Potentially Remediable Shortcomings in the Contemporary Drug Treatment of Migraine
Abstract
:1. Introduction
2. The Pathogenesis of Migraine
3. The Treatment of the Migraine Attack
3.1. The Migraine Aura
3.2. The Headache of Migraine
3.2.1. Analgesics
3.2.2. Antimigraine Specific Agents
Agents Acting at 5-HT1B/1D Receptors
Agents Acting at 5-HT1F Receptors
Agents Acting at CGRP Receptors
Agents Acting at Other Receptor Types
3.2.3. The Later-Stage Headache in Migraine
3.3. The Prevention of Migraine
3.3.1. Strategically Timed Prevention
3.3.2. Continuous Prevention
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Harriott, A.M.; Strother, L.C.; Vila-Pueyo, M.; Holland, P.R. Animal models of migraine and experimental techniques used to examine trigeminal sensory processing. J. Headache Pain 2019, 20, 91. [Google Scholar] [CrossRef]
- Living, E. On Megrim, Sick-Headache, and Some Allied Disorders: A Contribution to the Pathology of Nerve-Storms; Churchill: London, UK, 1873. [Google Scholar]
- Latham, P.W. On Nervous or Sick Headache, Its Varieties and Treatment; Deighton, Bull & Co.: Cambridge, UK, 1873. [Google Scholar]
- Wolff, H.G. Headache and Other Head Pain; Oxford University Press: New York, NY, USA, 1963. [Google Scholar]
- Sicuteri, F.; Testi, A.; Anselmi, B. Biochemical investigations in headache: Increase in the hydroxyindoleacetic acid excretion during migraine attacks. Int. Arch. Allergy Appl. Immunol. 1961, 19, 55–58. [Google Scholar] [CrossRef]
- Hanington, E. Migraine: A blood disorder. Lancet 1978, 312, 501–503. [Google Scholar] [CrossRef]
- Ashina, M. Migraine. N. Engl. J. Med. 2020, 383, 1866–1876. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, M.D.; Goadsby, P.J.; Burstein, R.; Kurth, T.; Ayata, C.; Charles, A.; Ashina, M.; van den Maagdenberg, A.M.J.M.; Dodick, D.W. Migraine. Nat. Rev. Dis. Prim. 2022, 8, 2. [Google Scholar] [CrossRef] [PubMed]
- Cianchetti, C. The role of the neurovascular scalp structures in migraine. Cephalalgia 2012, 32, 778–784. [Google Scholar] [CrossRef] [PubMed]
- Parry, C.H. On a case of nervous affection cured by pressure of the carotids; with some physiological remarks. Philos. Trans. 1811, 101, 89–95. [Google Scholar] [CrossRef]
- Kühn, K.G.E. Galen’s OMNIA Opera; Cnoblochii: Leipzig, Germany, 1821–1833; Volume 6, p. 61. [Google Scholar]
- Mason, B.N.; Russo, A.F. Vascular contributions to migraine: Time to revisit? Front. Cell. Neurosci. 2018, 12, 233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woakes, E. On ergot of rye in the treatment of neuralgia. Br. Med. J. 1868, 2, 360–361. [Google Scholar] [CrossRef] [Green Version]
- Russell, M.B.; Olesen, J. A nosographic analysis of the migraine aura in a general population. Brain 1996, 119 Pt 2, 355–361. [Google Scholar] [CrossRef]
- Leão, A.A.P. Spreading depression of activity in the cerebral cortex. J. Neurophysiol. 1944, 7, 359–390. [Google Scholar] [CrossRef]
- Yamani, N.; Chalmer, M.A.; Olesen, J. Migraine with brainstem aura: Defining the core syndrome. Brain 2019, 142, 3868–3875. [Google Scholar] [CrossRef]
