Individualized Management of Osteoarthritis: The Role of Pharmacogenomics to Optimize Pain Therapy
Abstract
:1. Background
2. Pharmacological Management of OA
2.1. Acetaminophen
2.1.1. Pharmacotherapy
2.1.2. Mechanism of Action
2.1.3. Clinical Pharmacology
2.1.4. Pharmacogenomics
2.1.5. Clinical Implications
2.2. Non-Steroidal Anti-Inflammatory Drugs
2.2.1. Pharmacotherapy
2.2.2. Mechanism of Action
2.2.3. Clinical Pharmacology
2.2.4. Pharmacogenomics
2.2.5. Clinical Implications
2.3. Duloxetine
2.3.1. Pharmacotherapy
2.3.2. Mechanism of Action
2.3.3. Clinical Pharmacology
2.3.4. Pharmacogenomics
2.3.5. Clinical Implications
2.4. Tramadol
2.4.1. Pharmacotherapy
2.4.2. Mechanism of Action
2.4.3. Clinical Pharmacology
2.4.4. Pharmacogenomics
2.4.5. Clinical Implications
3. Challenges and Opportunities
4. Future Perspective
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, S.; Zhang, C.; Oo, W.M.; Fu, K.; Risberg, M.A.; Bierma-Zeinstra, S.M.; Neogi, T.; Atukorala, I.; Malfait, A.-M.; Ding, C.; et al. Osteoarthritis. Nat. Rev. Dis. Primers 2025, 11, 10. [Google Scholar] [CrossRef]
- Fallon, E.A.; Boring, M.A.; Foster, A.L.; Stowe, E.W.; Lites, T.D.; Odom, E.L.; Seth, P. Prevalence of Diagnosed Arthritis—United States, 2019–2021. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 1101–1107. [Google Scholar] [CrossRef]
- Malemud, C.J. Biologic basis of osteoarthritis: State of the evidence. Curr. Opin. Rheumatol. 2015, 27, 289–294. [Google Scholar] [CrossRef]
- Tschon, M.; Contartese, D.; Pagani, S.; Borsari, V.; Fini, M. Gender and Sex Are Key Determinants in Osteoarthritis Not Only Confounding Variables. A Systematic Review of Clinical Data. J. Clin. Med. 2021, 10, 3178. [Google Scholar] [CrossRef]
- Boer, C.G.; Hatzikotoulas, K.; Southam, L.; Stefánsdóttir, L.; Zhang, Y.; Coutinho De Almeida, R.; Wu, T.T.; Zheng, J.; Hartley, A.; Teder-Laving, M.; et al. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations. Cell 2021, 184, 4784–4818.e17. [Google Scholar] [CrossRef]
- Martel-Pelletier, J. Pathophysiology of osteoarthritis. Osteoarthr. Cartil. 2004, 12, 31–33. [Google Scholar] [CrossRef]
- Kolasinski, S.L.; Neogi, T.; Hochberg, M.C.; Oatis, C.; Guyatt, G.; Block, J.; Callahan, L.; Copenhaver, C.; Dodge, C.; Felson, D.; et al. 2019 American College of Rheumatology/Arthritis Foundation Guideline for the Management of Osteoarthritis of the Hand, Hip, and Knee. Arthritis Care Res. 2020, 72, 149–162. [Google Scholar] [CrossRef]
- Sarzi-Puttini, P.; Cimmino, M.A.; Scarpa, R.; Caporali, R.; Parazzini, F.; Zaninelli, A.; Atzeni, F.; Canesi, B. Osteoarthritis: An overview of the disease and its treatment strategies. Semin. Arthritis Rheum. 2005, 35 (Suppl. S1), 1–10. [Google Scholar] [CrossRef]
- Yu, S.P.; Hunter, D.J. Managing osetoarthritis. Aust. Prescr. 2015, 38, 115–119. [Google Scholar] [CrossRef]
- Richard, M.J.; Driban, J.B.; McAlindon, T.E. Pharmaceutical treatment of osteoarthritis. Osteoarthr. Cartil. 2023, 31, 458–466. [Google Scholar] [CrossRef]
- Pharmacogenetics of Analgesic Drugs—Roman Cregg, Giovanna Russo, Anthony Gubbay, Ruth Branford, Hiroe Sato. 2013. Available online: https://journals.sagepub.com/doi/10.1177/2049463713507439 (accessed on 11 April 2025).
