Topical Application of ASPP 092, a Diarylheptanoid Isolated from Curcuma comosa Roxb, Accelerates Wound Healing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Wound Procedures, Treatments, and Sample Collection
2.2.1. Punch Wound Procedure in Rats
2.2.2. Wound Treatment in Rats
2.3. Quantification of Wound Contraction
2.4. Histopathology
2.5. Analysis of Wound Re-Epithelialization
2.6. Immunohistochemistry
2.7. Statistical Analysis
3. Results
3.1. ASPP 092 Treatment Improved Wound Healing in Rats
3.2. ASPP 092 Treatment Improved Wound Contraction in the Experimental Rats
3.3. ASPP 092 Improved the Histopathology in the Wound Area
3.4. ASPP 092 Improved the Re-Epithelialization in the Experimental Wounds
3.5. ASPP 092 Reduced the Cyclooxygenase-2 (COX-2) Expressions in the Experimental Wounds
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Midwood, K.S.; Williams, L.V.; Schwarzbauer, J.E. Tissue repair and the dynamics of the extracellular matrix. Int. J. Biochem. Cell Biol. 2004, 36, 1031–1037. [Google Scholar] [CrossRef] [PubMed]
- Collier, M. Wound-bed management: Key principles for practice. Prof. Nurse 2002, 18, 221–225. [Google Scholar] [PubMed]
- Nguyen, H.; Merrill, B.J.; Polak, L.; Nikolova, M.; Rendl, M.; Shaver, T.M.; Pasolli, H.A.; Fuchs, E. Tcf3 and Tcf4 are essential for long-term homeostasis of skin epithelia. Nat. Genet. 2009, 41, 1068–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorg, H.; Sorg, C.G. Skin wound healing: Of players, patterns and processes. Eur. Surg. Res. 2022. ahead of print. [Google Scholar] [CrossRef]
- Wang, Z.; Qi, F.; Luo, H.; Xu, G.; Wang, D. Inflammatory Microenvironment of Skin Wounds. Front. Immunol. 2022, 13, 789274. [Google Scholar] [CrossRef]
- Gilmore, M.A. Phases of wound healing. Dimens. Oncol. Nurs. 1991, 5, 32–34. [Google Scholar]
- Broughton, G., 2nd; Janis, J.E.; Attinger, C.E. The basic science of wound healing. Plast. Reconstr. Surg. 2006, 117, 12S–34S. [Google Scholar] [CrossRef]
- Rahim, K.; Saleha, S.; Zhu, X.; Huo, L.; Basit, A.; Franco, O.L. Bacterial Contribution in Chronicity of Wounds. Microb. Ecol. 2017, 73, 710–721. [Google Scholar] [CrossRef]
- Punjataewakupt, A.; Napavichayanun, S.; Aramwit, P. The downside of antimicrobial agents for wound healing. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 39–54. [Google Scholar] [CrossRef]
- Sritharadol, R.; Nakpheng, T.; Wan Sia Heng, P.; Srichana, T. Development of a topical mupirocin spray for antibacterial and wound-healing applications. Drug Dev. Ind. Pharm. 2017, 43, 1715–1728. [Google Scholar] [CrossRef]
- Nayak, S.B.; Rodrigues, V.; Maharaj, S.; Bhogadi, V.S. Wound healing activity of the fruit skin of Punica granatum. J. Med. Food 2013, 16, 857–861. [Google Scholar] [CrossRef] [PubMed]