- Costa, C.; Tozzi, A.; Rainero, I.; Cupini, L.M.; Calabresi, P.; Ayata, C.; Sarchielli, P. Cortical spreading depression as a target for anti-migraine agents. J. Headache Pain 2013, 14, 62. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, D.A. Calcium Channel Antagonists and the Treatment of Migraine. Clin. Neuropharmacol. 1986, 9, 311–328. [Google Scholar] [CrossRef]
- Pini, L.A.; Lupo, L. Anti-epileptic drugs in the preventive treatment of migraine headache: A brief review. J. Headache Pain 2001, 2, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Fernández-De-Las-Peñas, C.; Navarro-Santana, M.J.; Curiel-Montero, F.; Plaza-Manzano, G.; Alburquerque-Sendín, F.; Rodrigues-De-Souza, D.P. Localized and widespread pressure pain hypersensitivity in patients with episodic or chronic migraine: A systematic review and meta-analysis. Cephalalgia 2022, 42, 966–980. [Google Scholar] [CrossRef] [PubMed]
- Dussor, G. New discoveries in migraine mechanisms and therapeutic targets. Curr. Opin. Physiol. 2019, 11, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Zobdeh, F.; Kraiem, A.B.; Attwood, M.M.; Chubarev, V.N.; Tarasov, V.V.; Schiöth, H.B.; Mwinyi, J. Pharmacological treatment of migraine: Drug classes, mechanisms of action, clinical trials and new treatments. Br. J. Pharmacol. 2021, 178, 4588–4607. [Google Scholar] [CrossRef]
- Diener, H.C.; Gaul, C.; Lehmacher, W.; Weiser, T. Aspirin, paracetamol (acetaminophen) and caffeine for the treatment of acute migraine attacks: A systemic review and meta-analysis of randomized placebo-controlled trials. Eur. J. Neurol. 2022, 29, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Derry, S.; Moore, R.A. Paracetamol (acetaminophen) with or without an antiemetic for acute migraine headaches in adults. Cochrane Database Syst. Rev. 2013, 2013, CD008040. [Google Scholar] [CrossRef]
- Holland, S.; Silberstein, S.D.; Freitag, F.; Dodick, D.W.; Argoff, C.; Ashman, E.; Quality Standards Subcommittee of the American Academy of Neurology and the American Headache Society. Evidence-based guideline update: NSAIDs and other complementary treatments for episodic migraine prevention in adults: Report of the Quality Standards Subcommittee of the American Academy of Neurology and the American Headache Society. Neurology 2012, 78, 1346–1353. [Google Scholar] [CrossRef] [Green Version]
- Lipton, R.B.; Diener, H.-C.; Robbins, M.S.; Garas, S.Y.; Patel, K. Caffeine in the management of patients with headache. J. Headache Pain 2017, 18, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilks, S. Lectures on Diseases of the Nervous System; J & A Churchill: London, UK, 1878; p. 432. [Google Scholar]
- Doenicke, A.; Brand, J.; Perrin, V. Possible benefit of GR43175, a novel 5-HT1-like receptor agonist, for the acute treatment of severe migraine. Lancet 1988, 331, 1309–1311. [Google Scholar] [CrossRef]
- Peck, J.; Urits, I.; Zeien, J.; Hoebee, S.; Mousa, M.; Alattar, H.; Kaye, A.D.; Viswanath, O. A Comprehensive Review of Over-the-counter Treatment for Chronic Migraine Headaches. Curr. Pain Headache Rep. 2020, 24, 19. [Google Scholar] [CrossRef] [PubMed]
- Tfelt-Hansen, P.C. Delayed absorption of many (paracetamol, aspirin, other NSAIDs and zolmitriptan) but not all (sumatriptan, rizatriptan) drugs during migraine attacks and most likely normal gastric emptying outside attacks. A review. Cephalalgia 2017, 37, 892–901. [Google Scholar] [CrossRef] [PubMed]
