Metabolomic Profiling of Red Blood Cells to Identify Molecular Markers of Methotrexate Response in the Collagen Induced Arthritis Mouse Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Disease Induction and Treatment
2.3. Metabolomics Analysis
2.4. Statistical Analysis
3. Results
3.1. RBC Metabolomic Differences Associated with CIA Disease Induction and the Effect of MTX
3.2. Comparison of RBC and Plasma Metabolomic Differences Associated with MTX Treatment in the CIA Mouse Model
3.3. Comparison of MTX’s Effect on the RBC Metabolome in Healthy Control and CIA Disease Mice
3.4. Evaluation of Metabolomic Markers as Biomarkers of MTX Treatment in RBCs and Plasma
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fraenkel, L.; Bathon, J.M.; England, B.R.; St Clair, E.W.; Arayssi, T.; Carandang, K.; Deane, K.D.; Genovese, M.; Huston, K.K.; Kerr, G.; et al. 2021 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Rheumatol. 2021, 73, 1108–1123. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; van Haandel, L.; Kiptoo, P.; Becker, M.L.; Siahaan, T.J.; Funk, R.S. Methotrexate disposition, anti-folate activity and efficacy in the collagen-induced arthritis mouse model. Eur. J. Pharmacol. 2019, 853, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Salamoun, Y.M.; Polireddy, K.; Cho, Y.K.; Medcalf, M.R.; Funk, R.S. Methotrexate Disposition, Anti-Folate Activity, and Metabolomic Profiling to Identify Molecular Markers of Disease Activity and Drug Response in the Collagen-Induced Arthritis Mouse Model. Metabolites 2022, 12, 24. [Google Scholar] [CrossRef] [PubMed]
- Luan, H.; Gu, W.; Li, H.; Wang, Z.; Lu, L.; Ke, M.; Lu, J.; Chen, W.; Lan, Z.; Xiao, Y.; et al. Serum Metabolomic and Lipidomic Profiling Identifies Diagnostic Biomarkers for Seropositive and Seronegative Rheumatoid Arthritis Patients. J. Transl. Med. 2021, 19, 500. [Google Scholar] [CrossRef]
- Friedman, B.; Cronstein, B. Methotrexate mechanism in treatment of rheumatoid arthritis. Jt. Bone Spine 2019, 86, 301–307. [Google Scholar] [CrossRef]
- Cronstein, B.N. Molecular therapeutics. Methotrexate and its mechanism of action. Arthritis Rheum. 1996, 39, 1951–1960. [Google Scholar] [CrossRef]
- Brand, D.D.; Latham, K.A.; Rosloniec, E.F. Collagen-induced arthritis. Nat. Protoc. 2007, 2, 1269–1275. [Google Scholar] [CrossRef]
- Medcalf, M.R.; Bhadbhade, P.; Mikuls, T.R.; O’Dell, J.R.; Gundry, R.L.; Funk, R.S. Plasma Metabolome Normalization in Rheumatoid Arthritis Following Initiation of Methotrexate and the Identification of Metabolic Biomarkers of Efficacy. Metabolites 2021, 11, 824. [Google Scholar] [CrossRef]
- Funk, R.S.; Becker, M.L. Disease modifying anti-rheumatic drugs in juvenile idiopathic arthritis: Striving for individualized therapy. Expert Rev. Precis. Med. Drug Dev. 2016, 1, 53–68. [Google Scholar] [CrossRef]
- Holmdahl, R.; Bockermann, R.; Bäcklund, J.; Yamada, H. The molecular pathogenesis of collagen-induced arthritis in mice—A model for rheumatoid arthritis. Ageing Res. Rev. 2002, 1, 135–147. [Google Scholar] [CrossRef]
- Lindqvist, E.; Saxne, T.; Geborek, P.; Eberhardt, K. Ten year outcome in a cohort of patients with early rheumatoid arthritis: Health status, disease process, and damage. Ann. Rheum. Dis. 2002, 61, 1055–1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kremer, J.M.; Galivan, J.; Streckfuss, A.; Kamen, B. Methotrexate metabolism analysis in blood and liver of rheumatoid arthritis patients: Association with hepatic folate deficiency and formation of polyglutamates. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 1986, 29, 832–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouatra, S.; Aziat, F.; Mandal, R.; Guo, A.C.; Wilson, M.R.; Knox, C.; Bjorndahl, T.C.; Krishnamurthy, R.; Saleem, F.; Liu, P.; et al. The human urine metabolome. PLoS ONE 2013, 8, e73076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Chen, B.; Fang, Z.; Leng, Y.-F.; Wang, D.-W.; Chen, F.-Q.; Xu, X.; Sun, Z.-L. Metabolomics in the development and progression of rheumatoid arthritis: A systematic review. Jt. Bone Spine 2020, 87, 425–430. [Google Scholar] [CrossRef]
