Cannabinoids from C. sativa L.: Systematic Review on Potential Pharmacological Effects against Infectious Diseases Downstream and Multidrug-Resistant Pathogens
Abstract
:1. Introduction
2. Materials and Methods
- Step 1: Literature search on C. sativa and antimicrobial potential;
- Step 2: Clinical trials on C. sativa and applications in infectious diseases.
2.1. Literature Search Strategy
2.2. Criteria for Data Inclusion and Exclusion
2.3. Data Cleaning
2.4. Clinical Trials on C. sativa and Applications in Infectious Diseases
3. Results
3.1. Antimicrobial Properties and Potential of C. sativa and Cannabinoids
3.1.1. Antibacterial Activity
PU 1 | Extract 2 | Main Compound 3 | Bacterial Strain | Activity (μg/mL) | Ref. | |
---|---|---|---|---|---|---|
MIC | Control 4 | |||||
S | OIL | ∆9-THC THCV | MRSA MST 20654 | 256 | Van: 0.5–1 | [40] |
CBD | S. aureus ATCC 25923 | 128 | Oxa: 0.125–0.50 | |||
CBN | C. acnes | 256 | Nor: 0.25–0.25 | |||
S | EtOH | n.r | S. epidermidis TISTR 517 | 128 | Oxa: 0.125–0.50 | [40] |
L | DMSO | (1) CBD (2) CBG | S. mutans UA159 | (1) 6.29, (2) 3.16 | Clx: 2.36 | [41] |
G | Gel | (1) CBD (2) CBG | S. mutans CCM 7409 | (1) 16, (2) 8, | Chx: 1 | [42] |
(3) CBN (4) CBC | (3) 32, (4) 32 | |||||
FL | EtOH | THCVA | S. aureus ATCC 29213, 43300 | 32–64 | Oxa: 0.25, >4 | [43] |
OIL | CBDA CBC CBD | C. difficile ATCC 9689 | 2.5 × 102 to <10CFU/mL | n.r | [44] | |
L. monocytogenes ATCC 7644 | 3.0 × 102 to <10CFU/mL | |||||
E. faecalis ATTC 29212 | 1.1 × 102 to <10CFU/mL | |||||
S. aureus ATCC 25923 | 7.2 × 102 to <10CFU/mL | |||||
S. pyogenes ATCC 19615 | 2.9 × 102 to <10CFU/mL | |||||
G | Gel | (1) CBD (2) CBG | P. gingivalis CCM 3985 | (1) 1.5, (2) 4, | Chx: 1 | [42] |
(3) CBN (4) CBC | (3) 8, (4) 16 | |||||
S | S | Peptide | E. coli | 33 | Amp: 0.5–2 | [45] |
S. aureus | 33 | |||||
S. epidermidis | increased growth | |||||
S | H2O | Glycerolipids | S. epidermidis O-47 | 100 | 1 | [46] |
S. epidermidis RP62A | 700–800 | reducing biofilm | ||||
S | EtOH | (1) CBD, (2) CBG | E. coli O138 | (1) 4, (2) 8, | n.r | [47] |
(3) CBN, (4) CBC | (3) 16, (4) 32 | |||||
(1) IF (2) L | EtOH | CBD, CBG | E. coli ATCC 10536 | (1) 4.96, (2) 7.87 | Cip: 31.49 | [48] |
E. coli PeruMycA 2 | (1) 15.74, (2) 39.68 | Cip: 9.92 | ||||
E. coli PeruMycA 3 | (1) >200, (2) >200 | Cip: 79.37 | ||||
P. aeruginosa ATCC 15442 | (1) 39.68 (2) 62.99 | Cip 125.99 | ||||
S. typhi PeruMycA 7 | (1) >200, (2) >200 | Cip: 79.37 | ||||
(1) IF (2) L | (1) EtOH (2) H2O | PMBA | B. cereus ATCC 12826 | (1) >200, (2) 125.99 | Cip: 125.99 | [48] |
B. subtilis PeruMyc 6 | (1) 1.56, (2) 19.84 | Cip: 125.99 | ||||
S. aureus ATCC 6538 | (1) 15.74, (2) 62.99 | Cip: 200 > 200 | ||||
L | EtOH DMSO | CBD | S. aureus | 156.25 | Amp: n.r | [49] |
S. epidermidis | 2.44 | Cip: n.r | ||||
C. acnes | 2.44 | |||||
EtOH | Phenolics | S. aureus MRSA | 179.7–718.7 | C+ | [50] | |
EtOH | CBG CBD/THC | S. mutans | 3.9->250 | n.r | [51] | |
B. cereus | 5–10 | |||||
B. thuringiensis | 5–10 | |||||
EtOH | CBG | S. mutans WT, ∆luxS | 2.5, 2.5 | C+/C− | [52] | |
S. mutans ∆comC, ∆comE | 1.25, 1.25 | |||||
S. mutans ∆comCDE | 0.75 | |||||
EtOH | CBD CBG | P. aeruginosa | 400–1000 | C+ | [53] | |
E. coli | 400–1000 | C+ | ||||
L | H2O EtOH | CBD | S. aureus | <30% | n.r | [33] |
L | EtOH | GEL-ALG–CS | S. aureus | IZ: n.r | n.r | [54] |
P | (1) EtOH | CBD, CBG | B. subtilis | (1) and (2) >200 | Cip: <0.12 | [52] |
(2) H2O | CBC, CBN | S. aureus | (1) 39.68, (2) 79.37 | |||
CO2 | CBD, CBDA | S. aureus | 10.42–66.03 | Cip: 0.781 | [55] | |
B. subtilis | ||||||
IF | DME EtOH But | CBC, CBDA, CBG, CBGA, THC, THCA, THCV, Tp | S. aureus ATCC 29213 | 4 | Amp: 1 ChF:8 | [56] |
S. aureus ATCC 25923 | 4 | Amp: 0.06 ChF:8 | ||||
S. epidermidis CCM 50 | 8 | Amp: 0.06 ChF:8 | ||||
S. epidermidis CCM 4418 | 8 | Amp: 0.06 ChF:8 | ||||
S. lugdunensis CCM 4069 | 16 | Amp: 0.25 ChF:1.6 | ||||
S. saprophyticus CCM 2727 | 4 | Amp: 0.5 ChF:3.12 | ||||
S. pyogenes CCM 4425 | 64 | Amp: 16 ChF:3.12 | ||||
P | (1) EtOH (2) H2O | CBD, CBG CBC, CBN | E. coli ATCC 10536 | (1) 31.49, (2) 39.68 | Cip: <0.12 | [52] |
P. aeruginosa ATCC 15442 | (1) and (2) >200 | Cip: >0.12 | ||||
S. typhi clinical isolate | (1) and (2) >200 | Cip: 0.38 | ||||
CO2 | CBD, CBDA | E. coli P. aeruginosa | 10.42–66.03 | Cip: 0.781 | [55] | |
L | EtOH | CBD | A. fischeri | 5–10 | Chx: 1–2 | [33] |
IF | EtOH | CBD | E. coli ATCC 8739 | 0.675 | n.r | [57] |
IF | EtOH | CBD | S. typhimurium | 0.125 | Amp: 0.5 | [32] |
S. newington | 0.0125 | Amp: 0.5 | ||||
IF | EtOH | CBD | S. typhimurium | 0.125 | Amp: 0.5 | [58] |
S. newington | 0.125 | Amp: 0.5 | ||||
R | EtOH | n.r | E. coli | 70 | Gent: 0.01 | [59] |
P. aeruginosa | 75 | |||||
K. pneumoniae | 60 | |||||
EtOH | P. aeruginosa ATCC 10145 | 5.0–22.0 | [57] | |||
S. enteritidis ATCC 13076 | ||||||
S. typhimurium ATCC 14028 | ||||||
FL | Hex | CBDA, CBD | S. aureus ATCC 6538 MRSA clinical strains | 4.88–78.1 | Van: 0.32–0.64 | [60] |
IL, L | H2O | CTp | S. aureus ATCC 29213 | 31.25 | Clinda: 0.12 | [61] |
S. aureus 101 clinical isolate | 62.5 | Clinda: 8 | ||||
S. aureus 104 clinical isolate | 125 | Clinda: >128 | ||||
S. aureus 105 clinical isolate | 15.62 | Clinda: 0.25 | ||||
L | OIL | CBD, THC, Tp | L. monocytogenes ATCC 7644 L. monocytogenes ATCC 19114 L. monocytogenes LM4 S. aureus STA 32, ST 47 | 1.25–5 | n.r | [37] |
EtOH | CBG | S. mutans | 2.5 | C+ | [62] | |
CBD CBDV | S. aureus | 35.47 | Espt: n.r | [63] | ||
IL, L | H2O | Tp | H. pylori | 7.81 | Clind: 0.06 | [61] |
n.r | n.r | Carvacrol | Klebsiella pneumoniae | 125–250 | Cip: n.r | [64] |
n.r | n.r | 2-AG, 1-AG, Anandamide | E. coli | n.r | MeOH: nr | [65] |
C. rodentium | ||||||
S. Typhimurium | ||||||
CBD CBDV | E. coli | 29.1 | Espt: n.r | [63] | ||
L | EtOH | (1) CBDA (2) CBD | S. aureus ATCC 25923 | (1) 2, (2) 1 | Clind: 0.06->128 | [31] |
MRSA USA300 | (1) 4, (2) 1 | Tob: 0.06–1 | ||||
S. epidermidis CA#71 | (1) 4, (2) 2 | Merp: 0.06–16 | ||||
S. epidermidis ATCC 51625 | (1) 4, (2) 2 | Ofx: 0.5–2 | ||||
Docking study | Structures 2, 3, 10, 14, 19, 23 | S. aureus SA1199B | 0.125 | Oxac: 0.125 | [30] | |
Mw | CBD, CBG | Dental plaque bacteria | 0.58% | Chx: 0.24% | [38] | |
FL | EtOH | PMBA | B. cereus ATCC 12826 B. subtilis PeruMycA 6 S. aureus ATCC 6538 | 4.96–15.74 | Cip: 9.92–125.99 | [2] |