- Tfelt-Hansen, P.; Hougaard, A. Sumatriptan: A review of its pharmacokinetics, pharmacodynamics and efficacy in the acute treatment of migraine. Expert Opin. Drug Metab. Toxicol. 2013, 9, 91–103. [Google Scholar] [CrossRef]
- Kirthi, V.; Derry, S.; Moore, R.A. Aspirin with or without an antiemetic for acute migraine headaches in adults. Cochrane Database Syst Rev. 2013, 2013, CD008041. [Google Scholar] [CrossRef]
- Hou, M.; Liu, H.; Li, Y.; Xu, L.; He, Y.; Lv, Y.; Zheng, Q.; Li, L. Efficacy of triptans for the treatment of acute migraines: A quantitative comparison based on the dose-effect and time-course characteristics. Eur. J. Clin. Pharmacol. 2019, 75, 1369–1378. [Google Scholar] [CrossRef] [PubMed]
- Golikhatir, I.; Cheraghmakani, H.; Bozorgi, F.; Jahanian, F.; Sazgar, M.; Montazer, S.H. The efficacy and safety of prochlorperazine in patients with acute migraine: A systematic review and meta-analysis. Headache 2019, 59, 682–700. [Google Scholar] [CrossRef] [PubMed]
- Tepper, S.J.; Johnstone, M.R. Breath-powered sumatriptan dry nasal powder: An intranasal medication delivery system for acute treatment of migraine. Med. Devices 2018, 11, 147–156. [Google Scholar] [CrossRef]
- Derry, C.J.; Derry, S.; Moore, R.A. Sumatriptan (subcutaneous route of administration) for acute migraine attacks in adults. Cochrane Database Syst. Rev. 2012, 2012, CD009665. [Google Scholar] [CrossRef] [PubMed]
- Eadie, M.J. Clinically significant drug interactions with agents specific for migraine attacks. CNS Drugs 2001, 15, 105–118. [Google Scholar] [CrossRef]
- Yang, C.P.; Liang, C.S.; Chang, C.M.; Yang, C.C.; Shih, P.H.; Yau, Y.C.; Tang, K.T.; Wang, S.J. Comparison of new pharmacologic agents with triptans for treatment of migraine: A systematic review and meta-analysis. JAMA Netw. Open 2021, 4, e2128544. [Google Scholar] [CrossRef]
- Cohen, F.; Yuan, H. Role of atogepant in the treatment of episodic migraines: Clinical perspectives and considerations. Ther. Clin. Risk Manag. 2022, 18, 447–456. [Google Scholar] [CrossRef]
- Marmura, M.J.; Silberstein, S.D.; Schwedt, T.J. The acute treatment of migraine in adults: The American Headache Society evidence assessment of migraine pharmacotherapies. Headache 2015, 55, 3–20. [Google Scholar] [CrossRef] [PubMed]
- VanderPluym, J.H.; Halker Singh, R.B.; Urtecho, M.; Morrow, A.S.; Nayfeh, T.; Torres Roldan, V.D.; Farah, M.H.; Hasan, B.; Saadi, S.; Shah, S.; et al. Acute treatments for episodic migraine in adults: A systematic review and meta-analysis. JAMA 2021, 325, 2357–2369. [Google Scholar] [CrossRef] [PubMed]
- Goadsby, P.J. Bench to bedside advances in the 21st century for primary headache disorders: Migraine treatments for migraine patients. Brain 2016, 139 Pt 10, 2571–2577. [Google Scholar] [CrossRef]
- Karsan, N.; Goadsby, P.J. New oral drugs for migraine. CNS Drugs 2022, 36, 933–949. [Google Scholar] [CrossRef] [PubMed]
- Greco, R.; Demartini, C.; Zanaboni, A.M.; Francavilla, M.; De Icco, R.; Ahmad, L.; Tassorelli, C. The endocannabinoid system and related lipids as potential targets for the treatment of migraine-related pain. Headache 2022, 62, 227–240. [Google Scholar] [CrossRef] [PubMed]