- Ng, D.J.Y.; Pasikanti, K.K.; Chan, E.C.Y. Trend analysis of metabonomics and systematic review of metabonomics-derived cancer marker metabolites. Metabolomics 2011, 7, 155–178. [Google Scholar] [CrossRef]
- Mendrick, D.L.; Schnackenberg, L. Genomic and metabolomic advances in the identification of disease and adverse event biomarkers. Biomark. Med. 2009, 3, 605–615. [Google Scholar] [CrossRef] [Green Version]
- Kaddurah-Daouk, R.; Beecher, C.; Kristal, B.S.; Matson, W.R.; Bogdanov, M.; Asa, D.J. Bioanalytical advances for metabolomics and metabolic profiling. Pharmagenomics 2004, 4, 46–51. [Google Scholar]
- Dunne, V.G.; Bhattachayya, S.; Besser, M.; Rae, C.; Griffin, J.L. Metabolites from cerebrospinal fluid in aneurysmal subarachnoid haemorrhage correlate with vasospasm and clinical outcome: A pattern-recognition 1H NMR study. NMR Biomed. 2005, 18, 24–33. [Google Scholar] [CrossRef]
- Brindle, J.T.; Antti, H.; Holmes, E.; Tranter, G.; Nicholson, J.K.; Bethell, H.W.; Clarke, S.; Schofield, P.M.; McKilligin, E.; Mosedale, D.E.; et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat. Med. 2002, 8, 1439–1444. [Google Scholar] [CrossRef]
- Atzori, L.; Antonucci, R.; Barberini, L.; Griffin, J.L.; Fanos, V. Metabolomics: A new tool for the neonatologist. J. Matern.-Fetal Neonatal Med. 2009, 22, 50–53. [Google Scholar] [CrossRef]
- Wawrzyniak, R.; Kosnowska, A.; Macioszek, S.; Bartoszewski, R.; Jan Markuszewski, M. New plasma preparation approach to enrich metabolome coverage in untargeted metabolomics: Plasma protein bound hydrophobic metabolite release with proteinase K. Sci. Rep. 2018, 8, 9541. [Google Scholar] [CrossRef] [PubMed]
- Mill, J.; Patel, V.; Okonkwo, O.; Li, L.; Raife, T. Erythrocyte sphingolipid species as biomarkers of Alzheimer’s disease. J. Pharm. Anal. 2022, 12, 178–185. [Google Scholar] [CrossRef]
- Xu, L.; Chang, C.; Jiang, P.; Wei, K.; Zhang, R.; Jin, Y.; Zhao, J.; Xu, L.; Shi, Y.; Guo, S.; et al. Metabolomics in rheumatoid arthritis: Advances and review. Front. Immunol. 2022, 13, 961708. [Google Scholar] [CrossRef] [PubMed]
- Simon, T.L.; McCullough, J.; Snyder, E.L.; Solheim, B.G.; Strauss, R.G. Rossi’s Principles of Transfusion Medicine; John Wiley & Sons, Incorporated: Hoboken, NJ, USA, 2016. [Google Scholar]
- Hess, J.R.; Beyer, G.M. Chapter 13—Red Blood Cell Metabolism during Storage: Basic Principles and Practical Aspects. In Blood Banking and Transfusion Medicine (Second Edition); Hillyer, C.D., Silberstein, L.E., Ness, P.M., Anderson, K.C., Roback, J.D., Eds.; Churchill Livingstone: Philadelphia, PA, USA, 2007; pp. 205–211. [Google Scholar]
- Hess, J.R.; D’Alessandro, A. Red blood cell metabolism and preservation. In Rossi’s Principles of Transfusion Medicine; John Wiley & Sons, Incorporated: Hoboken, NJ, USA, 2022; pp. 143–157. [Google Scholar]
- Yurkovich, J.T.; Zielinski, D.C.; Yang, L.; Paglia, G.; Rolfsson, O.; Sigurjónsson, Ó.E.; Broddrick, J.T.; Bordbar, A.; Wichuk, K.; Brynjólfsson, S.; et al. Quantitative time-course metabolomics in human red blood cells reveal the temperature dependence of human metabolic networks. J. Biol. Chem. 2017, 292, 19556–19564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenwalt, T.J. The Ernest Witebsky memorial lecture. Red but not dead: Not a hapless sac of hemoglobin. Immunol. Investig. 1995, 24, 3–21. [Google Scholar] [CrossRef]
- Galloway, M.; Rushworth, L. Red cell or serum folate? Results from the National Pathology Alliance benchmarking review. J. Clin. Pathol. 2003, 56, 924–926. [Google Scholar] [CrossRef] [Green Version]
- Guidelines on the investigation and diagnosis of cobalamin and folate deficiencies. A publication of the British Committee for Standards in Haematology. BCSH General Haematology Test Force. Clin. Lab. Haematol. 1994, 16, 101–115.
