In Vitro and In Silico Biological Evaluation of the Essential Oil from Syzigium cumini Leaves as a Source of Novel Antifungal and Trichomonacidal Agents
Abstract
:1. Introduction
2. Materials and Methods
2.1. License and Plant Material Collection
2.2. Extraction of Essential Oil
2.3. Gas Chromatography–Mass Spectrometry (GC-MS)
2.4. Antifungal Activity
2.4.1. Fungal Strains, Culture Media, and Drugs
2.4.2. Cultivation and Matrix Preparation
2.4.3. Half-Maximal Inhibitory Concentration (IC50)
2.5. Assessment of the Potentiation of Fluconazole Activity
2.6. Anti-Trichomonas Vaginalis Activity
2.7. ADME Prediction In Silico
2.8. Statistical Analysis
3. Results
3.1. Chemical Composition of EOSC
3.2. Antifungal Effect
3.3. Fluconazole Potentiating Action
3.4. Anti-Trichomonas Vaginalis Activity
3.5. In Silico Tests (ADME)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wiederhold, N.P. Emerging fungal infections: New species, new names, and antifungal resistance. Clin. Chem. 2022, 68, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Kraker, M.E.; Stewardson, A.J.; Harbarth, S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med. 2016, 13, e1002184. [Google Scholar] [CrossRef] [PubMed]
- Ferrão, S.K.; Butzge, J.C.; Mezzomo, L.; Calil, L.N.; Apel, M.A.; Mezzari, A.; Limberger, R.P. Atividade antifúngica de óleos essenciais frente a Candida spp. Braz. J. Health Rev. 2020, 3, 100–113. [Google Scholar] [CrossRef]
- Picot, S.; Beugnet, F.; Leboucher, G.; Bienvenu, A.L. Drug resistant parasites and fungi from a one-health perspective: A global concern that needs transdisciplinary stewardship programs. One Health 2022, 14, 100368. [Google Scholar] [CrossRef] [PubMed]
- Engels, D.; Zhou, X.N. Neglected tropical diseases: An effective global response to local poverty-related disease priorities. Infect. Dis. Poverty 2020, 9, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Rowley, J.; Vander Hoorn, S.; Korenromp, E.; Low, N.; Unemo, M.; Abu-Raddad, L.J.; Chico, R.M.; Smolak, A.; Newman, L.; Gottlieb, S.; et al. Chlamydia, gonorrhoea, trichomoniasis and syphilis: Global prevalence and incidence estimates, 2016. Bull. World Health Organ. 2019, 97, 548. [Google Scholar] [CrossRef]
- Mercer, F.; Johnson, P.J. Trichomonas vaginalis: Pathogenesis, symbiont interactions, and host cell immune responses. Trends Parasitol. 2018, 34, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Kirkcaldy, R.D.; Augostini, P.; Asbel, L.E.; Bernstein, K.T.; Kerani, R.P.; Mettenbrink, C.J.; Pathela, P.; Schwebke, J.R.; Secor, W.E.; Workowski, K.A. Trichomonas vaginalis antimicrobial drug resistance in 6 US cities, STD Surveillance Network, 2009–2010. Emerg. Infect. Dis. 2012, 18, 939. [Google Scholar] [CrossRef] [PubMed]
- Vieira, P.B.; Tasca, T.; Evan Secor, W. Challenges and persistent questions in the treatment of Trichomoniasis. Curr. Top. Med. Chem. 2017, 17, 1249–1265. [Google Scholar] [CrossRef]
- Mutlu-Ingok, A.; Devecioglu, D.; Dikmetas, D.N.; Karbancioglu-Guler, F.; Capanoglu, E. Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: An updated review. Molecules 2020, 25, 4711. [Google Scholar] [CrossRef]
- Spisni, E.; Petrocelli, G.; Imbesi, V.; Spigarelli, R.; Azzinnari, D.; Sarti, M.D. Antioxidant, anti-inflammatory, and microbial-modulating activities of essential oils: Implications in colonic pathophysiology. Int. J. Mol. Sci. 2020, 21, 4152. [Google Scholar] [CrossRef] [PubMed]