- Kokoti, L.; Al-Karagholi, M.A.; Ashina, M. Latest insights into the pathophysiology of migraine: The ATP-sensitive potassium channels. Curr. Pain Headache Rep. 2020, 24, 77. [Google Scholar] [CrossRef]
- Deighton, A.M.; Harris, L.A.; Johnston, K.; Hogan, S.; Quaranta, L.A.; L’Italien, G.; Coric, V. The burden of medication overuse headache and patterns of switching and discontinuation among triptan users: A systematic literature review. BMC Neurol. 2021, 21, 425. [Google Scholar] [CrossRef]
- Piechal, A.; Blecharz-Klin, K.; Mirowska-Guzel, D. Dihydroergotamine (DHE). Is there a place for its use? J. Pre-Clin. Clin. Res. 2018, 12, 149–152. [Google Scholar] [CrossRef]
- Biglione, B.; Gitin, A.; Gorelick, P.B.; Hennekens, C. Aspirin in the treatment and prevention of migraine headaches: Possible additional clinical options for primary healthcare providers. Am. J. Med. 2019, 133, 412–416. [Google Scholar] [CrossRef]
- Baena, C.P.; D’Amico, R.C.; Slongo, H.; Brunoni, A.R.; Goulart, A.C.; Benseñor, I. The effectiveness of aspirin for migraine prophylaxis: A systematic review. Sao Paulo Med. J. 2017, 135, 42–49. [Google Scholar] [CrossRef]
- Sacco, S.; Amin, F.M.; Ashina, M.; Bendtsen, L.; Deligianni, C.I.; Gil-Gouveia, R.; Katsarava, Z.; MaassenVanDenBrink, A.; Martelletti, P.; Mitsikostas, D.D.; et al. European Headache Federation guideline on the use of monoclonal antibodies targeting the calcitonin gene related peptide pathway for migraine prevention—2022 Update. J. Headache Pain 2022, 23, 67. [Google Scholar] [CrossRef]
- Hou, M.; Xing, H.; Cai, Y.; Li, B.; Wang, X.; Li, P.; Hu, X.; Chen, J. The effect and safety of monoclonal antibodies to calcitonin gene-related peptide and its receptor on migraine: A systematic review and meta-analysis. J. Headache Pain 2017, 18, 42. [Google Scholar] [CrossRef] [Green Version]
- Deng, H.; Li, G.G.; Nie, H.; Feng, Y.Y.; Guo, G.Y.; Guo, W.L.; Tang, Z.P. Efficacy and safety of calcitonin-gene-related peptide binding monoclonal antibodies for the preventive treatment of episodic migraine—An updated systematic review and meta-analysis. BMC Neurol. 2020, 20, 57. [Google Scholar] [CrossRef] [PubMed]
- Freitag, F.G. Preventative treatment for migraine and tension-type headaches: Do drugs having effects on muscle spasm and tone have a role? CNS Drugs 2003, 17, 373–381. [Google Scholar] [CrossRef]
- Thompson, D.F.; Saluja, H.S. Prophylaxis of migraine headaches with riboflavin: A systematic review. J. Clin. Pharm. Ther. 2017, 42, 394–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamanaka, G.; Suzuki, S.; Morishita, N.; Takeshita, M.; Kanou, K.; Takamatsu, T.; Morichi, S.; Ishida, Y.; Watanabe, Y.; Go, S.; et al. Experimental and Clinical Evidence of the Effectiveness of Riboflavin on Migraines. Nutrients 2021, 13, 2612. [Google Scholar] [CrossRef] [PubMed]
- Herd, C.P.; Tomlinson, C.L.; Rick, C.; Scotton, W.J.; Edwards, J.; Ives, N.; Clarke, C.E.; Sinclair, A. Botulinum toxins for the prevention of migraine in adults. Cochrane Database Syst Rev. 2018, 6, CD011616. [Google Scholar] [CrossRef]
- Frank, F.; Ulmer, H.; Sidoroff, V.; Broessner, G. CGRP-antibodies, topiramate and botulinum toxin type A in episodic and chronic migraine: A systematic review and meta-analysis. Cephalalgia 2021, 41, 1222–1239. [Google Scholar] [CrossRef]