- Cajka, T.; Fiehn, O. Toward Merging Untargeted and Targeted Methods in Mass Spectrometry-Based Metabolomics and Lipidomics. Anal. Chem. 2016, 88, 524–545. [Google Scholar] [CrossRef]
- Fiehn, O. Metabolomics by gas chromatography–mass spectrometry: Combined targeted and untargeted profiling. Curr. Protoc. Mol. Biol. 2016, 114, 30.4.1–30.4.32. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Takeuchi, T.; Takeda, A.; Mochizuki, H.; Nagai, Y. Comparison of serum and plasma as a source of blood extracellular vesicles: Increased levels of platelet-derived particles in serum extracellular vesicle fractions alter content profiles from plasma extracellular vesicle fractions. PLoS ONE 2022, 17, e0270634. [Google Scholar] [CrossRef]
- Hazlewood, G.S.; Thorne, J.C.; Pope, J.E.; Lin, D.; Tin, D.; Boire, G.; Haraoui, B.; Hitchon, C.A.; Keystone, E.C.; Jamal, S. The comparative effectiveness of oral versus subcutaneous methotrexate for the treatment of early rheumatoid arthritis. Ann. Rheum. Dis. 2016, 75, 1003–1008. [Google Scholar] [CrossRef] [PubMed]
- Vena, G.A.; Cassano, N.; Iannone, F. Update on subcutaneous methotrexate for inflammatory arthritis and psoriasis. Ther. Clin. Risk Manag. 2018, 14, 105. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, M.; Haagsma, C.; Neef, C.; Proost, J.; Knuif, A.; van de Laar, M. Bioavailability of higher dose methotrexate comparing oral and subcutaneous administration in patients with rheumatoid arthritis. J. Rheumatol. 2004, 31, 645–648. [Google Scholar] [PubMed]
- Radmanesh, M.; Rafiei, B.; Moosavi, Z.B.; Sina, N. Weekly vs. daily administration of oral methotrexate (MTX) for generalized plaque psoriasis: A randomized controlled clinical trial. Int. J. Dermatol. 2011, 50, 1291–1293. [Google Scholar] [CrossRef]
- Weinstein, G.; Roenigk, H.; Maibach, H.; Cosmides, J.; Halprin, K.; Millard, M.; Almeyda, J.; Auerbach, R.; Tobias, H.; Bergfeld, W. Psoriasis-liver-methotrexate interactions. Arch. Dermatol. 1973, 108, 36–42. [Google Scholar] [CrossRef]
- Giannini, E.H.; Brewer, E.J.; Kuzmina, N.; Shaikov, A.; Maximov, A.; Vorontsov, I.; Fink, C.W.; Newman, A.J.; Cassidy, J.T.; Zemel, L.S. Methotrexate in resistant juvenile rheumatoid arthritis: Results of the USA–USSR double-blind, placebo-controlled trial. N. Engl. J. Med. 1992, 326, 1043–1049. [Google Scholar] [CrossRef]
- Nemet, I.; Saha, P.P.; Gupta, N.; Zhu, W.; Romano, K.A.; Skye, S.M.; Cajka, T.; Mohan, M.L.; Li, L.; Wu, Y.; et al. A Cardiovascular Disease-Linked Gut Microbial Metabolite Acts via Adrenergic Receptors. Cell 2020, 180, 862–877.e22. [Google Scholar] [CrossRef]
