. Bell’s theorem without inequalities. Am. J. Phys.
**1990**, 58, 1131–1143. [Google Scholar] [CrossRef] - Mermin, N.D. Quantum mysteries for anyone. J. Philos.
**1981**, 78, 397–408. [Google Scholar] [CrossRef] [Green Version] - Lad, F. The GHSZ argument: A gedankenexperiment requiring more denken. Entropy
**2020**, 22, 759. [Google Scholar] [CrossRef] [PubMed] - Lad, F. Quantum mysteries for no one. J. Mod. Phys.
**2021**, 12, 1366–1399. [Google Scholar] [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Lad, F.
Resurrecting the Prospect of Supplementary Variableswith the Principle of Local Realism. *AppliedMath* **2022**, *2*, 159-169.
https://doi.org/10.3390/appliedmath2010009

**AMA Style**

Lad F.
Resurrecting the Prospect of Supplementary Variableswith the Principle of Local Realism. *AppliedMath*. 2022; 2(1):159-169.
https://doi.org/10.3390/appliedmath2010009

**Chicago/Turabian Style**

Lad, Frank.
2022. "Resurrecting the Prospect of Supplementary Variableswith the Principle of Local Realism" *AppliedMath* 2, no. 1: 159-169.
https://doi.org/10.3390/appliedmath2010009