- Kaye, A.D.; Garcia, A.J.; Hall, O.M.; Jeha, G.M.; Cramer, K.D.; Granier, A.L.; Kallurkar, A.; Cornett, E.M.; Urman, R.D. Update on the pharmacogenomics of pain management. Pharmgenom. Pers. Med. 2019, 12, 125–143. [Google Scholar] [CrossRef]
- Smith, D.M.; Figg, W.D. Evidence Regarding Pharmacogenetics in Pain Management and Cancer. Oncologist 2023, 28, 189–192. [Google Scholar] [CrossRef]
- Smith, D.M.; Weitzel, K.W.; Elsey, A.R.; Langaee, T.; Gong, Y.; Wake, D.T.; Duong, B.Q.; Hagen, M.; Harle, C.A.; Mercado, E.; et al. CYP2D6-guided opioid therapy improves pain control in CYP2D6 intermediate and poor metabolizers: A pragmatic clinical trial. Genet. Med. 2019, 21, 1842–1850. [Google Scholar] [CrossRef]
- CDC Pharmacogenomics. Genomics and Your Health. 2 December 2024. Available online: https://www.cdc.gov/genomics-and-health/pharmacogenomics/index.html (accessed on 11 April 2025).
- Theken, K.N.; Lee, C.R.; Gong, L.; Caudle, K.E.; Formea, C.M.; Gaedigk, A.; Klein, T.E.; Agúndez, J.A.G.; Grosser, T. Clinical Pharmacogenetics Implementation Consortium Guideline (CPIC) for CYP2C9 and Nonsteroidal Anti-Inflammatory Drugs. Clin. Pharmacol. Ther. 2020, 108, 191–200. [Google Scholar] [CrossRef]
- Bousman, C.A.; Stevenson, J.M.; Ramsey, L.B.; Sangkuhl, K.; Hicks, J.K.; Strawn, J.R.; Singh, A.B.; Ruaño, G.; Mueller, D.J.; Tsermpini, E.E.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6, CYP2C19, CYP2B6, SLC6A4, and HTR2A Genotypes and Serotonin Reuptake Inhibitor Antidepressants. Clin. Pharmacol. Ther. 2023, 114, 51–68. [Google Scholar] [CrossRef]
- Crews, K.R.; Monte, A.A.; Huddart, R.; Caudle, K.E.; Kharasch, E.D.; Gaedigk, A.; Dunnenberger, H.M.; Leeder, J.S.; Callaghan, J.T.; Samer, C.F.; et al. Clinical Pharmacogenetics Implementation Consortium Guideline for CYP2D6, OPRM1, and COMT Genotypes and Select Opioid Therapy. Clin. Pharmacol. Ther. 2021, 110, 888–896. [Google Scholar] [CrossRef]
- Bushel, P.R.; Fannin, R.D.; Gerrish, K.; Watkins, P.B.; Paules, R.S. Blood gene expression profiling of an early acetaminophen response. Pharmacogenom. J. 2017, 17, 230–236. [Google Scholar] [CrossRef]
- Center for Drug Evaluation and Research (CDER). FDA Issues Agency-Initiated Proposed Order Regarding OTC Monograph Drugs Containing Acetaminophen. FDA. 7 August 2024. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-issues-agency-initiated-proposed-order-regarding-otc-monograph-drugs-containing-acetaminophen (accessed on 11 April 2025).
- Ohashi, N.; Kohno, T. Analgesic Effect of Acetaminophen: A Review of Known and Novel Mechanisms of Action. Front. Pharmacol. 2020, 11, 580289. [Google Scholar] [CrossRef]
- Botting, R.M. Mechanism of Action of Acetaminophen: Is There a Cyclooxygenase 3? Clin. Infect. Dis. 2000, 31 (Suppl. S5), S202–S210. [Google Scholar] [CrossRef]
- Ayoub, S.S. Paracetamol (acetaminophen): A familiar drug with an unexplained mechanism of action. Temperature 2021, 8, 351–371. [Google Scholar] [CrossRef]
- Biswas, D.; Somkuwar, B.G.; Borah, J.C.; Varadwaj, P.K.; Gupta, S.; Khan, Z.A.; Mondal, G.; Chattoraj, A.; Deb, L. Phytochemical mediated modulation of COX-3 and NFκB for the management and treatment of arthritis. Sci. Rep. 2023, 13, 13612. [Google Scholar] [CrossRef]
- Bashir, S.; Elegunde, B.; Morgan, W.A. Inhibition of lipolysis: A novel explanation for the hypothermic actions of acetaminophen in non-febrile rodents. Biochem. Pharmacol. 2020, 172, 113774. [Google Scholar] [CrossRef]
- Raffa, R.B.; Stone, D.J.; Tallarida, R.J. Discovery of “self-synergistic” spinal/supraspinal antinociception produced by acetaminophen (paracetamol). J. Pharmacol. Exp. Ther. 2000, 295, 291–294. [Google Scholar] [CrossRef]
- Acetaminophen Injection: Package Insert/Prescribing Info. Drugs.com. Available online: https://www.drugs.com/pro/acetaminophen-injection.html (accessed on 11 April 2025).