- Rashed, A.A.; Rathi, D.N.G.; Nasir, N.A.H.A.; Rahman, A.Z.A. Antifungal properties of essential oils and their compounds for application in skin fungal infections: Conventional and nonconventional approaches. Molecules 2021, 26, 1093. [Google Scholar] [CrossRef] [PubMed]
- Hou, T.; Sana, S.S.; Li, H.; Xing, Y.; Nanda, A.; Netala, V.R.; Zhang, Z. Essential oils and its antibacterial, antifungal and anti-oxidant activity applications: A review. Food Biosci. 2022, 47, 101716. [Google Scholar] [CrossRef]
- Sá, R.D.; Randau, K.P. Anatomy and histochemistry of the leaf blade of Syzygium cumini (L.) Skeels. Diversitas J. 2021, 6, 620–633. [Google Scholar] [CrossRef]
- Eswarappa, G.; Somashekar, R.K. Jamun (Syzygium cumini L.), an underutilized fruit crop of India: An overview. Ecol. Environ. Conserv. 2020, 26, 1760–1767. [Google Scholar]
- Ayyanar, M.; Subash-Babu, P. Syzygium cumini (L.) Skeels: A review of its phytochemical constituents and traditional uses. Asian Pac. J. Trop. Biomed. 2012, 2, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Baliga, M.S.; Bhat, H.P.; Baliga, B.R.V.; Wilson, R.; Palatty, P.L. Phytochemistry, traditional uses and pharmacology of Eugenia jambolana Lam.(black plum): A review. Int. Food Res. 2011, 44, 1776–1789. [Google Scholar] [CrossRef]
- Chhikara, N.; Kaur, R.; Jaglan, S.; Sharma, P.; Gat, Y.; Panghal, A. Bioactive compounds and pharmacological and food applications of Syzygium cumini–a review. Food Funct. 2018, 9, 6096–6115. [Google Scholar] [CrossRef] [PubMed]
- Sarma, N.; Begum, T.; Pandey, S.K.; Gogoi, R.; Munda, S.; Lal, M. Chemical composition of Syzygium cumini (L.) Skeels leaf essential oil with respect to its uses from North East region of India. J. Essent. Oil-Bear. Plants. 2020, 23, 601–607. [Google Scholar] [CrossRef]
- Dias, C.N.; Rodrigues, K.A.; Carvalho, F.A.; Carneiro, S.M.; Maia, J.G.; Andrade, E.H.; Moraes, D.F. Molluscicidal and leishmanicidal activity of the leaf essential oil of Syzygium cumini (L.) Skeels from Brazil. Chem. Biodivers. 2013, 10, 1133–1141. [Google Scholar] [CrossRef]
- Siani, A.C.; Souza, M.C.; Henriques, M.G.; Ramos, M.F. Anti-inflammatory activity of essential oils from Syzygium cumini and Psidium guajava. Pharm. Biol. 2013, 51, 881–887. [Google Scholar] [CrossRef]
- Hanif, M.U.; Hussain, A.I.; Aslam, N.; Kamal, G.M.; Chatha, S.A.S.; Shahida, S.; Khalid, M.; Hussain, R. Chemical composition and bioactivities of essential oil from leaves of Syzygium cumini (L.) Skeels native to Punjab, Pakistan. Chem. Biodivers. 2020, 17, e1900733. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P.A.D.S.; Pereira, R.L.S.; Santos, A.T.L.D.; Coutinho, H.D.M.; Morais-Braga, M.F.B.; da Silva, V.B.; Costa, A.R.; Generino, M.E.M.; de Oliveira, M.G.; de Menezes, S.A.; et al. Phytochemical analysis, antibacterial activity and modulating effect of essential oil from Syzygium cumini (L.) Skeels. Molecules 2022, 27, 3281. [Google Scholar] [CrossRef] [PubMed]