- Emmerson, J.T.; Murray, L.K.; Jadavji, N.M. Impact of dietary supplementation of one-carbon metabolism on neural recovery. Neural Regen. Res. 2017, 12, 1075. [Google Scholar]
- Abbenhardt, C.; Miller, J.W.; Song, X.; Brown, E.C.; Cheng, T.-Y.D.; Wener, M.H.; Zheng, Y.; Toriola, A.T.; Neuhouser, M.L.; Beresford, S.A. Biomarkers of one-carbon metabolism are associated with biomarkers of inflammation in women. J. Nutr. 2014, 144, 714–721. [Google Scholar] [CrossRef] [Green Version]
- Borovikova, L.V.; Ivanova, S.; Zhang, M.; Yang, H.; Botchkina, G.I.; Watkins, L.R.; Wang, H.; Abumrad, N.; Eaton, J.W.; Tracey, K.J. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000, 405, 458–462. [Google Scholar] [CrossRef]
- Fox, J.T.; Stover, P.J. Folate-mediated one-carbon metabolism. Vitam. Horm. 2008, 79, 1–44. [Google Scholar] [PubMed]
- Annibal, A.; Tharyan, R.G.; Schonewolff, M.F.; Tam, H.; Latza, C.; Auler, M.M.K.; Grönke, S.; Partridge, L.; Antebi, A. Regulation of the one carbon folate cycle as a shared metabolic signature of longevity. Nat. Commun. 2021, 12, 3486. [Google Scholar] [CrossRef] [PubMed]
- Medcalf, M.R.; Bantis, L.E.; Shi, P.; Bhadbhade, P.; Gundry, R.L.; Mikuls, T.R.; England, B.R.; O’Dell, J.R.; Funk, R.S. Plasma metabolomic profiling as a tool to identify predictive biomarkers of methotrexate efficacy in rheumatoid arthritis. Semin. Arthritis Rheum. 2022, 56, 152056. [Google Scholar] [CrossRef] [PubMed]
- Yajima, T.; Mason, K.; Katz, E. Biogenetic origin of the D-isoleucine and N-methyl-L-alloisoleucine residues in the actinomycins. Antimicrob. Agents Chemother. 1976, 9, 224–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Artacho, A.; Isaac, S.; Nayak, R.; Flor-Duro, A.; Alexander, M.; Koo, I.; Manasson, J.; Smith, P.B.; Rosenthal, P.; Homsi, Y.; et al. The Pretreatment Gut Microbiome Is Associated With Lack of Response to Methotrexate in New-Onset Rheumatoid Arthritis. Arthritis Rheumatol. 2021, 73, 931–942. [Google Scholar] [CrossRef] [PubMed]
- Nayak, R.R.; Alexander, M.; Deshpande, I.; Stapleton-Gray, K.; Rimal, B.; Patterson, A.D.; Ubeda, C.; Scher, J.U.; Turnbaugh, P.J. Methotrexate impacts conserved pathways in diverse human gut bacteria leading to decreased host immune activation. Cell Host Microbe 2021, 29, 362–377.e11. [Google Scholar] [CrossRef] [PubMed]
- Giner, M.P.; Christen, S.; Bartova, S.; Makarov, M.V.; Migaud, M.E.; Canto, C.; Moco, S. A Method to Monitor the NAD+ Metabolome-From Mechanistic to Clinical Applications. Int. J. Mol. Sci. 2021, 22, 10598. [Google Scholar] [CrossRef] [PubMed]
- Slominska, E.M.; Smolenski, R.T.; Szolkiewicz, M.; Leaver, N.; Rutkowski, B.; Simmonds, H.A.; Swierczynski, J. Accumulation of plasma N-methyl-2-pyridone-5-carboxamide in patients with chronic renal failure. Mol. Cell. Biochem. 2002, 231, 83–88. [Google Scholar] [CrossRef]