- Cerezo-Arias, M.d.l.O.; Gómez-Tabales, J.; Martí, M.; García-Martín, E.; Agúndez, J.A.G. Common UGT1A6 Variant Alleles Determine Acetaminophen Pharmacokinetics in Man. J. Pers. Med. 2022, 12, 720. [Google Scholar] [CrossRef]
- Mazaleuskaya, L.L.; Sangkuhl, K.; Thorn, C.F.; FitzGerald, G.A.; Altman, R.B.; Klein, T.E. PharmGKB summary: Pathways of acetaminophen metabolism at the therapeutic versus toxic doses. Pharmacogenet. Genom. 2015, 25, 416–426. [Google Scholar] [CrossRef]
- Court, M.H.; Duan, S.X.; von Moltke, L.L.; Greenblatt, D.J.; Patten, C.J.; Miners, J.O.; Mackenzie, P.I. Interindividual Variability in Acetaminophen Glucuronidation by Human Liver Microsomes: Identification of Relevant Acetaminophen UDP-Glucuronosyltransferase Isoforms. J. Pharmacol. Exp. Ther. 2001, 299, 998–1006. [Google Scholar] [CrossRef]
- Patel, M.; Tang, B.K.; Kalow, W. Variability of acetaminophen metabolism in Caucasians and Orientals. Pharmacogenetics 1992, 2, 38–45. [Google Scholar] [CrossRef]
- Marzilawati, A.-R.; Ngau, Y.-Y.; Mahadeva, S. Low rates of hepatotoxicity among Asian patients with paracetamol overdose: A review of 1024 cases. BMC Pharmacol. Toxicol. 2012, 13, 8. [Google Scholar] [CrossRef]
- Harjumäki, R.; Pridgeon, C.S.; Ingelman-Sundberg, M. CYP2E1 in Alcoholic and Non-Alcoholic Liver Injury. Roles of ROS, Reactive Intermediates and Lipid Overload. Int. J. Mol. Sci. 2021, 22, 8221. [Google Scholar] [CrossRef] [PubMed]
- Blantz, R.C. Acetaminophen: Acute and chronic effects on renal function. Am. J. Kidney Dis. 1996, 28, S3–S6. [Google Scholar] [CrossRef]
- Chen, Y.-G.; Lin, C.-L.; Dai, M.-S.; Chang, P.-Y.; Chen, J.-H.; Huang, T.-C.; Wu, Y.-Y.; Kao, C.-H. Risk of Acute Kidney Injury and Long-Term Outcome in Patients with Acetaminophen Intoxication: A Nationwide Population-Based Retrospective Cohort Study. Medicine 2015, 94, e2040. [Google Scholar] [CrossRef] [PubMed]
- Kanchanasurakit, S.; Arsu, A.; Siriplabpla, W.; Duangjai, A.; Saokaew, S. Acetaminophen use and risk of renal impairment: A systematic review and meta-analysis. Kidney Res. Clin. Pract. 2020, 39, 81–92. [Google Scholar] [CrossRef]
- Parra, D.; Beckey, N.P.; Stevens, G.R. The Effect of Acetaminophen on the International Normalized Ratio in Patients Stabilized on Warfarin Therapy. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2007, 27, 675–683. [Google Scholar] [CrossRef]
- Lopes, R.D.; Horowitz, J.D.; Garcia, D.A.; Crowther, M.A.; Hylek, E.M. Warfarin and acetaminophen interaction: A summary of the evidence and biologic plausibility. Blood 2011, 118, 6269–6273. [Google Scholar] [CrossRef]
- Pinson, G.M.; Beall, J.W.; Kyle, J.A. A Review of Warfarin Dosing With Concurrent Acetaminophen Therapy. J. Pharm. Pract. 2013, 26, 518–521. [Google Scholar] [CrossRef]
- Shikdar, S.; Vashisht, R.; Zubair, M.; Bhattacharya, P.T. International Normalized Ratio: Assessment, Monitoring, and Clinical Implications. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK507707/ (accessed on 4 June 2025).