- Vavougios, G.D.; Zarogiannis, S.G.; Krogfelt, K.A.; Gourgoulianis, K.; Mitsikostas, D.D.; Hadjigeorgiou, G. Novel candidate genes of the PARK7 interactome as mediators of apoptosis and acetylation in multiple sclerosis: An in silico analysis. Mult. Scler. Relat. Disord. 2018, 19, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Stoppa, M.A.; Casemiro, L.A.; Vinholis, A.H.C.; Cunha, W.R.; Silva, M.L.A.; Martins, C.H.G.; Furtado, N.A.J.C. Comparative study of the recommended methodologies by CLSI and EUCAST for activity evaluation antifungal. Quim. Nova 2009, 32, 498–502. [Google Scholar] [CrossRef]
- Morais-Braga, M.F.B.; Sales, D.L.; Carneiro, J.N.P.; Machado, A.J.T.; Dos Santos, A.T.L.; de Freitas, M.A.; Martins, G.M.D.A.B.; Leite, N.F.; de Matos, Y.M.L.; Tintino, S.R.; et al. Psidium guajava L. and Psidium brownianum Mart ex DC.: Chemical composition and anti–Candida effect in association with fluconazole. Microb. Pathog. 2016, 95, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, H.D.; Costa, J.G.; Lima, E.O.; Falcão-Silva, V.S.; Siqueira-Júnior, J.P. Enhancement of the antibiotic activity against a multiresistant Escherichia coli by Mentha arvensis L. and chlorpromazine. Chemotherapy 2008, 54, 328–330. [Google Scholar] [CrossRef] [PubMed]
- Diamond, L.S. The establishment of various trichomonads of animals and man in axenic cultures. J. Parasitol. 1957, 43, 488–490. [Google Scholar] [CrossRef]
- Almeida de Menezes, S.; Galego, G.B.; Rigo, G.D.V.; de Aguiar, J.C.R.D.O.F.; Veras, B.D.O.; Cortez Sombra Vandesmet, L.; Bezerra dos Santos, C.R.; Gomes Vidal Sampaio, M.; Marques, C.D.C.; Luiz Lermen, V.; et al. Anti-Trichomonas vaginalis activity of essential oils extracted from Caatinga Myrtaceae species and chemical composition of Eugenia pohliana DC. Nat. Prod. Res. 2023, 37, 1042–1046. [Google Scholar] [CrossRef]
- Hidayah, H.; Ridwanuloh, D.; Amal, S. Aktivitas Farmakologi Tumbuhan Jamblang (Syzygium cumini L.): Literature Review Article. Cerdika 2021, 1, 530–536. [Google Scholar]
- Everton, G.O.; Pereira, A.P.M.; Rosa, P.V.S.; Mafra, N.S.C.; Júnior, P.S.S.; Souza, F.S.; Mendonça, C.D.J.S.; Silva, F.C.; Gomes, P.R.B.; Mouchrek Filho, V.E. Chemical characterization, toxicity, antioxidant and antimicrobial activity of the essential oils of Hymenaea courbaril L. and Syzygium cumini (L.) Skeels. Ciênc. Nat. 2021, 43, e11. [Google Scholar] [CrossRef]
- Figueiredo Júnior, E.C.; Wanderley Cavalcanti, Y.; Brito Lira, A.; Freire Pessoa, H.D.L.; Silva Lopes, W.; Romário da Silva, D.; Almeida Freires, I.; Luiz Rosalen, P.; Melo de Brito Costa, E.M.; Vieira Pereira, J. Phytochemical composition, antifungal activity, in vitro and in vivo toxicity of Syzygium cumini (L.) Skeels leaves extract. Bol. Latinoam. Caribe Plantas Med. Aromat. 2021, 20, 536. [Google Scholar] [CrossRef]
- Khan, A.; Iqbal, K.J.S. Antifungal activity of Syzygium cumini L. against Rhizoctonia solani. Pure Appl. Biol. 2021, 5, 193–199. [Google Scholar] [CrossRef]
- Everton, G.O.; Júnior, P.S.S.; Sales, E.H.; Rosa, P.V.S.; Dias, A.A.S.; Duarte, R.V.S.; dos Santos Souza, L.; de Araújo Neto, A.P.; dos Santos Souza, L.; dos Santos, M.B.L.; et al. Essential oils of the leaves of Syzygium cumini (L.) Skeels and fruit peels of Hymenaea courbaril (L.) var. courbaril as molluscides against Biomphalaria glabrata. Res. Soc. Dev. 2020, 9, e1239108215. [Google Scholar] [CrossRef]