- Rutkowski, B.; Slominska, E.; Szolkiewicz, M.; Smolenski, R.T.; Striley, C.; Rutkowski, P.; Swierczynski, J. N-methyl-2-pyridone-5-carboxamide: A novel uremic toxin? Kidney Int Suppl. 2003, 63, S19–S21. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.K.; van Haandel, L.; Heruth, D.P.; Ye, S.Q.; Leeder, J.S.; Becker, M.L.; Funk, R.S. Nicotinamide Phosphoribosyltransferase Deficiency Potentiates the Antiproliferative Activity of Methotrexate through Enhanced Depletion of Intracellular ATP. J. Pharmacol. Exp. Ther. 2018, 365, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Funk, R.S.; Singh, R.; Pramann, L.; Gigliotti, N.; Islam, S.; Heruth, D.P.; Ye, S.Q.; Chan, M.A.; Leeder, J.S.; Becker, M.L. Nicotinamide Phosphoribosyltransferase Attenuates Methotrexate Response in Juvenile Idiopathic Arthritis and In Vitro. Clin. Transl. Sci. 2016, 9, 149–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazarevic, M.B.; Vitic, J.; Mladenovic, V.; Myones, B.L.; Skosey, J.L.; Swedler, W.I. Dyslipoproteinemia in the course of active rheumatoid arthritis. Semin. Arthritis Rheum. 1992, 22, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, D.; Suresh, K.; Manoharan, S. Altered pattern of lipids in plasma and erythrocyte membranes of rheumatoid arthritis patients. Indian J. Clin. Biochem. 2005, 20, 52–55. [Google Scholar] [CrossRef] [PubMed]
Control vs. Disease | Disease vs. Disease + MTX | ||||
---|---|---|---|---|---|
ID | Metabolite | Fold-Change | q-Value | Fold-Change | q-Value |
1 | N-Methylisoleucine | 1.87 | 0.03 | 0.35 | 1.6 × 10−9 |
2 | Nudifloramide | 2.02 | 0.11 | 0.61 | 0.17 |
3 | Phenylacetylglycine | 1.51 | 0.11 | 0.67 | 0.17 |
4 | 1-Methyl-L-histidine | 1.31 | 0.22 | 0.89 | 0.20 |
5 | PC 42:1 | 0.72 | 0.06 | 1.26 | 0.10 |
6 | PE 36:4e | 0.75 | 0.11 | 1.21 | 0.12 |
7 | PC 42:3 | 0.86 | 0.19 | 1.15 | 0.10 |
8 | PE 36:4e (16:0e/20:4) | 0.75 | 0.19 | 1.22 | 0.17 |
9 | SM d34:0 | 0.81 | 0.22 | 1.18 | 0.10 |
Disease Activity Score | Paw Volume | |||
---|---|---|---|---|
Metabolite | Spearman’s Rho | p-Value | Spearman’s Rho | p-Value |
N-Methylisoleucine | 0.57 | 0.0018 | 0.69 | 6.2 × 10−5 |
Nudifloramide | 0.69 | 7.6 × 10−5 | 0.73 | 1.3 × 10−5 |
Phenylacetylglycine | 0.63 | 4.8 × 10−4 | 0.54 | 0.0034 |
1-Methyl-L-histidine | 0.51 | 0.0070 | 0.47 | 0.013 |
PC 42:1 | −0.73 | 1.5 × 10−5 | −0.61 | 7.5 × 10−4 |
PE 36:4e | −0.65 | 2.4 × 10−4 | −0.43 | 0.025 |
PC 42:3 | −0.56 | 0.0024 | −0.44 | 0.020 |
PE 36:4e (16:0e/20:4) | −0.67 | 1.2 × 10−4 | −0.53 | 0.0046 |
SM d34:0 | −0.50 | 0.0080 | −0.49 | 0.0096 |