- Hakkola, J.; Hukkanen, J.; Turpeinen, M.; Pelkonen, O. Inhibition and induction of CYP enzymes in humans: An update. Arch. Toxicol. 2020, 94, 3671–3722. [Google Scholar] [CrossRef]
- Radke, J.; Algren, D.; Chenoweth, J.; Owen, K.; Ford, J.; Albertson, T.; Sutter, M. Transaminase and Creatine Kinase Ratios for Differentiating Delayed Acetaminophen Overdose from Rhabdomyolysis. West. J. Emerg. Med. 2018, 19, 731–736. [Google Scholar] [CrossRef]
- Ong, C.K.S.; Lirk, P.; Tan, C.H.; Seymour, R.A. An evidence-based update on nonsteroidal anti-inflammatory drugs. Clin. Med. Res. 2007, 5, 19–34. [Google Scholar] [CrossRef]
- Gunaydin, C.; Bilge, S.S. Effects of Nonsteroidal Anti-Inflammatory Drugs at the Molecular Level. Eurasian J. Med. 2018, 50, 116–121. [Google Scholar] [CrossRef]
- Simon, L.S. Role and regulation of cyclooxygenase-2 during inflammation. Am. J. Med. 1999, 106, 37S–42S. [Google Scholar] [CrossRef]
- McEvoy, L.; Carr, D.F.; Pirmohamed, M. Pharmacogenomics of NSAID-Induced Upper Gastrointestinal Toxicity. Front. Pharmacol. 2021, 12, 684162. [Google Scholar] [CrossRef]
- Wirth, T.; Lafforgue, P.; Pham, T. NSAID: Current limits to prescription. Jt. Bone Spine 2024, 91, 105685. [Google Scholar] [CrossRef]
- Lee, S.J.; Park, M.K.; Shin, D.-S.; Chun, M.H. Variability of the drug response to nonsteroidal anti-inflammatory drugs according to cyclooxygenase-2 genetic polymorphism. Drug Des. Dev. Ther. 2017, 11, 2727–2736. [Google Scholar] [CrossRef]
- Crofford, L.J. Use of NSAIDs in treating patients with arthritis. Arthritis Res. Ther. 2013, 15 (Suppl. S3), S2. [Google Scholar] [CrossRef]
- Solomon, S.D.; McMurray, J.J.V.; Pfeffer, M.A.; Wittes, J.; Fowler, R.; Finn, P.; Anderson, W.F.; Zauber, A.; Hawk, E.; Bertagnolli, M. Cardiovascular Risk Associated with Celecoxib in a Clinical Trial for Colorectal Adenoma Prevention. N. Engl. J. Med. 2005, 352, 1071–1080. [Google Scholar] [CrossRef]
- Johnson, A.G.; Nguyen, T.V.; Day, R.O. Do Nonsteroidal Anti-inflammatory Drugs Affect Blood Pressure? A Meta-Analysis. Ann. Intern. Med. 1994, 121, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Rannou, F.; Pelletier, J.-P.; Martel-Pelletier, J. Efficacy and safety of topical NSAIDs in the management of osteoarthritis: Evidence from real-life setting trials and surveys. Semin. Arthritis Rheum. 2016, 45 (Suppl. S4), S18–S21. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, M.; Wang, H.; You, Y.; Wei, C.; Liu, M.; Luo, A.; Xu, X.; Duan, X. Relative safety and efficacy of topical and oral NSAIDs in the treatment of osteoarthritis: A systematic review and meta-analysis. Medicine 2022, 101, e30354. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.; Silvestre, S.; Duarte, A.P.; Alves, G. Safety of Non-Steroidal Anti-Inflammatory Drugs in the Elderly: An Analysis of Published Literature and Reports Sent to the Portuguese Pharmacovigilance System. Int. J. Environ. Res. Public Health 2022, 19, 3541. [Google Scholar] [CrossRef]
- Pope, J.E.; Anderson, J.J.; Felson, D.T. A meta-analysis of the effects of nonsteroidal anti-inflammatory drugs on blood pressure. Arch. Intern. Med. 1993, 153, 477–484. [Google Scholar] [CrossRef]
- Yu, Y.; Stubbe, J.; Ibrahim, S.; Song, W.; Smyth, E.M.; Funk, C.D.; FitzGerald, G.A. Cyclooxygenase-2-dependent prostacyclin formation and blood pressure homeostasis: Targeted exchange of cyclooxygenase isoforms in mice. Circ. Res. 2010, 106, 337–345. [Google Scholar] [CrossRef] [PubMed]