(1) CO2 | CBD, CBDA | S. aureus | (1) 4.69, (2) 9.38 | n.r | [66] | |
(2) EtOH | CBN, CBGA, CBG, Tp | |||||
OIL | CBD, THC | P. aeruginosa | 7.5 mm | n.r | [67] | |
n.r | OIL | CBDA, CBDVA | B. subtilis | n.r “strong activity” | Amp: n.r | [68] |
Cellulose | n.r | B. cereus | n.r | Cip: n.r | [69] | |
n.r | n.r | (1) CBCA, (2) CBDVM | MRSA | (1) 1.41, (2) 4.91 | Vanc: 44.57 | [70] |
MSSA | (1) 2.83, (2) >78.62 | |||||
VRE | (1) 2.83, (2) >78.62 | |||||
L | EtOH | CBDV, CBD, CBN | B. subtilis | 12.5 and 25 | n.r | [29] |
EtOH | AEA | MRSA ATCC 33592 | >256 | C+ | [29] | |
M + AEA | MRSA ATCC 33592 | 4 | C+ | |||
AraS | MRSA ATCC 33592 | 28.4 | C+ | |||
M + AraS | MRSA ATCC 33592 | 4 | C+ | |||
n.r | OIL | CBDA, CBDVA | A. fischeri | n.r “strong activity” | Cip: n.r | [68] |
L | EtOH | (1) CBDA | E. coli ATCC 25922 | (1) >64 (2) >64 | Clind: 0.06–8 | [31] |
Tob: 0.12–2 | ||||||
(2) CBD | P. aeruginosa PAA01 | (1) >64, (2) >64 | Merp: 0.06–0.5 | |||
Ofx: 0.06–1 | ||||||
Cellulose | n.r | E. coli | 500 | Cip: n.r | [69] | |
(1) CO2 | CBD, CBDA | E. coli | (1) >37.5 | n.r | [66] | |
(2) EtOH | CBN, CBGA, CBG | (2) >37.5 | ||||
(1) CO2 | CBD, CBDA | E. faecalis | 50–100 | Gent: 16 | [67] | |
(2) EtOH | CBN, CBGA, CBG, Tp | S. pneumonia | 20–50 | |||
IF | Oil | OTp CBD | S. aureus ATCC 6538, 18As, 386 | 2, 32, 16 | Cip: 8, 16, 16 | [36] |
S. epidermidis 18Bs | 16 | Cip: 8 | ||||
L. monocytogenes ATCC 13932 | 32 | Amp: 0.25 | ||||
L. monocytogenes NCTC 10888 | 4 | Amp: 0.25 | ||||
L. monocytogenes ATCC 5008 | 8 | Amp: 0.25 | ||||
L. monocytogenes 70, 139 | 16, 32 | Amp: 2, 0.5 | ||||
E. faecalis ATCC 29212, V3, EQ19 | 2, 32, 8 | Cip: 4, 0.25, 4 | ||||
E. faecalis V4, V5, V6 | 32, 16, 16 | Cip: 32, 16, 16 | ||||
E. hirae ATCC 10541 | 32 | Cip: 8 | ||||
B. subtilis ATCC 6633 | 16 | Amp: 2 | ||||
B. cereus EB 362 | 1 | Amp: 16 | ||||
n.r | Carbon | GN@CSDs | E. coli DH5α | n.r up to 100 | Clin: n.r | [34] |
L | Hex | Pp | S. aureus ATCC 29213 | 3.8–7.8 | Cip: n.r | [71] |
B. cereus M 25 | 3.1–9.8 | |||||
L. lactis MTCC 440 | 2.8–5.1 IC50 | |||||
B. thuringiensis MTCC 809 | 3.1–7.5 | |||||
MRSA | 5.8–9.4 | |||||
L | H2O | Tp | L. monocytogenes clinical isolate S. aureus clinical isolate | >2048 | n.r | [44] |
S | Hex | Linoleic Acid | P. acnes | 15,000–25,000 | Erm: 3 | [72] |
L | Hex | Pp | E. coli ATCC 25922 S. typhimurium MTCC 98 K. pneumoniae ATCC 75388 S. boydii NC 09357 P. fluorescens MTCC 103 X. flavus MTCC 132 | Not active | n.r | [71] |
IF | OIL | OTp | L. monocytogenes 11#strains | >2048 | n.r | [35] |
FL | PpOH | - | P. aeruginosa | 10,000–20,000 | Cip: 0.25–1 | [73] |
Hex | E. coli | 10,000–18,000 | Cip: 0.015–0.25 |
PU 1 | Extract 2 | Nanoparticles 3 | Microorganism/Strain | Zone of Inhibition (mm) | Control 4 (mm) | Ref. |
---|---|---|---|---|---|---|
L | EtOH | CdO NPs | S. aureus | 10.00 | Plant extracts alone | [75] |
B. subtilis | 13.00 | |||||
E. coli | 8.50 | |||||
P. aeruginosa | 9.00 | |||||
K. pneumoniae | 12.00 | |||||
L | H2O | CeO2 NPs | E. coli ATCC 25922 | 250–500 | Cip:60–1000 | [76] |
S. enteridis ATCC 13075 | 250–1000 | |||||
B. subtilis | 500–1000 | |||||
S. aureus ATCC 25923 | 500–1000 | |||||
F | H2O | PdNPs | E. coli | 52.04 | C+ and C− | [77] |
S. aureus | 60.23 | |||||
K. pneumoniae | 63.10 | |||||
S. bony | 68.30 | |||||
L | EtOH | (1) AgNPs (2) Au–AgNPs | S. aureus ATCC 25923 | (1) 0.40, (2) 0.50 | CF: 2.0 | [78] |
B. subtilis ATCC 6633 | (1) 0.25, (2) 1.25 | CF: 4.0 | ||||
K. pneumoniae | (1) 0.75, (2) 0.30 | CF: 3.7 | ||||
P. aeruginosa | (1) 0.50, (2) 1.00 | CF: 4.0 | ||||
L | EtOH | AuNPs | S. aureus, B. subtilis | 75–71.55 | Ofx: 69.55 | [79] |
E. coli, S. typhi | 69.55 | |||||
L | By-P | Ag-AuNPs | P. aeruginosa DBM 3081 | MBC:MICratio 0.1 | MBC: 0.2:0.3 | [80] |
P. aeruginosa DBM 3777 | MBC:MICratio 5.0 | MBC: 10.0:16.8 | ||||
P. aeruginosa ATCC 10145 | MBC:MICratio 0.4 | MBC: 0.7:1.1 | ||||
P. aeruginosa ATCC 15442 | MBC:MICratio 1.0 | MBC: 1.3:2.2 | ||||
P. aeruginosa PAO1 | MBC:MICratio 0.1 | n.r | ||||
R | EtOH | Ag-AuNPs | E. coli | 25 | Gent: 10 | [59] |
S. aureus | 65 | |||||
P. aeruginosa | 100 | |||||
K. pneumoniae | 200 | |||||
L | H2O | (1) Ag-ZnONP (2) ZnONP (3) Ag-ZnONP | MRSA | (1) 10–20 | Amp: 5–10 | [81] |
P. aeruginosa | (2) no active, (3) 0.48 | Amp: 1.00 | ||||
K. pneumoniae | (2) no active, (3) 0.52 | Amp: 1.00 | ||||
S. typhi | (2) no active, (3) 0.70 | Amp: 1.00 | ||||
E. coli | (2) no active, (3) 1.00 | Amp: 1.00 | ||||
L | H2O | ZnONPs | S. aureus SCC2993 | 11.11 | Amp: 25 | [82] |
B. cereus BCC4391 | 9.31 | |||||
K. pneumoniae KCC3812 | 10.26 |
3.1.2. Antifungal Activity
PU 1 | Extract 2 | Compound 3 | Microorganism/Strain | MIC/Control 4 (μg/mL) | Ref. | |
---|---|---|---|---|---|---|
Aspergillus | ||||||
FL | EtOH | PMBA | A. fumigatus | 39.68 | GRF: 1.26 | [48] |
FL-L | EtOH | PMBA | A. currey CCF 5207 | <6.25 | GRF: >8 | [48] |
FL-L | EtOH | PMBA | A. gypseum CCF 6261 | 125.99–158.74 | GRF: 1.59 | [48] |
FL-L | EtOH | PMBA | A. quadrifidum CCF 5792 | 31.49–125.99 | GRF: >8 | [48] |
FL-L | EtOH | PMBA | A. insingulare CCF 5417 | 125.99 | GRF: >8 | [48] |
IF | BUT | CBDA, CBD, CBGA, CBG, CBN, THCA, THC, THCV | A. insingulare CCF 5943 | 64–256 | CLT: 0.5–1.0 | [56] |
DME | A. insingulare CCF 5417 | >1024 | TBF: 0.5–2.0 | |||
EtOH | ||||||
Candida | ||||||
L | n.d | CBD isolated | C. albicans | 4312.5 | NYS: n.d | [49] |
I-L | EtOH | PMBA | C. albicans YEPGA 6379 | >200 | FCZ: 1.0 | [48] |
I-L | EtOH | PMBA | C. albicans YEPGA 6183 | 15.75 | FCZ: 2.0 | [48] |
I-L | EtOH | PMBA | C. parapsilosis YEPGA 6551 | <6.25 | FCZ: 4.0 | [48] |
I-L | EtOH | PMBA | C. tropicalis YEPGA 6184 | 15.75 | FCZ: 2.0 | [48] |
FL-L | 24 n.d | C. glabrata | 6.54–10.0 | AmB: 2.5 | [85] | |
FL-L | 24 n.d | C. krusei | 10.0 | AmB: 2.5 | [85] | |
FL-L | Q-Δ8-THC | C. neoformans | 0.7 | AmB: 2.5 | [85] | |
IF | TX-100 | CBDVA, CBL, CBD, CBC, CBN, CBG | C. albicans ATCC 10231 | IZ: 3.5 | NYS: 2 | [86] |
IF | H2O | Phenolics | C. albicans YEPGA 6379 | >200 | FCZ: 1.0 | [52] |
EtOH | C. albicans YEPGA 6183 | FCZ: 2.0 | ||||
C. parapsilosis YEPGA 6551 | 62.99 | FCZ: 4.0 | [52] | |||
C. tropicalis YEPGA 6184 | 79.37 | FCZ: 2.0 | [52] | |||
IF | Hex | CBDA, CBD, CBGA, CBG, CBN, THCAA | C. albicans ATCC 10231 | Not active | CAS: 0.06 | [60] |