- Overeem, L.H.; Raffaelli, B.; Mecklenburg, J.; Kelderman, T.; Neeb, L.; Reuter, U. Indirect Comparison of Topiramate and Monoclonal Antibodies Against CGRP or Its Receptor for the Prophylaxis of Episodic Migraine: A Systematic Review with Meta-Analysis. CNS Drugs 2021, 35, 805–820. [Google Scholar] [CrossRef]
- Vajda, F.J.E.; Graham, J.E.; Hitchcock, A.A.; Lander, C.M.; O’Brien, T.J.; Eadie, M.J. Antiepileptic drugs and foetal malformation: Analysis of 20 years of data in a pregnancy register. Seizure 2019, 65, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Tomson, T.; Battino, D.; Bonizzoni, E.; Craig, J.; Lindhout, D.; Sabers, A.; Perucca, E.; Vajda, F.; EURAP Study Group. Dose-dependent risk of malformations with antiepileptic drugs: An analysis of data from the EURAP epilepsy and pregnancy registry. Lancet Neurol. 2011, 10, 609–617. [Google Scholar] [CrossRef]
- Rudnick, G.; Bencuya, R.; Nelson, P.J.; Zito, R.A.J. Inhiibition of platelet serotonin transport by propranolol. Mol. Pharmacol. 1981, 20, 118–123. [Google Scholar] [PubMed]
- Shields, K.G.; Goadsby, P.J. Propranolol modulates trigeminovascular responses in thalamic ventroposteromedial nucleus: A role in migraine? Brain 2005, 128 Pt 1, 86–97. [Google Scholar] [CrossRef] [Green Version]
- Melo-Carrillo, A.; Strassman, A.M.; Schain, A.J.; Adams, A.M.; Brin, M.F.; Burstein, R. Combined onabotulinumtoxinA/atogepant treatment blocks activation/sensitization of high-threshold and wide-dynamic range neurons. Cephalalgia 2021, 41, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Cohen, F.; Armand, C.; Lipton, R.B.; Vollbracht, S. Efficacy and tolerability of calcitonin gene-related peptide-targeted monoclonal antibody medications as add-on therapy to onabotulinumtoxinA in patients with chronic migraine. Pain Med. 2021, 22, 1857–1863. [Google Scholar] [CrossRef]
- Rainero, I.; Roveta, F.; Vacca, A.; Noviello, C.; Rubino, E. Migraine pathways and the identification of novel therapeutic targets. Expert Opin. Ther. Targets 2020, 24, 245–253. [Google Scholar] [CrossRef] [PubMed]
Simple Analgesics |
COX inhibitors, e.g., |
|
Specifics |
5HT1B/1D agonists |
|
5HT1F agonists |
|
CGRP antagonists (gepants) |
|
Beta-Adrenoceptor Blockers |
|
5-HT2 antagonists and antihistamines |
|
5-HT reuptake inhibitors |
|
Ca2+ channel blockers |
|
Antihypertensives |
|
Antiseizure medications |
|
CGRP antagonists |
|
Onabotulinum toxin A |
Miscellaneous agents |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eadie, M. Potentially Remediable Shortcomings in the Contemporary Drug Treatment of Migraine. Future Pharmacol. 2022, 2, 579-594. https://doi.org/10.3390/futurepharmacol2040035
Eadie M. Potentially Remediable Shortcomings in the Contemporary Drug Treatment of Migraine. Future Pharmacology. 2022; 2(4):579-594. https://doi.org/10.3390/futurepharmacol2040035
Chicago/Turabian StyleEadie, Mervyn. 2022. "Potentially Remediable Shortcomings in the Contemporary Drug Treatment of Migraine" Future Pharmacology 2, no. 4: 579-594. https://doi.org/10.3390/futurepharmacol2040035
APA StyleEadie, M. (2022). Potentially Remediable Shortcomings in the Contemporary Drug Treatment of Migraine. Future Pharmacology, 2(4), 579-594. https://doi.org/10.3390/futurepharmacol2040035