- Ashmawy, N.S.; Gad, H.A.; Nashar, H.A.S. Comparative study of essential oils from different organs of Syzygium cumini (Pamposia) based on GC/MS chemical profiling and in vitro antiaging activity. Molecules 2023, 28, 7861. [Google Scholar] [CrossRef] [PubMed]
- Reis, A.S.; Silva, L.S.; Martins, C.F.; Paula, J.R. Analysis of the volatile oils from three species of the gender Syzygium. Res. Soc. Dev. 2021, 10, e13510716375. [Google Scholar] [CrossRef]
- El-Nashar, H.A.; Eldehna, W.M.; Al-Rashood, S.T.; Alharbi, A.; Eskandrani, R.O.; Aly, S.H. GC/MS analysis of essential oil and enzyme inhibitory activities of Syzygium cumini (Pamposia) grown in Egypt: Chemical characterization and molecular docking studies. Molecules 2021, 26, 6984. [Google Scholar] [CrossRef] [PubMed]
- El Toghlobi, G.S.S.; Arantes, R.A.; Knudsen, B.G.; Tabach, R.; Pereira, M.A.A.; de Carvalho, R.G.; Ferraz, R.R.N.; Rodrigues, F.S.M. Usos clínicos do fitoterápico da erva-baleeira (Varronia curassavica Jacq.): Revisão da literatura. Int. J. Health Manag. Rev. 2022, 8, 1–10. [Google Scholar] [CrossRef]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef]
- Salehi, B.; Upadhyay, S.; Erdogan Orhan, I.; Kumar Jugran, A.; LDJayaweera, S.; ADias, D.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N.; et al. Therapeutic potential of α-and β-pinene: A miracle gift of nature. Biomolecules 2019, 9, 738. [Google Scholar] [CrossRef] [PubMed]
- Park, B.B.; An, J.Y.; Park, S.U. Recent studies on pinene and its biological and pharmacological activities. EXCLI J. 2021, 20, 812–818. [Google Scholar]
- Nóbrega, J.R.; Silva, D.D.F.; Andrade Júnior, F.P.D.; Sousa, P.M.S.; Figueiredo, P.T.R.D.; Cordeiro, L.V.; Lima, E.D.O. Antifungal action of α-pinene against Candida spp. isolated from patients with otomycosis and effects of its association with boric acid. Nat. Prod. Res. 2021, 35, 6190–6193. [Google Scholar] [CrossRef] [PubMed]
- de Barros, D.B.; e Lima, L.D.O.; da Silva, L.A.; Fonseca, M.C.; Ferreira, R.C.; Neto, H.D.; da Nóbrega Alves, D.; da Silva Rocha, W.P.; Scotti, L.; de Oliveira Lima, E.; et al. α-Pinene: Docking study, cytotoxicity, mechanism of action, and anti-biofilm effect against Candida albicans. Antibiotics 2023, 12, 480. [Google Scholar] [CrossRef]
- Konuk, H.B.; Ergüden, B. Investigation of antifungal activity mechanisms of alpha-pinene, eugenol, and limonene. J. VetBio Sci. Tech. 2022, 7, 385–390. [Google Scholar] [CrossRef]
- Hiwandika, N.; Sudrajat, S.E.; Rahayu, I. Antibacterial and antifungal activity of clove extract (Syzygium aromaticum). Eureka Herba Indonesia. 2021, 2, 86–94. [Google Scholar]
- Hong, K.; Wang, L.; Johnpaul, A.; Song, Y.; Guo, L.; Xie, X.; Lv, C.; Ma, C. Response of Saccharomyces cerevisiae var. diastaticus to nerol: Evaluation of antifungal potential by inhibitory effect and proteome analyses. Food Chem. 2023, 403, 134323. [Google Scholar] [CrossRef]
- Tian, J.; Zeng, X.; Zeng, H.; Feng, Z.; Miao, X.; Peng, X. Investigations on the antifungal effect of nerol against Aspergillus flavus causing food spoilage. Sci. World J. 2013, 2013, 230795. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, K.; Chen, L.; Yan, R.; Qu, S.; Li, Y.X.; Liu, M.; Zeng, H.; Tian, J. Activities of Nerol, a natural plant active ingredient, against Candida albicans in vitro and in vivo. Appl. Microbiol. Biotechnol. 2020, 104, 5039–5052. [Google Scholar] [CrossRef]