IF | n.d | CBD | C. albicans, C. dubliniensis | 12.5–100 | NYS: 2 | [87] |
C. glabrata, C. krusei | ||||||
C. tropicalis | ||||||
IF | HOil | n.d | C. albicans, C. glabrata C. krusei, C. tropicalis | 6.25 | AmB: 0.5–1.0 | [61] |
IF | IHOil | CBD, CBDA, CBG, CBGA, CBN, THC | C. glabrata C. albicans | 16–32 | AmB: 1.0–2.0 NYS: 2 | [66,67] |
CBD-H | 8–16 | |||||
Wild-H | 32–64 | |||||
L | Hex | PSP | C. albicans MTCC 4748 | 11.9–3.57 | NYS: 0.5 | [71] |
IF | IHOil | CBDA, CBD, CBGA, CBG, CBN, THC | C. albicans CO23 | 195.3 | NYS: 2 | [88] |
C. glabrata DSY 562 | 97.6 | |||||
C. krusei 45709 | 390.6 | |||||
C. tropicalis 47829 | 390.6 | |||||
F | Hex-Pp | n.d | C. albicans MTCC 3017 | IZ: 20–23 | FCZ: 24 | [73] |
Epidermophyton | ||||||
IF | But | CBDA, CBD, CBGA, CBG, CBN, THCA, THC, THCV | E. floccosum | 64–256 | CLT: 0.5–1.0 | [56] |
DME | ||||||
EtOH | ||||||
Malassezia | ||||||
IF | IHOil | CBDA, CBD, CBGA, CBG, CBN, THC | M. furfur 180 | 390.6 | NYS: 2 Not active | [88] |
M. furfur 188 | 195.3 | |||||
M. globosa 130 | 195.3 | |||||
M. sympodialis 855 | 195.3 | |||||
L | n.d | CBD isolated | M. furfur | 312.5 | NYS: n.d | [49] |
IF | But | CBDA, CBD, CBGA, CBG, CBN, THCA, THC, THCV | M. canis CCM 8353 | 128–256 | CLT: 0.5–1.0 TBF: 0.5–2.0 | [56] |
DME | ||||||
EtOH | ||||||
Nylanderia | ||||||
IF | But | CBDA, CBD, CBGA, CBG, CBN, THCA, THC, THCV | N. fulva CCF 5338, 5782, 6025 N. gypsea CCF 5215 | 64–128 | CLT: 0.5–1.0 TBF: 0.5–2.0 | [56] |
DME | ||||||
EtOH | ||||||
IF | H2O EtOH | Phenolics | N. gypseum CCF 6261 | >200 | GRF: 1.59 | [52] |
Trichophyton | ||||||
I-L | EtOH | PMBA | T. erinacei CCF 5930 | 39.68–125.99 | GRF: 3.17 | [48,52] |
T. mentagrophytes CCF 4823 | 39.68–125.99 | GRF: 2.52 | [48,52] | |||
T. rubrum CCF 4933 | 62.99–79.37 | GRF: 1.26 | [48,52] | |||
T. tonsurans CCF 4834 | 62.99–79.37 | GRF: 0.19 | [48,52] | |||
IF | BUT | CBDA, CBD, CBGA, CBG, CBN, THCA, THC, THCV | T. interdigitale CCM 8337 | 64–128 | TBF: 0.25 | [56] |
DME | T. tonsurans CCF 4930 | 64–128 | CTZ: 0.13–1 | |||
EtOH | T. rubrum CCF 4879 | 16–32/128 | CTZ: 0.13–1 |
3.1.3. Antiviral Activity
PU 1 | Extract 2 | Compound 3 | Results | Assay | Ref. |
---|---|---|---|---|---|
L | H2O | CBD | IC50 = 1.86 μM; CBD inhibits SARS-CoV-2 replication in Vero cells (IC50 = 7.91 μM) and human lung carcinoma cells expressing ACE2 (EC50 = 1.24 μM). | In vitro | [92] |
L | H2O | Δ9-THC | IC50 = 16.23 μM; Δ9-THC inhibits SARS-CoV-2 replication in Vero cells (IC50 = 10.25 μM). | In vitro | [92] |
L | H2O | CBDA | CBDA binds to the SARS-CoV-2 spike protein, preventing it from attaching to ACE2 and entering the cells. | Cell culture | [92] |
L | H2O | CBGA | CBGA binds to the SARS-CoV-2 spike protein and inhibits the viral protease 3CLpro (IC50 = 14.40 μM). | Cell culture | [92] |
L | H2O | CBN | Predicted to inhibit 3CLpro and ACE2 | Cell culture | [92] |
n.r | n.r | CBNA | Predicted to inhibit viral proteases 3CLpro and PLpro as well as ACE2. | In silico | [92] |
n.r | n.r | THCB | Found to be a potent inhibitor of 3CLpro (IC50 = 3.62 μM) | In silico | [92] |
n.r | n.r | CBD | IC50 (ACE2) ranging from 3.96 μM to 0.01 μM; IC50 (3CLpro) ranging from 1.9 μM to 9.4 μM; Superior to remdesivir and nafamostat mesylate. | Molecular Docking | [93] |
n.r | n.r | CBD | Binding energy range: 2.22–5.30 kcal/mol; Highest binding energy indicating strong inhibitory potential. Effective against main protease, RdRp, PLpro, NSP15, and spike glycoprotein. | Molecular Docking | [94] |
n.r | n.r | CBDA | Kd = 5.6 ± 2.2 μM; CBDA blocks cell entry and infection of SARS-CoV-2. | Functional Assay | |
n.r | n.r | CBGA | Kd = 19.8 ± 2.7 μM; CBGA blocks cell entry and infection of SARS-CoV-2. | Functional Assay | [91] |
n.r | n.r | CBN-C3 | Docking Score: −8.3 kcal/mol; Interactions: 1 hydrogen bond (Phe390), pi-pi stacked (Phe40), pi-alkyl (Leu391, Lys562, Ala99). | Molecular Docking | [95] |
n.r | n.r | Δ8-THCA | Docking Score: −8.0 kcal/mol; Interactions: Hydrogen bonds (Asp350, Tyr385), pi-sigma (Phe390), pi-alkyl (Trp349, Phe40, Arg393). | Molecular Docking | [95] |
n.r | n.r | THC | Significant reduction in T-cell activation (CD8+CD38+HLA-DR+); decreased plasma IL-6 and TNF-α; reduced HIV DNA total and integrated; changes in gut microbiome composition. | In vivo Clinical Trial | [96] |
L | H2O | CBD | Inhibited HCV replication by 86.4% at 10 µM; EC50 = 3.163 µM; IC50 = 15.670 µM; SI = 4.954; Minimal toxicity. | Luciferase Assay | [97] |
3.1.4. Antiparasitic Activity
PU 1/Extract 2 | Compound 3/Assay | Microorganism | Results | Ref. |
---|---|---|---|---|
IF/EtOH | In Vitro/CBD | E. granulosus | At 50 µg/mL, 80% decrease in protoscoleces viability at 24 h; 0% viability at 48 h. Significant soma contraction, hook loss, tegumental damage, and rostellar disorganization. Severe structural damage including rostellum loss. | [27] |
IF/EtOH | In Vitro/CBD | E. granulosus | At 10 µg/mL, 87 ± 23% collapse of germinal layer after 4 days. Extensive germinal layer collapse. | [27] |
IF/EtOH | In Vivo/CBD | E. granulosus | Significant reduction in cyst weight compared to control. Greater reduction when combined with albendazole. | [27] |
IF/EtOH | In Vivo/CBD + ABZ | E. granulosus | Enhanced reduction in cyst weight compared to CBD or ABZ alone. Co-administration caused greater ultrastructural alteration of the germinal layer compared to monotherapy. | [27] |
IF/OIL | In Vivo/CBD, δ9-THC, CBC | L. tropica | Essential oils showed significant efficacy in reducing tissue lesions in infected mice. The reduction in lesion size was comparable to amphotericin B. | [61,67] |
L/H2O | In Vitro/AuNPs | L. major | Maximum anti-leishmanial activity observed at 250 µg/mL concentration. AuNPs showed significant inhibition of promastigote forms of L. major with an IC50 value of 282.597 µg/mL. | [78] |
L/H2O | In Vitro/Ag NPs | L. major | AgNPs demonstrated significant anti-leishmanial activity with an IC50 value of 155.824 µg/mL. | [78] |
L/H2O | In Vitro/Au-Ag NPs | L. major | Au-Ag bimetallic NPs exhibited considerable anti-leishmanial activity with an IC50 value of 227.277 µg/mL. | [78] |
n.r | In Vitro δ8-THC Derivatives | L. donovani | Compound 14 showed pronounced antileishmanial effect against promastigotes with IC50 = 0.06 µg/mL and IC90 = 0.13 µg/mL, which are significantly lower than the standard compound Amphotericin B (IC50 = 1.0 µg/mL and IC90 = 2.0 µg/mL). | [85] |