- White, W.B.; Kent, J.; Taylor, A.; Verburg, K.M.; Lefkowith, J.B.; Whelton, A. Effects of celecoxib on ambulatory blood pressure in hypertensive patients on ACE inhibitors. Hypertension 2002, 39, 929–934. [Google Scholar] [CrossRef] [PubMed]
- Chrischilles, E.A.; Wallace, R.B. Nonsteroidal anti-inflammatory drugs and blood pressure in an elderly population. J. Gerontol. 1993, 48, M91–M96. [Google Scholar] [CrossRef] [PubMed]
- Hörl, W.H. Nonsteroidal Anti-Inflammatory Drugs and the Kidney. Pharmaceuticals 2010, 3, 2291–2321. [Google Scholar] [CrossRef]
- Wang, S.-T.; Ni, G.-X. Depression in Osteoarthritis: Current Understanding. Neuropsychiatr. Dis. Treat. 2022, 18, 375–389. [Google Scholar] [CrossRef]
- Osani, M.C.; Bannuru, R.R. Efficacy and safety of duloxetine in osteoarthritis: A systematic review and meta-analysis. Korean J. Intern. Med. 2019, 34, 966–973. [Google Scholar] [CrossRef]
- Stahl, S.M. Stahl’s Essential Psychopharmacology: Neuroscientific Basis and Practical Applications, 5th ed.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Dhaliwal, J.S.; Spurling, B.C.; Molla, M. Duloxetine. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK549806/ (accessed on 11 April 2025).
- Cymbalta: Package Insert/Prescribing Information. Drugs.com. Available online: https://www.drugs.com/pro/cymbalta.html (accessed on 11 April 2025).
- Knadler, M.P.; Lobo, E.; Chappell, J.; Bergstrom, R. Duloxetine: Clinical Pharmacokinetics and Drug Interactions. Clin. Pharmacokinet. 2011, 50, 281–294. [Google Scholar] [CrossRef]
- Hole, K.; Gangsø, S.; Jensstuen, Å.T.; Ormøy, H.H.; Paulsen, M.; Molden, E.; Haslemo, T. Effect of CYP2D6 genotype on duloxetine serum concentration. Basic Clin. Pharmacol. Toxicol. 2024, 134, 186–192. [Google Scholar] [CrossRef]
- Maciaszek, J.; Pawłowski, T.; Hadryś, T.; Machowska, M.; Wiela-Hojeńska, A.; Misiak, B. The Impact of the CYP2D6 and CYP1A2 Gene Polymorphisms on Response to Duloxetine in Patients with Major Depression. Int. J. Mol. Sci. 2023, 24, 13459. [Google Scholar] [CrossRef]
- Kuzin, M.; Scharrer, I.; Nolan, D.; Baumgartner, M.; Paulzen, M.; Schoretsanitis, G.; Xepapadakos, F. The role of the poor metabolizer genotype CYP2D6 and CYP1A2 phenotype in the pharmacokinetics of duloxetine and venlafaxine—A case report. Basic Clin. Pharmacol. Toxicol. 2020, 127, 354–357. [Google Scholar] [CrossRef]
- Rondon, H.; Badireddy, M. Hyponatremia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK470386/ (accessed on 5 May 2025).
- Lien, Y.-H.H. Antidepressants and Hyponatremia. Am. J. Med. 2018, 131, 7–8. [Google Scholar] [CrossRef] [PubMed]
- Gheysens, T.; Van Den Eede, F.; De Picker, L. The risk of antidepressant-induced hyponatremia: A meta-analysis of antidepressant classes and compounds. Eur. Psychiatry 2024, 67, e20. [Google Scholar] [CrossRef] [PubMed]
- Hamada, T.; Matsuki, K.; Kondou, S.; Furukawa, S.; Onji, M. Duloxetine-induced Syndrome of Inappropriate Secretion of Antidiuretic Hormone in a Super-elderly Patient. Intern. Med. 2022, 61, 1099–1103. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Aburakawa, Y.; Suzuki, Y.; Kuroda, K.; Kimura, T. Acute Hyponatremia Resulting from Duloxetine-induced Syndrome of Inappropriate Antidiuretic Hormone Secretion. Intern. Med. 2019, 58, 1939–1942. [Google Scholar] [CrossRef]
- Grond, S.; Sablotzki, A. Clinical Pharmacology of Tramadol. Clin. Pharmacokinet. 2004, 43, 879–923. [Google Scholar] [CrossRef]
- Dhesi, M.; Maldonado, K.A.; Patel, P.; Maani, C.V. Tramadol. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK537060/ (accessed on 11 April 2025).