- Nayak, B.S.; Ramdeen, R.; Adogwa, A.; Ramsubhag, A.; Marshall, J.R. Wound-healing potential of an ethanol extract of Carica papaya (Caricaceae) seeds. Int. Wound J. 2012, 9, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Chuncharunee, A.; Waikakul, S.; Wongkajornsilp, A.; Chongkolwatana, V.; Chuncharunee, L.; Sirimontaporn, A.; Rungruang, T.; Sreekanth, G.P. Invalid freeze-dried platelet gel promotes wound healing. Saudi Pharm. J. 2019, 27, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Twilley, D.; Reva, O.; Meyer, D.; Lall, N. Mupirocin Promotes Wound Healing by Stimulating Growth Factor Production and Proliferation of Human Keratinocytes. Front. Pharm. 2022, 13, 862112. [Google Scholar] [CrossRef] [PubMed]
- Piyachaturawat, P.; Ercharuporn, S.; Suksamrarn, A. Uterotrophic Effect of Curcuma comosa in Rats. Int. J. Pharmacogn. 1995, 33, 334–338. [Google Scholar] [CrossRef]
- Winuthayanon, W.; Suksen, K.; Boonchird, C.; Chuncharunee, A.; Ponglikitmongkol, M.; Suksamrarn, A.; Piyachaturawat, P. Estrogenic activity of diarylheptanoids from Curcuma comosa Roxb. Requires metabolic activation. J. Agric. Food Chem. 2009, 57, 840–845. [Google Scholar] [CrossRef]
- Winuthayanon, W.; Piyachaturawat, P.; Suksamrarn, A.; Ponglikitmongkol, M.; Arao, Y.; Hewitt, S.C.; Korach, K.S. Diarylheptanoid phytoestrogens isolated from the medicinal plant Curcuma comosa: Biologic actions in vitro and in vivo indicate estrogen receptor-dependent mechanisms. Environ. Health Perspect. 2009, 117, 1155–1161. [Google Scholar] [CrossRef] [Green Version]
- Winuthayanon, W.; Piyachaturawat, P.; Suksamrarn, A.; Burns, K.A.; Arao, Y.; Hewitt, S.C.; Pedersen, L.C.; Korach, K.S. The natural estrogenic compound diarylheptanoid (D3): In Vitro mechanisms of action and in vivo uterine responses via estrogen receptor alpha. Environ. Health Perspect. 2013, 121, 433–439. [Google Scholar] [CrossRef] [Green Version]
- Suksamrarn, A.; Ponglikitmongkol, M.; Wongkrajang, K.; Chindaduang, A.; Kittidanairak, S.; Jankam, A.; Yingyongnarongkul, B.E.; Kittipanumat, N.; Chokchaisiri, R.; Khetkam, P.; et al. Diarylheptanoids, new phytoestrogens from the rhizomes of Curcuma comosa: Isolation, chemical modification and estrogenic activity evaluation. Bioorg. Med. Chem. 2008, 16, 6891–6902. [Google Scholar] [CrossRef]
- Jariyawat, S.; Kigpituck, P.; Suksen, K.; Chuncharunee, A.; Chaovanalikit, A.; Piyachaturawat, P. Protection against cisplatin-induced nephrotoxicity in mice by Curcuma comosa Roxb. ethanol extract. J. Nat. Med. 2009, 63, 430–436. [Google Scholar] [CrossRef]
- Chuncharunee, A.; Khosuk, P.; Naovarat, R.; Kaliyadan, F.; Sreekanth, G.P. ASPP 092, a phenolic diarylheptanoid from Curcuma comosa suppresses experimentally-induced inflammatory ear edema in mice. Saudi J. Biol. Sci. 2021, 28, 5937–5946. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.J.; Lai, K.P.; Chuang, K.H.; Chang, P.; Yu, I.C.; Lin, W.J.; Chang, C. Monocyte/macrophage androgen receptor suppresses cutaneous wound healing in mice by enhancing local TNF-alpha expression. J. Clin. Investig. 2009, 119, 3739–3751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nugraha, R.V.; Ridwansyah, H.; Ghozali, M.; Khairani, A.F.; Atik, N. Traditional Herbal Medicine Candidates as Complementary Treatments for COVID-19: A Review of Their Mechanisms, Pros and Cons. Evid.-Based Complement. Altern. Med. 2020, 2020, 2560645. [Google Scholar] [CrossRef] [PubMed]