n.r | In Vivo/Δ9-THC | Helminths | Significant negative associations between THCA levels and worm burden. Higher C. sativa use linked to lower helminth infection and reinfection rates. | [85] |
n.r | In Silico/Cannabinoids | L. spp. | Molecular docking analysis identified several cannabinoids with strong docking energies against various Leishmania protein targets, suggesting potential inhibitory effects. | [98] |
3.1.5. Comprehensive Analysis of the Main Pathogens Species
- Clinical Data: Emphasis on high-impact viruses, including SARS-CoV-2, HIV, and HCV.
- Microbiological Data: Extensive research focus on bacterial pathogens such as E. coli and S. aureus (MRSA including), as well as fungal pathogens like C. albicans.
- Experimental Data: Significant studies on parasitic infections, particularly those caused by Leishmania and Echinococcus species (responsible for hydatid disease, which poses significant health challenges, especially in endemic regions).
3.2. Cannabinoids Against Multidrug-Resistant Pathogens
Clinical Trials and Clinical Research on C. sativa and Cannabinoids
3.3. Potential Pharmacological Effects of Antimicrobial Cannabinoids
3.3.1. The Respiratory System
3.3.2. The Digestive System
3.3.3. The Genitourinary System
3.3.4. Skin and Soft Tissue
3.3.5. Systemic Infections
3.3.6. The Central Nervous System
3.3.7. Oral and Dental Infectious
3.3.8. Ophthalmic Infections
3.4. Future Directions and Therapeutic Potential
3.4.1. Clinical Trials and Applications
3.4.2. Mechanisms of Action and Pharmacological Effects
3.4.3. Challenges and Regulatory Considerations
3.5. Limitations of This Study and Future Research
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Russo, E.B. Taming THC: Potential Cannabis Synergy and Phytocannabinoid-terpenoid Entourage Effects. Br. J. Pharmacol. 2011, 163, 1344–1364. [Google Scholar] [CrossRef] [PubMed]
- Mechoulam, R.; Peters, M.; Murillo-Rodriguez, E.; Hanuš, L.O. Cannabidiol—Recent Advances. Chem. Biodivers. 2007, 4, 1678–1692. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2024; Volume 898, pp. 1–72. [Google Scholar]
- Ribeiro, A.; Serrano, R.; da Silva, I.B.M.; Gomes, E.T.; Pinto, J.F.; Silva, O. The Genus Diospyros: A Review of Novel Insights into the Biological Activity and Species of Mozambican Flora. Plants 2023, 12, 2833. [Google Scholar] [CrossRef]
- World Health Organization. World Health Statistics 2024: Monitoring Health for the SDGs, Sustainable Development Goals; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Butler, M.S.; Henderson, I.R.; Capon, R.J.; Blaskovich, M.A.T. Antibiotics in the Clinical Pipeline as of December 2022. J. Antibiot. 2023, 76, 431–473. [Google Scholar] [CrossRef]
- Tang, K.W.K.; Millar, B.C.; Moore, J.E. Antimicrobial Resistance (AMR). Br. J. Biomed. Sci. 2023, 28, 11387. [Google Scholar] [CrossRef]
- Blaskovich, M.A.T.; Kavanagh, A.M.; Elliott, A.G.; Zhang, B.; Ramu, S.; Amado, M.; Lowe, G.J.; Hinton, A.O.; Pham, D.M.T.; Zuegg, J.; et al. The Antimicrobial Potential of Cannabidiol. Commun. Biol. 2021, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Caltana, L.R.; Brusco, A. Cannabinoids: A Group of Promising Neuroprotective Agents. In Neuroprotective Natural Products; Wiley: Hoboken, NY, USA, 2017; pp. 321–339. [Google Scholar]
- Pacher, P.; Bátkai, S.; Kunos, G. The Endocannabinoid System as an Emerging Target of Pharmacotherapy. Pharmacol. Rev. 2006, 58, 389–462. [Google Scholar] [CrossRef]
- Oz, M.; Yang, K.-H.S.; Mahgoub, M.; Petroianu, G.; Lorke, D.E. Effects of Cannabidiol and Other Phytocannabinoids on Voltage-and Ligand-Gated Ion Channels. In Cannabis Use, Neurobiology, Psychology, and Treatment; Elsevier: Amsterdam, The Nederlands, 2023; pp. 445–456. [Google Scholar]
- Shahbazi, F.; Grandi, V.; Banerjee, A.; Trant, J.F. Cannabinoids and Cannabinoid Receptors: The Story so Far. iScience 2020, 23, 101301. [Google Scholar] [CrossRef]
- Hunter, M.R.; Finlay, D.B.; Glass, M. Signaling and Regulation of the Cannabinoid CB1 Receptor. In Handbook of Cannabis and Related Pathologies; Elsevier: Amsterdam, The Nederlands, 2017; pp. 564–572. [Google Scholar]
- Brunt, T.M.; Bossong, M.G. The Neuropharmacology of Cannabinoid Receptor Ligands in Central Signaling Pathways. Eur. J. Neurosci. 2022, 55, 909–921. [Google Scholar] [CrossRef]
- Marzo, V.D. Cannabinoids; Endocannabinoid Research Group, Ed.; John Wiley & Sons: Pozzuoli, Italy, 2014; ISBN 1118451279/9781118451274. [Google Scholar]
- Dhopeshwarkar, A.; Murataeva, N.; Makriyannis, A.; Straiker, A.; Mackie, K. Two Janus Cannabinoids That Are Both CB2 Agonists and CB1 Antagonists. J. Pharmacol. Exp. Ther. 2017, 360, 300–311. [Google Scholar] [CrossRef]
- Kaszyńska, A.A. The Role of the Endocannabinoid System in the Pathogenesis of Degenerative Diseases. Neuropsychiatr. I Neuropsychol. 2022, 17, 140–144. [Google Scholar] [CrossRef]
- Karas, J.A.; Wong, L.J.M.; Paulin, O.K.A.; Mazeh, A.C.; Hussein, M.H.; Li, J.; Velkov, T. The Antimicrobial Activity of Cannabinoids. Antibiotics 2020, 9, 406. [Google Scholar] [CrossRef] [PubMed]
- Naveed, M.; Khan, T.A.; Ali, I.; Hassan, A.; Ali, H.; Din, Z.U.; Hassan, Z.; Tabassum, S.; Saqib; Majid, A.; et al. In Vitro Antibacterial Activity of Cannabis sativa Leaf Extracts to Some Selective Pathogenicbacterial Strains. Int. J. Biosci. (IJB) 2014, 4, 65–70. [Google Scholar]
- Kaur, S.; Sharma, N.; Roy, A. Role of Cannabinoids in Various Diseases: A Review. Curr. Pharm. Biotechnol. 2022, 23, 1346–1358. [Google Scholar] [PubMed]
- Appendino, G.; Gibbons, S.; Giana, A.; Pagani, A.; Grassi, G.; Stavri, M.; Smith, E.; Rahman, M.M. Antibacterial Cannabinoids from Cannabis sativa: A Structure−Activity Study. J. Nat. Prod. 2008, 71, 1427–1430. [Google Scholar] [CrossRef]
- Wassmann, C.S.; Højrup, P.; Klitgaard, J.K. Cannabidiol Is an Effective Helper Compound in Combination with Bacitracin to Kill Gram-Positive Bacteria. Sci. Rep. 2020, 10, 4112. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to Conduct a Bibliometric Analysis: An Overview and Guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Blebea, N.M.; Pricopie, A.I.; Vlad, R.-A.; Hancu, G. Phytocannabinoids: Exploring Pharmacological Profiles and Their Impact on Therapeutical Use. Int. J. Mol. Sci. 2024, 25, 4204. [Google Scholar] [CrossRef]