- Tramadol ER: Package Insert/Prescribing Information. Drugs.com. Available online: https://www.drugs.com/pro/tramadol-er.html (accessed on 11 April 2025).
- Tramadol Tablets: Package Insert/Prescribing Information. Drugs.com. Available online: https://www.drugs.com/pro/tramadol-tablets.html (accessed on 30 April 2025).
- Wong, A.K.; Somogyi, A.A.; Rubio, J.; Philip, J. The Role of Pharmacogenomics in Opioid Prescribing. Curr. Treat. Options Oncol. 2022, 23, 1353–1369. [Google Scholar] [CrossRef]
- Gong, L.; Stamer, U.M.; Tzvetkov, M.V.; Altman, R.B.; Klein, T.E. PharmGKB summary: Tramadol pathway. Pharmacogenet. Genom. 2014, 24, 374–380. [Google Scholar] [CrossRef]
- Dowell, D.; Ragan, K.R.; Jones, C.M.; Baldwin, G.T.; Chou, R. CDC Clinical Practice Guideline for Prescribing Opioids for Pain —United States, 2022. MMWR Recomm. Rep. 2022, 71, 1–95. [Google Scholar] [CrossRef]
- Hassamal, S.; Miotto, K.; Dale, W.; Danovitch, I. Tramadol: Understanding the Risk of Serotonin Syndrome and Seizures. Am. J. Med. 2018, 131, 1382.e1–1382.e6. [Google Scholar] [CrossRef]
- Eapen-John, D.; Mohiuddin, A.G.; Kennedy, J.L. A potential paradigm shift in opioid crisis management: The role of pharmacogenomics. World J. Biol. Psychiatry 2022, 23, 411–423. [Google Scholar] [CrossRef]
- Schuh, M.J.; Randles, H.; Crosby, S. Improving Pain Management with Pharmacogenomics: A General Introduction. J. Pain Palliat. Care Pharmacother. 2020, 34, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Pizzolato, K.; Thacker, D.; Toro-Pagán, N.M.D.; Amin, N.S.; Hanna, A.; Turgeon, J.; Michaud, V. Utilizing Pharmacogenomics Results to Determine Opioid Appropriateness and Improve Pain Management in a Patient with Osteoarthritis. Pharmgenom. Pers Med. 2022, 15, 943–950. [Google Scholar] [CrossRef] [PubMed]
- By the 2023 American Geriatrics Society Beers Criteria® Update Expert Panel. American Geriatrics Society 2023 updated AGS Beers Criteria® for potentially inappropriate medication use in older adults. J. Am. Geriatr. Soc. 2023, 71, 2052–2081. [Google Scholar] [CrossRef] [PubMed]
- Roman, Y.M. Editorial: The role of pharmacogenomics in addressing health disparities: The path, the promise, and the barriers. Front. Genet. 2023, 14, 1233045. [Google Scholar] [CrossRef]
- Morris, S.A.; Alsaidi, A.T.; Verbyla, A.; Cruz, A.; Macfarlane, C.; Bauer, J.; Patel, J.N. Cost Effectiveness of Pharmacogenetic Testing for Drugs with Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines: A Systematic Review. Clin. Pharmacol. Ther. 2022, 112, 1318–1328. [Google Scholar] [CrossRef]
- Pharmacogenomics for Patients—Center for Individualized Medicine—Mayo Clinic Research. Available online: https://www.mayo.edu/research/centers-programs/center-individualized-medicine/patient-care/pharmacogenomics/patients (accessed on 4 June 2025).
- Hamilton, W.G.; Gargiulo, J.M.; Parks, N.L. Using pharmacogenetics to structure individual pain management protocols in total knee arthroplasty. Bone Jt. J. 2020, 102-B (Suppl. A), 73–78. [Google Scholar] [CrossRef]
- Johnston, K.J.A.; Adams, M.J.; Nicholl, B.I.; Ward, J.; Strawbridge, R.J.; Ferguson, A.; McIntosh, A.M.; Bailey, M.E.S.; Smith, D.J. Genome-wide association study of multisite chronic pain in UK Biobank. PLoS Genet. 2019, 15, e1008164. [Google Scholar] [CrossRef]
- Reid, P.; Danahey, K.; Lopez Velazquez, M.; Ratain, M.J.; O’Donnell, P.H. Impact and Applicability of Pharmacogenomics in Rheumatology: An Integrated Analysis. Clin. Exp. Rheumatol. 2021, 39, 1385–1393. Available online: https://www.clinexprheumatol.org/abstract.asp?a=16040 (accessed on 4 June 2025). [CrossRef]
- Ahmed, L.; Feather, K.; Sofat, N. Editor’s Pick: New Developments in Clinical Trials for Osteoarthritis: Are We Closer to Improving Pain Management and Disease Modification? 12 September 2024. Available online: https://www.emjreviews.com/en-us/amj/flagship-journal/article/editors-pick-new-developments-in-clinical-trials-for-osteoarthritis-are-we-closer-to-improving-pain-management-and-disease-modification-j190324/ (accessed on 30 April 2025).