- Zamawe, C.; King, C.; Jennings, H.M.; Mandiwa, C.; Fottrell, E. Effectiveness and safety of herbal medicines for induction of labour: A systematic review and meta-analysis. BMJ Open 2018, 8, e022499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burapan, S.; Kim, M.; Paisooksantivatana, Y.; Eser, B.E.; Han, J. Thai Curcuma Species: Antioxidant and Bioactive Compounds. Foods 2020, 9, 1219. [Google Scholar] [CrossRef]
- Tuntiyasawasdikul, S.; Sripanidkulchai, B. Curcuma comosa loaded transfersomal gel for transdermal application: Formulation, In Vitro and In Vivo evaluation. Drug Dev. Ind. Pharm. 2021, 47, 1824–1834. [Google Scholar] [CrossRef]
- Viriyaadhammaa, N.; Saiai, A.; Neimkhum, W.; Nirachonkul, W.; Chaiyana, W.; Chiampanichayakul, S.; Tima, S.; Usuki, T.; Duangmano, S.; Anuchapreeda, S. Cytotoxic and Antiproliferative Effects of Diarylheptanoids Isolated from Curcuma comosa Rhizomes on Leukaemic Cells. Molecules 2020, 25, 5476. [Google Scholar] [CrossRef]
- Khin Aung, Z.M.; Jantaratnotai, N.; Piyachaturawat, P.; Sanvarinda, P. A pure compound from Curcuma comosa Roxb. protects neurons against hydrogen peroxide-induced neurotoxicity via the activation of Nrf-2. Heliyon 2022, 8, e11228. [Google Scholar] [CrossRef]
- Hmood, A.A.; Feki, A.; Eleroui, M.; Kammoun, I.; Kallel, R.; Boudawara, T.; Hakim, A.; Hilali, A.; Hassouni, A.O.; Suleiman, A.A.J.; et al. Biological activities and wound healing potential of a water-soluble polysaccharide isolated from Glycyrrhiza glabra in Wistar rat. Braz. J. Biol. 2022, 84, e265447. [Google Scholar] [CrossRef]
- Rambe, P.S.; Putra, I.B.; Yosi, A. The effect of roselle leaf (Hibiscus sabdariffa L.) extract gel on wound healing. J. Med. Life 2022, 15, 1246–1251. [Google Scholar] [CrossRef]
- Tottoli, E.M.; Dorati, R.; Genta, I.; Chiesa, E.; Pisani, S.; Conti, B. Skin Wound Healing Process and New Emerging Technologies for Skin Wound Care and Regeneration. Pharmaceutics 2020, 12, 735. [Google Scholar] [CrossRef] [PubMed]
- Sodsai, A.; Piyachaturawat, P.; Sophasan, S.; Suksamrarn, A.; Vongsakul, M. Suppression by Curcuma comosa Roxb. of pro-inflammatory cytokine secretion in phorbol-12-myristate-13-acetate stimulated human mononuclear cells. Int. Immunopharmacol. 2007, 7, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Thampithak, A.; Jaisin, Y.; Meesarapee, B.; Chongthammakun, S.; Piyachaturawat, P.; Govitrapong, P.; Supavilai, P.; Sanvarinda, Y. Transcriptional regulation of iNOS and COX-2 by a novel compound from Curcuma comosa in lipopolysaccharide-induced microglial activation. Neurosci. Lett. 2009, 462, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Ajeeshkumar, K.K.; Vishnu, K.V.; Navaneethan, R.; Raj, K.; Remyakumari, K.R.; Swaminathan, T.R.; Suseela, M.; Asha, K.K.; Sreekanth, G.P. Proteoglycans isolated from the bramble shark cartilage show potential anti-osteoarthritic properties. Inflammopharmacology 2019, 27, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Jitsanong, T.; Khanobdee, K.; Piyachaturawat, P.; Wongprasert, K. Diarylheptanoid 7-(3,4 dihydroxyphenyl)-5-hydroxy-1-phenyl-(1E)-1-heptene from Curcuma comosa Roxb. protects retinal pigment epithelial cells against oxidative stress-induced cell death. Toxicol. Vitr. 2011, 25, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Dipietro, L.A. Factors affecting wound healing. J. Dent. Res. 2010, 89, 219–229. [Google Scholar] [CrossRef]