- Silhavy, T.J.; Kahne, D.; Walker, S. The Bacterial Cell Envelope. Cold Spring Harb. Perspect. Biol. 2010, 2, a000414. [Google Scholar] [CrossRef]
- Kapoor, G.; Saigal, S.; Elongavan, A. Action and Resistance Mechanisms of Antibiotics: A Guide for Clinicians. J. Anaesthesiol. Clin. Pharmacol. 2017, 33, 300. [Google Scholar] [CrossRef]
- Albani, C.M.; Fuentes, G.; Ramírez, C.L.; Pensel, P.E.; Gatti, F.; Albanese, A.; Nutter, D.; Aguirre, M.E.; Di Iorio, Y.D.; Elissondo, M.C. Anthelmintic Effect of Cannabidiol against Echinococcus granulosus Sensu Stricto. Trop. Med. Infect. Dis. 2024, 9, 35. [Google Scholar] [CrossRef]
- Abichabki, N.; Zacharias, L.V.; Moreira, N.C.; Bellissimo-Rodrigues, F.; Moreira, F.L.; Benzi, J.R.L.; Ogasawara, T.M.C.; Ferreira, J.C.; Ribeiro, C.M.; Pavan, F.R.; et al. Potential Cannabidiol (CBD) Repurposing as Antibacterial and Promising Therapy of CBD plus Polymyxin B (PB) against PB-Resistant Gram-Negative Bacilli. Sci. Rep. 2022, 12, 6454. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Q.; Chang, S.; Wang, L.; Zhao, B. Phytochemical Analysis and Bioactivity of Different Ethanolic Extracts from Cannabidiol Full-Spectrum Oil. J. Mol. Liq. 2023, 372, 121173. [Google Scholar] [CrossRef]
- Cortes, E.; Mora, J.; Márquez, E. Modelling the Anti-Methicillin-Resistant Staphylococcus aureus (MRSA) Activity of Cannabinoids: A QSAR and Docking Study. Crystals 2020, 10, 692. [Google Scholar] [CrossRef]
- Martinenghi, L.D.; Jønsson, R.; Lund, T.; Jenssen, H. Isolation, Purification, and Antimicrobial Characterization of Cannabidiolic Acid and Cannabidiol from Cannabis sativa L. Biomolecules 2020, 10, 900. [Google Scholar] [CrossRef] [PubMed]
- Gildea, L.; Ayariga, J.A.; Ajayi, O.S.; Xu, J.; Villafane, R.; Samuel-Foo, M. Cannabis sativa CBD Extract Shows Promising Antibacterial Activity against Salmonella Typhimurium and S. Newington. Molecules 2022, 27, 2669. [Google Scholar] [CrossRef]
- Chelminiak-Dudkiewicz, D.; Smolarkiewicz-Wyczachowski, A.; Mylkie, K.; Wujak, M.; Mlynarczyk, D.T.; Nowak, P.; Bocian, S.; Goslinski, T.; Ziegler-Borowska, M. Chitosan-Based Films with Cannabis Oil as a Base Material for Wound Dressing Application. Sci. Rep. 2022, 12, 18658. [Google Scholar] [CrossRef]
- Tiwari, P.; Sharma, V.; Kaur, N.; Ahmad, K.; Mobin, S.M. Sustainable Graphene Production: New Insights into Cannabis sativa Engineered Carbon Dots Based Exfoliating Agent for Facile Production of Graphene. ACS Sustain. Chem. Eng. 2019, 7, 11500–11510. [Google Scholar] [CrossRef]
- Marini, E.; Magi, G.; Ferretti, G.; Bacchetti, T.; Giuliani, A.; Pugnaloni, A.; Rippo, M.R.; Facinelli, B. Attenuation of Listeria Monocytogenes Virulence by Cannabis sativa L. Essential Oil. Front. Cell. Infect. Microbiol. 2018, 8, 293. [Google Scholar] [CrossRef]
- Iseppi, R.; Brighenti, V.; Licata, M.; Lambertini, A.; Sabia, C.; Messi, P.; Pellati, F.; Benvenuti, S. Chemical Characterization and Evaluation of the Antibacterial Activity of Essential Oils from Fibre-Type Cannabis sativa L. (Hemp). Molecules 2019, 24, 2302. [Google Scholar] [CrossRef]
- Palmieri, S.; Maggio, F.; Pellegrini, M.; Ricci, A.; Serio, A.; Paparella, A.; Lo Sterzo, C. Effect of the Distillation Time on the Chemical Composition, Antioxidant Potential and Antimicrobial Activity of Essential Oils from Different Cannabis sativa L. Cultivars. Molecules 2021, 26, 4770. [Google Scholar] [CrossRef] [PubMed]
- Vasudevan, K.; Stahl, V. Cannabinoids Infused Mouthwash Products Are as Effective as Chlorhexidine on Inhibition of Total-Culturable Bacterial Content in Dental Plaque Samples. J. Cannabis Res. 2020, 2, 20. [Google Scholar] [CrossRef]
- Aqawi, M.; Sionov, R.V.; Friedman, M.; Steinberg, D. The Antibacterial Effect of Cannabigerol toward Streptococcus Mutans Is Influenced by the Autoinducers 21-CSP and AI-2. Biomedicines 2023, 11, 668. [Google Scholar] [CrossRef] [PubMed]
- Sangkanu, S.; Pitakbut, T.; Phoopha, S.; Khanansuk, J.; Chandarajoti, K.; Dej-adisai, S. A Comparative Study of Chemical Profiling and Bioactivities between Thai and Foreign Hemp Seed Species (Cannabis sativa L.) Plus an In-Silico Investigation. Foods 2023, 13, 55. [Google Scholar] [CrossRef] [PubMed]
- Garzón, H.S.; Loaiza-Oliva, M.; Martínez-Pabón, M.C.; Puerta-Suárez, J.; Téllez Corral, M.A.; Bueno-Silva, B.; Suárez, D.R.; Díaz-Báez, D.; Suárez, L.J. Antibiofilm and Immune-Modulatory Activity of Cannabidiol and Cannabigerol in Oral Environments—In Vitro Study. Antibiotics 2024, 13, 342. [Google Scholar] [CrossRef]
- Jirasek, P.; Jusku, A.; Frankova, J.; Urbankova, M.; Diabelko, D.; Ruzicka, F.; Papouskova, B.; Chytilova, K.; Vrba, J.; Havlasek, J.; et al. Phytocannabinoids and Gingival Inflammation: Preclinical Findings and a Placebo-controlled Double-blind Randomized Clinical Trial with Cannabidiol. J. Periodontal Res. 2024, 59, 468–479. [Google Scholar] [CrossRef]
- Malikova, L.; Malik, M.; Pavlik, J.; Ulman, M.; Pechouckova, E.; Skrivan, M.; Kokoska, L.; Tlustos, P. Anti-Staphylococcal Activity of Soilless Cultivated Cannabis across the Whole Vegetation Cycle under Various Nutritional Treatments in Relation to Cannabinoid Content. Sci. Rep. 2024, 14, 4343. [Google Scholar] [CrossRef]
- Stasiłowicz-Krzemień, A.; Szymanowska, D.; Szulc, P.; Cielecka-Piontek, J. Antimicrobial, Probiotic, and Immunomodulatory Potential of Cannabis sativa Extract and Delivery Systems. Antibiotics 2024, 13, 369. [Google Scholar] [CrossRef]
- Kim, E.; Jang, J.; Seo, H.H.; Lee, J.H.; Moh, S.H. Cannabis sativa (Hemp) Seed-Derived Peptides WVYY and PSLPA Modulate the Nrf2 Signaling Pathway in Human Keratinocytes. PLoS ONE 2024, 19, e0298487. [Google Scholar] [CrossRef]
- Casillo, A.; D’Angelo, C.; Imbimbo, P.; Monti, D.M.; Parrilli, E.; Lanzetta, R.; Gomez d’Ayala, G.; Mallardo, S.; Corsaro, M.M.; Duraccio, D. Aqueous Extracts from Hemp Seeds as a New Weapon against Staphylococcus Epidermidis Biofilms. Int. J. Mol. Sci. 2023, 24, 16026. [Google Scholar] [CrossRef]
- Frazzini, S.; Torresani, M.C.; Roda, G.; Dell’Anno, M.; Ruffo, G.; Rossi, L. Chemical and Functional Characterization of the Main Bioactive Molecules Contained in Hulled Cannabis sativa L. Seeds for Use as Functional Ingredients. J. Agric. Food Res. 2024, 16, 101084. [Google Scholar] [CrossRef]