- Bliddal, H.; Bays, H.; Czernichow, S.; Hemmingsson, J.U.; Hjelmesæth, J.; Morville, T.H.; Koroleva, A.; Neergaard, J.S.; Sánchez, P.V.; Wharton, S.; et al. Once-Weekly Semaglutide in Persons with Obesity and Knee Osteoarthritis. N. Engl. J. Med. 2024, 391, 1573–1583. [Google Scholar] [CrossRef]
- Roman, Y.M. Pharmacogenomics and Rare Diseases: Optimizing Drug Development and Personalized Therapeutics. Pharmacogenomics. 2025, 26, 121–128. [Google Scholar] [CrossRef]
Drug | Major Metabolizing Enzymes | Clinical Guidance | Class of Recommendation |
---|---|---|---|
APAP | CYP2E1, UGT1A6, SULT | Existing data do not support a clinically meaningful impact of the CYP2E1, UGT1A6, and SULT genotypes on APAP. Currently, no dosing recommendations exist based on PGx data. Genotype data may be used to stratify APAP-induced hepatoxicity risk. | None |
Ibuprofen, flurbiprofen, celecoxib | CYP2C9 | PM: Initiate with non-CYP2C9 metabolized NSAIDs including aspirin, ketorolac, naproxen, and sulindac. | Moderate |
IM (AS 1.0): Initiate with the lowest recommended starting dose and carefully monitor for adverse effects. | Moderate | ||
IM (AS 1.5): Initiate with the normal recommended starting dose and carefully monitor for adverse effects. | Moderate | ||
NM: Initiate with recommended starting doses. | Strong | ||
Meloxicam | PM: Choose an alternative NSAID not significantly metabolized by CYP2C9, without a shorter half-life. | Moderate | |
IM (AS 1.0): Initiate with 50% of the recommended starting doses, titrate to effect or 50% recommended maximum dose. | Moderate | ||
IM (AS 1.5): Initiate with recommended starting dose. | Moderate | ||
NM: Initiate at the recommended starting doses. | Strong | ||
Piroxicam | PM: Consider an alternative NSAID not significantly metabolized by CYP2C9, based on patient-specific factors. | Moderate | |
IM (AS 1.0): Consider an alternative NSAID not significantly metabolized by CYP2C9, based on patient-specific factors. | Moderate | ||
IM (AS 1.5): Higher than normal risk for ADRs, monitor more frequently, consider initiating at lower doses. | Moderate | ||
NM: Initiate at the recommended starting doses. | Strong | ||
Duloxetine | CYP1A2, CYP2D6 | Existing data do not support a clinically meaningful impact of the CYP1A2 and CYP2D6 genotypes on duloxetine. Currently, no dosing recommendations exist based on PGx data. The CYP2D6 genotype may be worth considering if a patient is at increased risk for adverse drug reactions. | None |
Tramadol | CYP2D6 | PM: Avoid tramadol use due to diminished analgesic effect. | Strong |
IM: Use tramadol label dosing. | Optional | ||
NM: Use tramadol label dosing. | Strong | ||
UM: Avoid tramadol use due to the risk of toxicity. | Strong |
NSAID | COX Enzyme Selectivity | Half-Life (Hours) | Recommended Anti-Inflammatory Dosing | Major Metabolic Pathway | Minor Metabolic Pathway | Considerations |
---|---|---|---|---|---|---|
Ibuprofen | COX-1 and COX-2 | 2–4 | 600–800 mg QID | CYP2C9 | CYP2C19 and CYP2C8 | Concomitant administration of ibuprofen with aspirin antagonizes the antiplatelet effects of aspirin |
Celecoxib | COX-2 | 11–13 | 100–200 mg BID | CYP2C9 | CYP3A4 | |
Flurbiprofen | COX-1 >> COX-2 | 5–6 | 300 mg TID | CYP2C9 | Enterohepatic circulation | |
Ketoprofen | COX-1 >> COX-2 | 2–4 | 75 mg TID | Hydroxylation and glucuronidation | ||
Meloxicam | COX-2 >> COX1 | 15–20 | 7.5–15 mg QD | CYP2C9 | CYP3A | |
Piroxicam | COX-1 and COX-2 | 30–86 | 20 mg QD | CYP2C9 | ||
Diclofenac | COX-2 >> COX1 | 2 | 50–75 mg BID | CYP2C9 and UGT2B7 | CYP2C8, CYP3A4 | |