- Kuwano, T.; Nakao, S.; Yamamoto, H.; Tsuneyoshi, M.; Yamamoto, T.; Kuwano, M.; Ono, M. Cyclooxygenase 2 is a key enzyme for inflammatory cytokine-induced angiogenesis. FASEB J. 2004, 18, 300–310. [Google Scholar] [CrossRef]
- Zarghi, A.; Arfaei, S. Selective COX-2 Inhibitors: A Review of Their Structure-Activity Relationships. Iran. J. Pharm. Res. 2011, 10, 655–683. [Google Scholar]
- Kim, H.J.; Yeom, S.H.; Kim, M.K.; Shim, J.G.; Paek, I.N.; Lee, M.W. Nitric oxide and prostaglandin E2 synthesis inhibitory activities of diarylheptanoids from the barks of Alnus japonica steudel. Arch. Pharm. Res. 2005, 28, 177–179. [Google Scholar] [CrossRef]
- Claeson, P.; Pongprayoon, U.; Sematong, T.; Tuchinda, P.; Reutrakul, V.; Soontornsaratune, P.; Taylor, W.C. Non-Phenolic Linear Diarylheptanoids from Curcuma xanthorrhiza: A Novel Type of Topical Anti-Inflammatory Agents: Structure-Activity Relationship. Planta Med. 1996, 62, 236–240. [Google Scholar] [CrossRef]
- Dilber, S.P.; Dobric, S.; Juranic, Z.D.; Markovic, B.D.; Vladimirov, S.M.; Juranic, I.O. Docking studies and anti-inflammatory activity of beta-hydroxy-beta-arylpropanoic acids. Molecules 2008, 13, 603–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bralley, E.E.; Greenspan, P.; Hargrove, J.L.; Wicker, L.; Hartle, D.K. Topical anti-inflammatory activity of Polygonum cuspidatum extract in the TPA model of mouse ear inflammation. J. Inflamm. 2008, 5, 1. [Google Scholar] [CrossRef] [PubMed]
Groups of Experimental Wounds | Re-Epithelialization (%) | ||
---|---|---|---|
Day 3 | Day 7 | Day 12 | |
Control Group | 27.43 ± 3.92 | 81.6 ± 5.32 | 100 |
Mupirocin (8 mg/mL)-treated | 47.65 ± 1.89 | 100 * | 100 |
ASPP 092 (1 mg/mL)-treated | 37.38 ± 2.69 * | 88.22 ± 4.52 | 100 |
ASPP 092 (2 mg/mL)-treated | 43.14 ± 2.87 * | 100 * | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hemtong, W.; Chuncharunee, A.; Sreekanth, G.P. Topical Application of ASPP 092, a Diarylheptanoid Isolated from Curcuma comosa Roxb, Accelerates Wound Healing. Future Pharmacol. 2023, 3, 1-13. https://doi.org/10.3390/futurepharmacol3010001
Hemtong W, Chuncharunee A, Sreekanth GP. Topical Application of ASPP 092, a Diarylheptanoid Isolated from Curcuma comosa Roxb, Accelerates Wound Healing. Future Pharmacology. 2023; 3(1):1-13. https://doi.org/10.3390/futurepharmacol3010001
Chicago/Turabian StyleHemtong, Waratta, Aporn Chuncharunee, and Gopinathan Pillai Sreekanth. 2023. "Topical Application of ASPP 092, a Diarylheptanoid Isolated from Curcuma comosa Roxb, Accelerates Wound Healing" Future Pharmacology 3, no. 1: 1-13. https://doi.org/10.3390/futurepharmacol3010001
APA StyleHemtong, W., Chuncharunee, A., & Sreekanth, G. P. (2023). Topical Application of ASPP 092, a Diarylheptanoid Isolated from Curcuma comosa Roxb, Accelerates Wound Healing. Future Pharmacology, 3(1), 1-13. https://doi.org/10.3390/futurepharmacol3010001