- Serventi, L.; Flores, G.A.; Cusumano, G.; Barbaro, D.; Tirillini, B.; Venanzoni, R.; Angelini, P.; Acquaviva, A.; Di Simone, S.C.; Orlando, G.; et al. Comparative Investigation of Antimicrobial and Antioxidant Effects of the Extracts from the Inflorescences and Leaves of the Cannabis sativa L. Cv. Strawberry. Antioxidants 2023, 12, 219. [Google Scholar] [CrossRef]
- Kesavan Pillai, S.; Hassan Kera, N.; Kleyi, P.; de Beer, M.; Magwaza, M.; Ray, S.S. Stability, Biofunctional, and Antimicrobial Characteristics of Cannabidiol Isolate for the Design of Topical Formulations. Soft Matter 2024, 20, 2348–2360. [Google Scholar] [CrossRef] [PubMed]
- Barbălată-Mândru, M.; Serbezeanu, D.; Butnaru, M.; Rîmbu, C.M.; Enache, A.A.; Aflori, M. Poly(Vinyl Alcohol)/Plant Extracts Films: Preparation, Surface Characterization and Antibacterial Studies against Gram Positive and Gram Negative Bacteria. Materials 2022, 15, 2493. [Google Scholar] [CrossRef] [PubMed]
- Lelario, F.; Scrano, L.; De Franchi, S.; Bonomo, M.G.; Salzano, G.; Milan, S.; Milella, L.; Bufo, S.A. Identification and Antimicrobial Activity of Most Representative Secondary Metabolites from Different Plant Species. Chem. Biol. Technol. Agric. 2018, 5, 13. [Google Scholar] [CrossRef]
- Acquaviva, A.; Cristina Di Simone, S.; Canini, A.; Braglia, R.; Di Marco, G.; Campana, C.; Angelini, P.; Angeles Flores, G.; Venanzoni, R.; Loreta Libero, M.; et al. Phytochemical and Biological Investigations on the Pollen from Industrial Hemp Male Inflorescences. Food Res. Int. 2022, 161, 111883. [Google Scholar] [CrossRef]
- Luz-Veiga, M.; Amorim, M.; Pinto-Ribeiro, I.; Oliveira, A.L.S.; Silva, S.; Pimentel, L.L.; Rodríguez-Alcalá, L.M.; Madureira, R.; Pintado, M.; Azevedo-Silva, J.; et al. Cannabidiol and Cannabigerol Exert Antimicrobial Activity without Compromising Skin Microbiota. Int. J. Mol. Sci. 2023, 24, 2389. [Google Scholar] [CrossRef]
- Antezana, P.E.; Municoy, S.; Orive, G.; Desimone, M.F. Design of a New 3D Gelatin—Alginate Scaffold Loaded with Cannabis sativa Oil. Polymers 2022, 14, 4506. [Google Scholar] [CrossRef]
- Jokić, S.; Jerković, I.; Pavić, V.; Aladić, K.; Molnar, M.; Kovač, M.J.; Vladimir-Knežević, S. Terpenes and Cannabinoids in Supercritical CO2 Extracts of Industrial Hemp Inflorescences: Optimization of Extraction, Antiradical and Antibacterial Activity. Pharmaceuticals 2022, 15, 1117. [Google Scholar] [CrossRef]
- Skala, T.; Kahánková, Z.; Tauchen, J.; Janatová, A.; Klouček, P.; Hubka, V.; Fraňková, A. Medical Cannabis Dimethyl Ether, Ethanol and Butane Extracts Inhibit the in Vitro Growth of Bacteria and Dermatophytes Causing Common Skin Diseases. Front. Microbiol. 2022, 13, 953092. [Google Scholar] [CrossRef]
- Tyagi, P.; Gutierrez, J.N.; Lucia, L.A.; Hubbe, M.A.; Pal, L. Evidence for Antimicrobial Activity in Hemp Hurds and Lignin-Containing Nanofibrillated Cellulose Materials. Cellulose 2022, 29, 5151–5162. [Google Scholar] [CrossRef]
- Sun, Y.; Li, D.; Yu, Y.; Chen, J.; Fan, W. Separation and Characterization of Cellulose Fibers from Cannabis Bast Using Foamed Nickel by Cathodic Electro-Fenton Oxidation Strategy. Polymers 2022, 14, 380. [Google Scholar] [CrossRef] [PubMed]
- Suman, S.; Loveleen, L.; Bhandari, M.; Syed, A.; Bahkali, A.H.; Manchanda, R.; Nimesh, S. Antibacterial, Antioxidant, and Haemolytic Potential of Silver Nanoparticles Biosynthesized Using Roots Extract of Cannabis sativa Plant. Artif. Cells Nanomed. Biotechnol. 2022, 50, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Muscarà, C.; Smeriglio, A.; Trombetta, D.; Mandalari, G.; La Camera, E.; Grassi, G.; Circosta, C. Phytochemical Characterization and Biological Properties of Two Standardized Extracts from a Non-psychotropic Cannabis sativa L. Cannabidiol-chemotype. Phytother. Res. 2021, 35, 5269–5281. [Google Scholar] [CrossRef] [PubMed]
- Menghini, L.; Ferrante, C.; Carradori, S.; D’Antonio, M.; Orlando, G.; Cairone, F.; Cesa, S.; Filippi, A.; Fraschetti, C.; Zengin, G.; et al. Chemical and Bioinformatics Analyses of the Anti-Leishmanial and Anti-Oxidant Activities of Hemp Essential Oil. Biomolecules 2021, 11, 272. [Google Scholar] [CrossRef]
- Aqawi, M.; Sionov, R.V.; Gallily, R.; Friedman, M.; Steinberg, D. Anti-Bacterial Properties of Cannabigerol Toward Streptococcus Mutans. Front. Microbiol. 2021, 12, 656471. [Google Scholar] [CrossRef]
- Russo, C.; Lavorgna, M.; Nugnes, R.; Orlo, E.; Isidori, M. Comparative Assessment of Antimicrobial, Antiradical and Cytotoxic Activities of Cannabidiol and Its Propyl Analogue Cannabidivarin. Sci. Rep. 2021, 11, 22494. [Google Scholar] [CrossRef]
- Pormohammad, A.; Hansen, D.; Turner, R.J. Antibacterial, Antibiofilm, and Antioxidant Activity of 15 Different Plant-Based Natural Compounds in Comparison with Ciprofloxacin and Gentamicin. Antibiotics 2022, 11, 1099. [Google Scholar] [CrossRef]
- Ellermann, M.; Pacheco, A.R.; Jimenez, A.G.; Russell, R.M.; Cuesta, S.; Kumar, A.; Zhu, W.; Vale, G.; Martin, S.A.; Raj, P.; et al. Endocannabinoids Inhibit the Induction of Virulence in Enteric Pathogens. Cell 2020, 183, 650–665.e15. [Google Scholar] [CrossRef]
- Žitek, T.; Leitgeb, M.; Golle, A.; Dariš, B.; Knez, Ž.; Knez Hrnčič, M. The Influence of Hemp Extract in Combination with Ginger on the Metabolic Activity of Metastatic Cells and Microorganisms. Molecules 2020, 25, 4992. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Sikora, V.; Dincheva, I.; Kačániová, M.; Astatkie, T.; Semerdjieva, I.B.; Latkovic, D. Industrial, CBD, and Wild Hemp: How Different Are Their Essential Oil Profile and Antimicrobial Activity? Molecules 2020, 25, 4631. [Google Scholar] [CrossRef] [PubMed]
- Corni, G.; Brighenti, V.; Pellati, F.; Morlock, G.E. Effect-Directed Analysis of Bioactive Compounds in Cannabis sativa L. by High-Performance Thin-Layer Chromatography. J. Chromatogr. A 2020, 1629, 461511. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.S.; Gupta, M.K. Isolation of Nanocellulose from Hemp Fibers by Chemo-mechanical Method and Its Characterization. Polym. Compos. 2020, 41, 5257–5268. [Google Scholar] [CrossRef]
- Galletta, M.; Reekie, T.A.; Nagalingam, G.; Bottomley, A.L.; Harry, E.J.; Kassiou, M.; Triccas, J.A. Rapid Antibacterial Activity of Cannabichromenic Acid against Methicillin-Resistant Staphylococcus aureus. Antibiotics 2020, 9, 523. [Google Scholar] [CrossRef] [PubMed]