Naproxen | COX-1 and COX-2 | 12–17 | 375–750 mg BID | UGT2B7 | CYP1A2, CYP2C8, CYP2C9 | |
Nabumetone | COX-2 > COX-1 | 19–36 | 1–2 gQD | CYP1A2 and CYP2C9 | Glucuronidation | Prodrug with active metabolite |
Indomethacin | COX-1 > COX-2 | 4–5 | 25–50 mg TID | CYP2C9 | ||
Etodolac | COX-2 >> COX1 | 5–8 | 300–500 mg TID | Hydroxylation and glucuronidation | ||
Sulindac | COX-2 > COX-1 | 8–16 | 150–200 mg BID | Enterohepatic circulation, CYP1A1 | Prodrug with active metabolite | |
Ketorolac | COX-1 | 2–9 | 10 mg QID | Hydroxylation and glucuronidation | Oral formulation not for initial therapy, max five days of therapy |
CYP2C9 Phenotype | PK Implication | Therapeutic Recommendation | Classification of Recommendation | Other Considerations |
---|---|---|---|---|
Normal metabolizer | Normal metabolism | Initiate with the recommended starting dose per package label. | Strong | |
Intermediate metabolizer (AS 1.5) | Mildly reduced metabolism | Initiate with the recommended starting dose per package label. | Moderate | Higher than normal risk of ADRs, particularly if other factors affecting the clearance of NSAIDs are present. Individuals carrying the CYP2C9*2 allele have an 80% chance of also having the CYP2C8*3 allele, which is also involved in ibuprofen metabolism. |
Intermediate metabolizer (AS 1) | Moderately reduced metabolism | Initiate therapy with the lowest recommended starting dose. | Moderate | Higher than normal risk of ADRs, particularly if other factors affecting the clearance of NSAIDs are present. Individuals carrying the CYP2C9*2 allele have an 80% chance of also having the CYP2C8*3 allele, which is also involved in ibuprofen metabolism. |
Poor metabolizer | Significantly reduced metabolism | Initiate therapy at 25–50% of the lowest recommended starting dose. Titrate up to 25–50% of the maximum dose based on clinical effect. | Moderate | May consider alternative therapy that is not metabolized by CYP2C9, such as ketorolac or naproxen. |
CYP2D6 Phenotype | Activity Score (AS) | Recommendations | Classification of Recommendation |
---|---|---|---|
Ultra-rapid metabolizer | AS > 2.25 | Avoid use of tramadol due to the risk of toxicity; use a non-codeine opioid if therapy is necessary | Strong |
Normal metabolizer | 1.25 ≤ AS ≤ 2.25 | Metabolism is as expected, utilize dosing per label recommendations | Strong |
Intermediate metabolizer | 0 < AS < 1.25 | Utilize dosing per label recommendations. If no or diminished response presents, consider an alternative opioid | Optional |
Poor metabolizer | 0 | Avoid tramadol due to diminished analgesic effect | Strong |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sturgeon, I.M.; Roman, Y.M. Individualized Management of Osteoarthritis: The Role of Pharmacogenomics to Optimize Pain Therapy. Future Pharmacol. 2025, 5, 30. https://doi.org/10.3390/futurepharmacol5020030
Sturgeon IM, Roman YM. Individualized Management of Osteoarthritis: The Role of Pharmacogenomics to Optimize Pain Therapy. Future Pharmacology. 2025; 5(2):30. https://doi.org/10.3390/futurepharmacol5020030
Chicago/Turabian StyleSturgeon, Isabella M., and Youssef M. Roman. 2025. "Individualized Management of Osteoarthritis: The Role of Pharmacogenomics to Optimize Pain Therapy" Future Pharmacology 5, no. 2: 30. https://doi.org/10.3390/futurepharmacol5020030
APA StyleSturgeon, I. M., & Roman, Y. M. (2025). Individualized Management of Osteoarthritis: The Role of Pharmacogenomics to Optimize Pain Therapy. Future Pharmacology, 5(2), 30. https://doi.org/10.3390/futurepharmacol5020030