RBCs | Plasma | ||||
---|---|---|---|---|---|
ID | Metabolite | Fold-Change | q-Value | Fold-Change | q-Value |
1 | LPC 20:5 | 1.55 | 0.12 | 1.40 | 0.047 |
2 | LPC 24:0 | 1.25 | 0.15 | 1.20 | 0.11 |
3 | N,N-Diethyl-2-aminoethanol | 0.40 | 1.8 × 10−6 | 0.32 | 1.1 × 10−5 |
4 | N-Methylisoleucine | 0.35 | 1.6 × 10−9 | 0.33 | 1.1 × 10−5 |
5 | PC 36:2 (18:0/18:2) | 1.19 | 0.12 | 1.19 | 0.16 |
6 | PC 36:3 | 1.18 | 0.15 | 1.17 | 0.16 |
7 | PC 37:2 | 1.17 | 0.23 | 1.54 | 0.057 |
8 | PC 37:4 | 2.37 | 0.0098 | 1.28 | 0.048 |
9 | PC 37:5 | 1.19 | 0.17 | 1.60 | 0.011 |
10 | PC 38:4 | 1.24 | 0.041 | 1.18 | 0.11 |
11 | PC 38:5 | 1.17 | 0.13 | 1.30 | 0.024 |
12 | PC 38:6 | 1.15 | 0.17 | 1.15 | 0.067 |
13 | PC 38:8e | 1.19 | 0.18 | 0.50 | 0.18 |
14 | PC 39:4 | 1.25 | 0.076 | 1.40 | 0.024 |
15 | PC 39:5 | 1.24 | 0.19 | 1.31 | 0.045 |
16 | PC 39:6 | 1.20 | 0.099 | 1.18 | 0.21 |
17 | PC 40:6e | 1.75 | 0.16 | 1.16 | 0.21 |
18 | PC 40:7 | 1.22 | 0.022 | 1.32 | 0.014 |
19 | PC 40:8 | 1.51 | 0.0024 | 1.28 | 0.026 |
20 | PC 41:6 | 1.11 | 0.20 | 1.25 | 0.20 |
21 | PC 42:0 | 1.35 | 0.099 | 2.66 | 0.18 |
22 | PC 42:10 | 1.52 | 0.011 | 1.49 | 0.013 |
23 | PE 38:4e (18:0e/20:4) | 1.26 | 0.21 | 1.64 | 0.24 |
24 | PE 38:7e (18:3e/20:4) | 1.18 | 0.12 | 1.34 | 0.25 |
25 | PE 40:6e (18:2e/22:4) | 1.42 | 0.21 | 1.47 | 0.23 |
26 | PI 35:2 (17:0/18:2) | 1.25 | 0.19 | 1.54 | 0.18 |
27 | PI 35:2 (17:1/18:1) | 1.22 | 0.23 | 1.68 | 0.21 |
28 | PI 36:1 (18:0/18:1) | 1.32 | 0.24 | 1.51 | 0.16 |
29 | PI 36:3 (18:1/18:2) | 1.42 | 0.13 | 1.42 | 0.11 |
30 | PI 38:4 (18:1/20:3) | 1.34 | 0.14 | 1.21 | 0.16 |
31 | PI 38:5 (18:1/20:4) | 1.42 | 0.12 | 1.27 | 0.16 |
32 | PI 38:6 (16:0/22:6) | 1.42 | 0.12 | 1.39 | 0.011 |
33 | PI 38:6 (18:1/20:5) | 1.44 | 0.17 | 1.46 | 0.055 |
34 | PI 39:5 (17:0/22:5) | 1.37 | 0.099 | 1.41 | 0.11 |
35 | PI 40:4 (18:0/22:4) | 1.27 | 0.21 | 1.38 | 0.18 |
36 | PI 40:6 (18:0/22:6) | 1.31 | 0.17 | 1.51 | 0.0073 |
37 | PI 40:7 (18:1/22:6) | 1.47 | 0.13 | 1.69 | 0.0078 |
Control vs. Control + MTX | Disease vs. Disease + MTX | ||||
---|---|---|---|---|---|
ID | Metabolite | Fold-Change | q-Value | Fold-Change | q-Value |
1 | 3-Carboxypropyltrimethylammonium | 1.32 | 0.034 | 1.35 | 0.19 |
2 | 4-Trimethylammoniobutanoic acid | 1.26 | 0.21 | 1.34 | 0.18 |
3 | Ceramide d40:2 | 1.35 | 0.0098 | 1.23 | 0.23 |
4 | Ceramide d42:2 | 1.26 | 0.096 | 1.22 | 0.099 |
5 | Ceramide d44:1 | 1.25 | 0.020 | 1.23 | 0.21 |
6 | Cer-NS d42:3 (d18:1/24:2) | 1.28 | 0.10 | 1.38 | 0.057 |
7 | Cer-NS d44:2 (d18:1/26:1) | 1.20 | 0.12 | 1.17 | 0.20 |
8 | Cer-NS d44:3 (d18:2/26:1) | 1.22 | 0.037 | 1.36 | 0.088 |
9 | Cer-NS d44:4 (d18:1/26:3) | 1.28 | 0.14 | 1.34 | 0.14 |