- Nalli, Y.; Arora, P.; Riyaz-Ul-Hassan, S.; Ali, A. Chemical Investigation of Cannabis sativa Leading to the Discovery of a Prenylspirodinone with Anti-Microbial Potential. Tetrahedron Lett. 2018, 59, 2470–2472. [Google Scholar] [CrossRef]
- Jin, S.; Lee, M.-Y. The Ameliorative Effect of Hemp Seed Hexane Extracts on the Propionibacterium Acnes-Induced Inflammation and Lipogenesis in Sebocytes. PLoS ONE 2018, 13, e0202933. [Google Scholar] [CrossRef]
- Khatak, S.; Satyender; Malik, D.K. Antimicrobial Activity of Withania Somnifera, Gymnema Sylvestre and Cannabis sativa against Pathogenic Bacteria. Int. J. Chem. Sci. 2014, 12, 286–292. [Google Scholar]
- Joseph, T.; Kar Mahapatra, D.; Esmaeili, A.; Piszczyk, Ł.; Hasanin, M.; Kattali, M.; Haponiuk, J.; Thomas, S. Nanoparticles: Taking a Unique Position in Medicine. Nanomaterials 2023, 13, 574. [Google Scholar] [CrossRef]
- Nasrullah, M.; Gul, F.Z.; Hanif, S.; Mannan, A.; Naz, S.; Ali, J.S.; Zia, M. Green and Chemical Syntheses of CdO NPs: A Comparative Study for Yield Attributes, Biological Characteristics, and Toxicity Concerns. ACS Omega 2020, 5, 5739–5747. [Google Scholar] [CrossRef]
- Korkmaz, N.; Kısa, D.; Ceylan, Y.; Güçlü, E.; Şen, F.; Karadağ, A. Synthesis of CeO2 Nanoparticles from Hemp Leaf Extract: Evaluation of Antibacterial, Anticancer and Enzymatic Activities. Inorg. Chem. Commun. 2024, 159, 111797. [Google Scholar] [CrossRef]
- Yaseen, B.; Gangwar, C.; Nayak, R.; Kumar, I.; Sarkar, J.; Baker, A.; Prasad, S.; Naik, R.M. Cannabis sativa Mediated Palladium Nanoparticles as an Effective Nanodrug against Multi-Drug Resistant Bacteria and A549 Lung Cancer Cells. Inorg. Chem. Commun. 2023, 157, 111254. [Google Scholar] [CrossRef]
- Abbasi, B.H.; Zaka, M.; Hashmi, S.S.; Khan, Z. Biogenic Synthesis of Au, Ag and Au–Ag Alloy Nanoparticles Using Cannabis sativa Leaf Extract. IET Nanobiotechnol. 2018, 12, 277–284. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, S.P.; Sharma, U.R. Phytofabrication, Characterisation and Antimicrobial Studies of Gold Nanoparticles Using Cannabis sativa (Bhang), Leaf Extract. Int. J. Nanoparticles 2017, 9, 143. [Google Scholar] [CrossRef]
- Michailidu, J.; Miškovská, A.; Jarošová, I.; Čejková, A.; Mat’átková, O. Bimetallic Nanoparticle Production Using Cannabis sativa and Vitis Vinifera Waste Extracts. RSC Adv. 2024, 14, 5309–5318. [Google Scholar] [CrossRef]
- Chauhan, A.; Verma, R.; Kumari, S.; Sharma, A.; Shandilya, P.; Li, X.; Batoo, K.M.; Imran, A.; Kulshrestha, S.; Kumar, R. Photocatalytic Dye Degradation and Antimicrobial Activities of Pure and Ag-Doped ZnO Using Cannabis sativa Leaf Extract. Sci. Rep. 2020, 10, 7881. [Google Scholar] [CrossRef]
- Thakur, S.; Shandilya, M.; Guleria, G. Appraisement of Antimicrobial Zinc Oxide Nanoparticles through Cannabis Jatropha Curcasa Alovera and Tinosporacordifolia Leaves by Green Synthesis Process. J. Environ. Chem. Eng. 2021, 9, 104882. [Google Scholar] [CrossRef]
- Hasim, S.; Coleman, J.J. Targeting the Fungal Cell Wall: Current Therapies and Implications for Development of Alternative Antifungal Agents. Future Med. Chem. 2019, 11, 869–883. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.C.; Alastruey-Izquierdo, A.; Berman, J.; Bicanic, T.; Bignell, E.M.; Bowyer, P.; Bromley, M.; Brüggemann, R.; Garber, G.; Cornely, O.A.; et al. Tackling the Emerging Threat of Antifungal Resistance to Human Health. Nat. Rev. Microbiol. 2022, 20, 557–571. [Google Scholar] [CrossRef] [PubMed]
- Galal Osman, A.; Elokely, K.M.; Yadav, V.K.; Carvalho, P.; Radwan, M.; Slade, D.; Gul, W.; Khan, S.; Dale, O.R.; Husni, A.S.; et al. Bioactive Products from Singlet Oxygen Photooxygenation of Cannabinoids. Eur. J. Med. Chem. 2018, 143, 983–996. [Google Scholar] [CrossRef]
- Motiejauskaitė, D.; Ullah, S.; Kundrotaitė, A.; Žvirdauskienė, R.; Bakšinskaitė, A.; Barčauskaitė, K. Isolation of Biologically Active Compounds from Cannabis sativa L. Inflorescences by Using Different Extraction Solvents and Evaluation of Antimicrobial Activity. Antioxidants 2023, 12, 998. [Google Scholar] [CrossRef]
- Karpiński, T.M.; Ożarowski, M.; Seremak-Mrozikiewicz, A.; Wolski, H.; Adamczak, A. Plant Preparations and Compounds with Activities against Biofilms Formed by Candida Spp. J. Fungi 2021, 7, 360. [Google Scholar] [CrossRef]
- Zengin, G.; Menghini, L.; Di Sotto, A.; Mancinelli, R.; Sisto, F.; Carradori, S.; Cesa, S.; Fraschetti, C.; Filippi, A.; Angiolella, L.; et al. Chromatographic Analyses, In Vitro Biological Activities, and Cytotoxicity of Cannabis sativa L. Essential Oil: A Multidisciplinary Study. Molecules 2018, 23, 3266. [Google Scholar] [CrossRef]
- Lu, L.; Su, S.; Yang, H.; Jiang, S. Antivirals with Common Targets against Highly Pathogenic Viruses. Cell 2021, 184, 1604–1620. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef] [PubMed]
- van Breemen, R.B.; Muchiri, R.N. Affinity Selection-mass Spectrometry in the Discovery of Anti-SARS-CoV-2 Compounds. Mass Spectrom. Rev. 2024, 43, 39–46. [Google Scholar] [CrossRef] [PubMed]
- van Breemen, R.B.; Simchuk, D. Antiviral Activities of Hemp Cannabinoids. Clin. Sci. 2023, 137, 633–643. [Google Scholar] [CrossRef] [PubMed]
- de Lima Marques, G.V.; de Almeida Marques, D.P.; Marques, G.V.; Clarindo, F.A.; Avendaño-Villarreal, J.A.; Guerra, F.S.; Fernandes, P.D.; dos Santos, E.N.; Gusevskaya, E.V.; Kohlhoff, M.; et al. Synthesis of Cannabidiol-Based Compounds as ACE2 Inhibitors with Potential Application in the Treatment of COVID-19. Eur. J. Med. Chem. 2023, 260, 115760. [Google Scholar] [CrossRef]
- Zargari, F.; Mohammadi, M.; Nowroozi, A.; Morowvat, M.H.; Nakhaei, E.; Rezagholi, F. The Inhibitory Effects of the Herbals Secondary Metabolites (7α-Acetoxyroyleanone, Curzerene, Incensole, Harmaline, and Cannabidiol) on COVID-19: A Molecular Docking Study. Recent Pat. Biotechnol. 2024, 18, 316–331. [Google Scholar] [CrossRef]
- El Ouafi, Z.; Rhalem, W.; Habib, N.; Idrissi Azami, A.; Sehli, S.; Al Idrissi, N.; Bakkali, F.; Abderrazak, R.; Merzouki, M.; Allali, I.; et al. Molecular Modeling Targeting the ACE2 Receptor with Cannabis sativa ’s Active Ingredients for Antiviral Drug Discovery against SARS-CoV-2 Infections. Bioinform. Biol. Insights 2022, 16, 117793222211453. [Google Scholar] [CrossRef]