- Dai, M.; Peng, C.; Peng, F.; Xie, C.; Wang, P.; Sun, F. Anti-Trichomonas vaginalis properties of the oil of Amomum tsao-ko and its major component, geraniol. Pharm. Biol. 2016, 54, 445–450. [Google Scholar] [CrossRef]
- Alighiri, D. Isolation and antifungal activity of caryophyllene from clove leaf oil (Syzygium aromaticum L.) on mahogany leaf composites. Sci. Community Pharm. J. 2022, 1, 17–25. [Google Scholar]
- Jassal, K.; Kaushal, S.; Rashmi; Rani, R. Antifungal potential of guava (Psidium guajava) leaves essential oil, major compounds: Beta-caryophyllene and caryophyllene oxide. Arch. Phytopathol. Plant Prot. 2021, 54, 2034–2050. [Google Scholar] [CrossRef]
- Eldin, H.M.E.; Badawy, A.F. In vitro anti-Trichomonas vaginalis activity of Pistacia lentiscus mastic and Ocimum basilicum essential oil. J. Parasit. Dis. 2015, 39, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Maslachah, L.; Purwitasari, N. In vitro antimalarial activity of Syzygium cumini fruit fraction. Open Vet. J. 2023, 13, 1116–1123. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, K.A.F.; Amorim, L.V.; Dias, C.N.; Moraes, D.F.C.; Carneiro, S.M.P.; Carvalho, F.A.A. Syzygium cumini (L.) Skeels essential oil and its major constituent α-pinene exhibit anti-Leishmania activity through immunomodulation in vitro. J. Ethnopharmacol. 2015, 160, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Menezes, S.A.; Tasca, T. Essential oils and terpenic compounds as potential hits for drugs against amitochondriate protists. Trop. Med. Infect. Dis. 2023, 8, 37. [Google Scholar] [CrossRef] [PubMed]
- Bala, V.; Chhonker, Y.S. Recent developments in anti-Trichomonas research: An update review. Eur. J. Med. Chem. 2018, 143, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Paulish-Miller, T.E.; Augostini, P.; Schuyler, J.A.; Smith, W.L.; Mordechai, E.; Adelson, M.E.; Gygax, S.E.; Secor, W.E.; Hilbert, D.W. Trichomonas vaginalis metronidazole resistance is associated with single nucleotide polymorphisms in the nitroreductase genes ntr4Tv and ntr6Tv. Antimicrob. Agents Chemother. 2014, 58, 2938–2943. [Google Scholar] [CrossRef]
- Azzam, K.M.A.; Negim, E.S.; Aboul-Enein, H.Y. ADME studies of TUG-770 (a GPR-40 inhibitor agonist) for the treatment of type 2 diabetes using SwissADME predictor: In silico study. J. Appl. Pharm. Sci. 2022, 12, 159–169. [Google Scholar]
- Kaur, B.; Rolta, R.; Salaria, D.; Kumar, B.; Fadare, O.A.; Costa, R.A.; Ahmad, A.; Basil, M.; Al-Rawi, A.; Raish, M.; et al. An in silico investigation to explore anti-cancer potential of Foeniculum vulgare Mill. Phytoconstituents for the management of human breast cancer. Molecules 2022, 27, 4077. [Google Scholar] [CrossRef]
- Bandiola, T.M.; Ignacio, G.B.; Yunson, E.G.; Bandiola, P.D. Syzygium cumini (L.) Skeels: A review of its phytochemical constituents, toxicity studies, and traditional and pharmacological uses. Int. J. Appl. Pharm. Biol. Res. 2017, 2, 15–23. [Google Scholar]
- Tavares, G.G.; Alves, S.F.; Borges, L.L. Investigação in silico de compostos bioativos de Croton linearifolius Müll. Arg com atividade antidepressiva. Rev. Bras. Mil. Ciências 2020, 6, 8–14. [Google Scholar]
Compounds | RI a | RI b | Essential Oil |
---|---|---|---|
α-pinene | 937 | 939 | 51.11 |
β-pinene | 979 | 981 | 2.98 |
β-myrcene | 995 | 991 | 0.77 |