10 | GlcCer d40:1 | 1.58 | 0.13 | 1.29 | 0.15 |
11 | GlcCer d41:1 | 1.28 | 0.10 | 1.22 | 0.18 |
12 | GlcCer d42:1 | 1.66 | 0.0063 | 1.41 | 0.026 |
13 | Methotrexate | 8.17 | 0.057 | 4.51 | 0.079 |
14 | N-Acetyl-leucine | 0.81 | 0.21 | 0.73 | 0.17 |
15 | Nudifloramide | 1.56 | 0.21 | 0.61 | 0.17 |
16 | PC 30:0 | 1.26 | 0.17 | 1.16 | 0.23 |
17 | PC 30:0e | 1.20 | 0.18 | 1.22 | 0.12 |
18 | PC 40:0 | 1.15 | 0.13 | 1.22 | 0.18 |
19 | PC 40:1 | 1.18 | 0.13 | 1.29 | 0.18 |
20 | PC 42:0 | 1.32 | 0.0063 | 1.35 | 0.099 |
21 | PC 42:0 (16:0/26:0) | 1.37 | 0.0063 | 1.39 | 0.099 |
22 | PC 42:1 | 1.18 | 0.078 | 1.26 | 0.099 |
23 | PC 42:2 | 1.18 | 0.13 | 1.34 | 0.12 |
24 | PC 44:2 | 1.20 | 0.079 | 1.36 | 0.022 |
25 | PE 40:4e (18:1e/22:3) | 1.38 | 0.0090 | 1.39 | 0.1322 |
26 | PE p-38:2 or PE o-38:3 | 1.35 | 0.080 | 1.27 | 0.20 |
27 | PE p-38:3 or PE o-38:4 | 1.22 | 0.22 | 1.31 | 0.13 |
28 | PG 36:2 (18:1/18:1) | 1.75 | 0.090 | 1.44 | 0.13 |
29 | PG 42:8 (20:2/22:6) | 0.75 | 0.22 | 1.22 | 0.24 |
30 | Phenylacetylglycine | 1.47 | 0.22 | 0.67 | 0.17 |
31 | PI 35:2 (17:0/18:2) | 0.73 | 0.20 | 1.25 | 0.19 |
32 | S-Adenosyl-homocysteine | 0.84 | 0.18 | 0.84 | 0.16 |
33 | Serine | 1.23 | 0.012 | 1.25 | 0.12 |
34 | SM d36:0 | 1.15 | 0.11 | 1.17 | 0.24 |
35 | SM d38:0 | 1.15 | 0.15 | 1.13 | 0.19 |
36 | SM d44:1 | 1.21 | 0.12 | 1.26 | 0.23 |
37 | SM t34:0 | 1.22 | 0.10 | 1.33 | 0.12 |
38 | Uridine-5-diphosphoacetylglucosamine | 1.32 | 0.13 | 1.26 | 0.022 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salamoun, Y.M.; Polireddy, K.; Cho, Y.K.; Funk, R.S. Metabolomic Profiling of Red Blood Cells to Identify Molecular Markers of Methotrexate Response in the Collagen Induced Arthritis Mouse Model. Future Pharmacol. 2022, 2, 625-641. https://doi.org/10.3390/futurepharmacol2040038
Salamoun YM, Polireddy K, Cho YK, Funk RS. Metabolomic Profiling of Red Blood Cells to Identify Molecular Markers of Methotrexate Response in the Collagen Induced Arthritis Mouse Model. Future Pharmacology. 2022; 2(4):625-641. https://doi.org/10.3390/futurepharmacol2040038
Chicago/Turabian StyleSalamoun, Yezan M., Kishore Polireddy, Yu Kyoung Cho, and Ryan Sol Funk. 2022. "Metabolomic Profiling of Red Blood Cells to Identify Molecular Markers of Methotrexate Response in the Collagen Induced Arthritis Mouse Model" Future Pharmacology 2, no. 4: 625-641. https://doi.org/10.3390/futurepharmacol2040038
APA StyleSalamoun, Y. M., Polireddy, K., Cho, Y. K., & Funk, R. S. (2022). Metabolomic Profiling of Red Blood Cells to Identify Molecular Markers of Methotrexate Response in the Collagen Induced Arthritis Mouse Model. Future Pharmacology, 2(4), 625-641. https://doi.org/10.3390/futurepharmacol2040038