- Costiniuk, C.T.; Saneei, Z.; Routy, J.-P.; Margolese, S.; Mandarino, E.; Singer, J.; Lebouché, B.; Cox, J.; Szabo, J.; Brouillette, M.-J.; et al. Oral Cannabinoids in People Living with HIV on Effective Antiretroviral Therapy: CTN PT028—Study Protocol for a Pilot Randomised Trial to Assess Safety, Tolerability and Effect on Immune Activation. BMJ Open 2019, 9, e024793. [Google Scholar] [CrossRef]
- Lowe, H.I.C.; Toyang, N.; McLaughlin, W. Potential of Cannabidiol for the Treatment of Viral Hepatitis. Pharmacogn. Res. 2017, 9, 116. [Google Scholar]
- Ogungbe, I.V.; Erwin, W.R.; Setzer, W.N. Antileishmanial Phytochemical Phenolics: Molecular Docking to Potential Protein Targets. J. Mol. Graph. Model. 2014, 48, 105–117. [Google Scholar] [CrossRef]
- Roulette, C.J.; Kazanji, M.; Breurec, S.; Hagen, E.H. High Prevalence of Cannabis Use among Aka Foragers of the Congo Basin and Its Possible Relationship to Helminthiasis. Am. J. Hum. Biol. 2016, 28, 5–15. [Google Scholar] [CrossRef]
- Al Jalali, V.; Zeitlinger, M. Systemic and Target-Site Pharmacokinetics of Antiparasitic Agents. Clin. Pharmacokinet. 2020, 59, 827–847. [Google Scholar] [CrossRef]
- World Health Organization. WHO Releases Report on State of Development of Antibacterials; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Khameneh, B.; Diab, R.; Ghazvini, K.; Fazly Bazzaz, B.S. Breakthroughs in Bacterial Resistance Mechanisms and the Potential Ways to Combat Them. Microb. Pathog. 2016, 95, 32–42. [Google Scholar] [CrossRef]
- Qiu, H.; Si, Z.; Luo, Y.; Feng, P.; Wu, X.; Hou, W.; Zhu, Y.; Chan-Park, M.B.; Xu, L.; Huang, D. The Mechanisms and the Applications of Antibacterial Polymers in Surface Modification on Medical Devices. Front. Bioeng. Biotechnol. 2020, 8, 910. [Google Scholar] [CrossRef]
- Gong, X.; Liu, L.; Li, X.; Xiong, J.; Xu, J.; Mao, D.; Liu, L. Neuroprotection of Cannabidiol in Epileptic Rats: Gut Microbiome and Metabolome Sequencing. Front. Nutr. 2022, 9, 1028459. [Google Scholar] [CrossRef] [PubMed]
- Kosgodage, U.S.; Matewele, P.; Awamaria, B.; Kraev, I.; Warde, P.; Mastroianni, G.; Nunn, A.V.; Guy, G.W.; Bell, J.D.; Inal, J.M.; et al. Cannabidiol Is a Novel Modulator of Bacterial Membrane Vesicles. Front. Cell. Infect. Microbiol. 2019, 9, 324. [Google Scholar] [CrossRef]
- MacNair, C.R.; Stokes, J.M.; Carfrae, L.A.; Fiebig-Comyn, A.A.; Coombes, B.K.; Mulvey, M.R.; Brown, E.D. Overcoming Mcr-1 Mediated Colistin Resistance with Colistin in Combination with Other Antibiotics. Nat. Commun. 2018, 9, 458. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.; Lopes, C.M.; Amaral, M.H. Treatment Advances for Acne Vulgaris: The Scientific Role of Cannabinoids. Cosmetics 2024, 11, 22. [Google Scholar] [CrossRef]
- Ribeiro, A.; Serrano, R.; da Silva, I.B.M.; Pinto, J.F.; Silva, O. Development of an Adhesive Tablet for the Delivery of Diospyros Villosa Root for the Treatment of Oral Cavity Diseases. J. Drug Deliv. Sci. Technol. 2023, 90, 105148. [Google Scholar] [CrossRef]
- Ribeiro, A.; Serrano, R.; Silva, I.B.M.d.; Gomes, E.T.; Pinto, J.F.; Silva, O. Diospyros Villosa Root Monographic Quality Studies. Plants 2022, 11, 3506. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, D.; Ribeiro, A.; Diniz, S.; Cabral-Marques, H.; Sousa-Martins, D. Incidence of Malignant Eyelid Tumors: A 6-Year Period Review (2015–2021). Pan-Am. J. Ophthalmol. 2024, 1, 62. [Google Scholar] [CrossRef]
- Oliveira, D.; Ribeiro, A.; Bacalhau, C.; Almada, S.; Diniz, S.; Saramago, A.R.; Cabral-Marques, H.; Sousa-Martins, D. Are We Capable of Contributing to the Reduction of Eyelid Basal Cell Carcinoma? Building a Healthcare Team. J. Ophthalmol. Res. Rev. Rep. 2023, 146, 1–8. [Google Scholar]
- Zhao, T.; Li, X.; Gong, Y.; Guo, Y.; Quan, F.; Shi, Q. Study on Polysaccharide Polyelectrolyte Complex and Fabrication of Alginate/Chitosan Derivative Composite Fibers. Int. J. Biol. Macromol. 2021, 184, 181–187. [Google Scholar] [CrossRef]
- Yang, D.; Gong, L.; Li, Q.; Fan, B.; Ma, C.; He, Y.-C. Preparation of a Biobased Polyelectrolyte Complex from Chitosan and Sodium Carboxymethyl Cellulose and Its Antibacterial Characteristics. Int. J. Biol. Macromol. 2023, 227, 524–534. [Google Scholar] [CrossRef]
- Persia, D.; Mangiavacchi, F.; Marcotullio, M.C.; Rosati, O. Cannabinoids as Multifaceted Compounds. Phytochemistry 2023, 212, 113718. [Google Scholar] [CrossRef]
- de Brito Siqueira, A.L.G.; Cremasco, P.V.V.; Bahú, J.O.; Pioli da Silva, A.; Melo de Andrade, L.R.; González, P.G.A.; Crivellin, S.; Cárdenas Concha, V.O.; Krambeck, K.; Lodi, L.; et al. Phytocannabinoids: Pharmacological Effects, Biomedical Applications, and Worldwide Prospection. J. Tradit. Complement. Med. 2023, 13, 575–587. [Google Scholar] [CrossRef]
- Casalini, G.; Giacomelli, A.; Antinori, S. The WHO Fungal Priority Pathogens List: A Crucial Reappraisal to Review the Prioritisation. Lancet Microbe 2024, 5, 717–724. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, A.; Alsayyed, R.; Oliveira, D.; Loureiro, R.; Cabral-Marques, H. Cannabinoids from C. sativa L.: Systematic Review on Potential Pharmacological Effects against Infectious Diseases Downstream and Multidrug-Resistant Pathogens. Future Pharmacol. 2024, 4, 590-625. https://doi.org/10.3390/futurepharmacol4030033
Ribeiro A, Alsayyed R, Oliveira D, Loureiro R, Cabral-Marques H. Cannabinoids from C. sativa L.: Systematic Review on Potential Pharmacological Effects against Infectious Diseases Downstream and Multidrug-Resistant Pathogens. Future Pharmacology. 2024; 4(3):590-625. https://doi.org/10.3390/futurepharmacol4030033
Chicago/Turabian StyleRibeiro, Adriana, Rahaf Alsayyed, Daniele Oliveira, Rui Loureiro, and Helena Cabral-Marques. 2024. "Cannabinoids from C. sativa L.: Systematic Review on Potential Pharmacological Effects against Infectious Diseases Downstream and Multidrug-Resistant Pathogens" Future Pharmacology 4, no. 3: 590-625. https://doi.org/10.3390/futurepharmacol4030033
APA StyleRibeiro, A., Alsayyed, R., Oliveira, D., Loureiro, R., & Cabral-Marques, H. (2024). Cannabinoids from C. sativa L.: Systematic Review on Potential Pharmacological Effects against Infectious Diseases Downstream and Multidrug-Resistant Pathogens. Future Pharmacology, 4(3), 590-625. https://doi.org/10.3390/futurepharmacol4030033