Limonene | 1029 | 1031 | 1.42 |
Nonalol | 1105 | 1103 | 4.56 |
Linalool | 1099 | 1098 | 5.82 |
α-terpineol | 1187 | 1189 | 1.81 |
Nerol | 1228 | 1228 | 8.25 |
(E,Z)-2,4-decadienal | 1296 | 1295 | 0.91 |
Geranil acetate | 1385 | 1384 | 2.93 |
Ionone | 1387 | 1387 | 1.36 |
Damascone | 1409 | 1411 | 0.56 |
Caryophyllene | 1417 | 1418 | 3.52 |
α-humulene | 1451 | 1452 | 1.47 |
Nerolidol | 1569 | 1564 | 6.56 |
α-cadinol | 1646 | 1649 | 0.21 |
Hydrocarbon Monoterpene | 60.84 | ||
Oxygenated Monoterpene | 21.64 | ||
Hydrocarbon Sesquiterpene | 4.99 | ||
Oxygenated Sesquiterpene | 6.77 | ||
Total Identified (%) | 94.24 |
IC50 | μg/mL | ||
---|---|---|---|
C. albicans | C. krusei | C. tropicalis | |
EOSC | 541.4 ± 1.09 | 502.3 ± 2.93 | >1024 ± 2.75 |
FCZ | 1.59 ± 0.91 | 45.29 ± 3.52 | 0.01 ± 0.00 |
FCZ + EOSC | 2.17 ± 0.08 | 0.30 ± 0.01 | 0.01 ± 0.00 |
Pharmacokinetics | |
---|---|
Compound | α-pinene |
GI absorption | Low |
BBB permeant | Yes |
P-gp substrate | No |
CYP1A2 inhibitor | No |
CYP2C19 inhibitor | No |
CYP2C9 inhibitor | Yes |
CYP2D6 inhibitor | No |
CYP3A4 inhibitor | No |
Log Kp (skin permeation) | −3.95 cm/s |
Drug-likeness | |
Lipinski | Yes; 1 violation: MLOGP > 4.15 |
Ghose | No; 1 violation: MW < 160 |
Veber | Yes |
Egan | Yes |
Muegge | No; 2 violations: MW < 200, Heteroatoms < 2 |
Bioavailability Score | 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, J.T.d.C.; Moreira, F.C.; Bezerra, J.J.L.; Farias, N.S.; Menêses, A.V.S.; Santos, A.G.d.; Santana, M.d.S.; Silva, M.E.P.d.; Fonseca, V.J.A.; Costa, A.R.; et al. In Vitro and In Silico Biological Evaluation of the Essential Oil from Syzigium cumini Leaves as a Source of Novel Antifungal and Trichomonacidal Agents. Future Pharmacol. 2024, 4, 380-394. https://doi.org/10.3390/futurepharmacol4020021
Silva JTdC, Moreira FC, Bezerra JJL, Farias NS, Menêses AVS, Santos AGd, Santana MdS, Silva MEPd, Fonseca VJA, Costa AR, et al. In Vitro and In Silico Biological Evaluation of the Essential Oil from Syzigium cumini Leaves as a Source of Novel Antifungal and Trichomonacidal Agents. Future Pharmacology. 2024; 4(2):380-394. https://doi.org/10.3390/futurepharmacol4020021
Chicago/Turabian StyleSilva, José Thyálisson da Costa, Fabio Caboclo Moreira, José Jailson Lima Bezerra, Naiza Saraiva Farias, Aparecida Vitória Silva Menêses, Andressa Guilhermino dos Santos, Mariana dos Santos Santana, Maria Elenilda Paulino da Silva, Victor Juno Alencar Fonseca, Adrielle Rodrigues Costa, and et al. 2024. "In Vitro and In Silico Biological Evaluation of the Essential Oil from Syzigium cumini Leaves as a Source of Novel Antifungal and Trichomonacidal Agents" Future Pharmacology 4, no. 2: 380-394. https://doi.org/10.3390/futurepharmacol4020021
APA StyleSilva, J. T. d. C., Moreira, F. C., Bezerra, J. J. L., Farias, N. S., Menêses, A. V. S., Santos, A. G. d., Santana, M. d. S., Silva, M. E. P. d., Fonseca, V. J. A., Costa, A. R., Menezes, S. A., Cruz, R. P. d., Morais-Braga, M. F. B., Tasca, T., Oliveira-Tintino, C. D. d. M., Coutinho, H. D. M., & Almeida-Bezerra, J. W. (2024). In Vitro and In Silico Biological Evaluation of the Essential Oil from Syzigium cumini Leaves as a Source of Novel Antifungal and Trichomonacidal Agents. Future Pharmacology, 4(2), 380-394. https://doi.org/10.3390/futurepharmacol4020021