Single Cell Plant Model of Equisetum arvense for the Study Antihistamine Effects of Azulene and Sesquiterpene Lactones
Abstract
:1. Introduction
2. Materials and Methods
2.1. Objects of Research
2.2. Cultivation of Microspores
2.3. Determination of Histamine
2.4. Observation and Measurement of Cell Fluorescence
2.5. Statistical Analysis
2.6. Sources of Azulene and Sesquiterpene Lactones-Proazulenes
3. Results and Discussion
3.1. Autofluorescence of Germinating Cells with Sesquiterpenes
3.2. Formation and Estimation of Fluorescent Histamine Product
3.3. Screening of Antihistamine Features of Azulene and Proazulenes as Possible Cellular Protectors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roshchina, V.V. Biomediators in Plants. Acetylcholine and Biogenic Amines; Biological Center of USSR Academy of Sciences: Pushchino, Russia, 1991; 192p. [Google Scholar]
- Roshchina, V.V. Neurotransmitters in Plant Life; Science Publ.: Enfield, CT, USA; Plymouth, UK, 2001; 283p. [Google Scholar]
- Roshchina, V.V. Evolutionary considerations of neurotransmitters in microbial, plant and animal cells. In Microbial Endocrinology; Interkingdom Signaling in Infectious Disease and Health; Lyte, M., Freestone, P.P.E., Eds.; Springer: New York, NY, USA; Berlin, Germany, 2010; pp. 17–52. [Google Scholar]
- Roshchina, V.V. Inter- and intracellular signaling in plant cells with participation of neurotransmitters (Biomediators). In Neurotransmitters in Plants: Perspectives and Applications; Ramakrishna, A., Roshchina, V.V., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 147–180. [Google Scholar]
- Konovalov, D.A. Neurotransmitters in medicinal plants. In Neurotransmitters in Plants: Perspectives and Applications; Ramakrishna, A., Roshchina, V.V., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 331–356. [Google Scholar]
- Roshchina, V.V.; Karnaukhov, V.N. The fluorescence analysis of the medicinal drugs’ interaction with unicellular biosensors. Pharmacia 2010, 3, 43–46. [Google Scholar]
- Roshchina, V.V. Model Systems to Study Excretory Function of Higher Plants; Springer: Dordrecht, The Netherlands; Berlin/Heidelberg, Germany, 2014; 220p. [Google Scholar]
- Roshchina, V.V. The Fluorescence Methods to Study Neurotransmitters (Biomediators) in Plant Cells. J. Fluoresc. 2016, 26, 1029–1043. [Google Scholar] [CrossRef] [PubMed]
- Roshchina, V.V. Fluorescence of Living Cells and Phytopreparations; CRC Press: Boca Raton, FL, USA, 2020; 212p. [Google Scholar]
- Roshchina, V.V.; Yashin, V.A.; Kuchin, A.V. Fluorescent analysis for bioindication of ozone on unicellular models. J. Fluoresc. 2015, 25, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Rybalko, K.S. Natural Sesquiterpene Lactones; Medicine; USSR: Moscow, Russia, 1978; 320p. [Google Scholar]
- Konovalov, D.A. Natural azulenes. Rastit. Resur. (Plant Resour.) 1995, 31, 101–132. [Google Scholar]
- Roshchina, V.V.; Mel’nikova, E.V.; Gordon, R.Y.; Konovalov, D.A.; Kuzin, A.M. A study of the radioprotective activity of proazulenes using a chemosensory model of Hippeastrum hybridum pollen. Dokl. Biophys. 1998, 358–360, 20–23. [Google Scholar]
- Lysenko, L.V. Anti-inflammatory effect of azulene of eucalyptus oil. Farmakol. Toksikol. 1967, 30, 341–343. [Google Scholar]
- Spiridonov, N.A.; Konovalov, D.A.; Arkhipov, V.V. Cytotoxicity of some Russian ethnomedicinal plants and plant compounds. Phytother. Res. 2005, 19, 428–432. [Google Scholar] [CrossRef]
- Roshchina, V.V.; Yashin, V.A.; Vikhlyantsev, I.M. Fluorescence of plant microspores as biosensors. Biochem. (Mosc.) Suppl. Ser. A Membr. Cell Biol. 2012, 6, 105–112. [Google Scholar] [CrossRef]
- Roshchina, V.V.; Yashin, V.A. Neurotransmitters catecholamines and histamine in allelopathy: Plant cells as models in fluorescence microscopy. Allelopath. J. 2014, 34, 1–16. [Google Scholar]
- Roshchina, V.V.; Yashin, V.A.; Kuchin, A.V.; Kulakov, V.I. Fluorescent analysis of catecholamines and histamine in plant single cells. Int. J. Biochem. Photon. 2014, 185, 344–351. [Google Scholar]
- Tobinaga, S.; Takeuch, N.; Kasama, T.; Yamashita, J.; Aida, Y.; Kaneko, Y. Anti-histaminic and anti-allergic principles of Petasites japonicus Maxim. Chem. Pharm. Bull. 1983, 31, 745–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, C.; Choi, E.J.; Yoo, G.S.; Kim, K.M.; Ryu, S.Y. Desacetylmatricarin, an anti-allergic component from Taraxacum platycarpum. Planta Med. 1998, 64, 577–578. [Google Scholar] [CrossRef] [PubMed]
- Yae, E.; Yahara, S.; El-Aasr, M.; Ikeda, T.; Yoshimitsu, H.; Masuoka, C.; Nohara, T. Studies on the constituents of whole plants of Youngia japonica. Chem. Pharm. Bull. 2009, 57, 719–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.P.; Kang, S.; Park, S.J.; Choi, Y.W.; Lee, Y.G.; Im, D.S. Anti-allergic and anti-inflammatory effects of bakkenolide B isolated from Petasites japonicus leaves. J. Ethnopharmacol. 2013, 148, 890–894. [Google Scholar] [CrossRef]
- Choi, Y.W.; Lee, K.P.; Kim, J.M.; Kang, S.; Park, S.J.; Lee, J.M.; Im, D.S. Petatewalide B, a novel compound from Petasites japonicus with anti-allergic activity. J. Ethnopharmacol. 2016, 178, 17–24. [Google Scholar] [CrossRef]
- Roshchina, V.V.; Melnikova, E.V.; Yashin, V.A.; Karnaukhov, V.N. Autofluorescence of intact spores of horsetail Equisetum arvense L. during their development. Biophysics 2002, 47, 318–324. [Google Scholar]
- Roshchina, V.V. Cellular models to study the allelopathic mechanisms. Allelopath. J. 2004, 13, 3–16. [Google Scholar]
- Cross, S.A.M.; Even, S.W.B.; Rost, F.W.D. A study of the methods available for the cytochemical localization of histamine by fluorescence induced with o–phthalaldehyde or acetaldehyde. Histochem. J. 1971, 3, 471–476. [Google Scholar] [CrossRef]
- Markova, L.N.; Buznikov, G.A.; Kovačević, N.; Rakić, L.; Salimova, N.B.; Volina, E.V. Histochemical study of biogenic monoamines in early (Prenervous) and late embryos of sea urchins. Int. J. Dev. Neurosci. 1985, 3, 493–499. [Google Scholar] [CrossRef]
- Roshchina, V.V. Fluorescing World of Plant Secreting Cells; Science Publishers: Einfield, CT, USA; Jersey, NJ, USA; Plymouth, MA, USA, 2008; 338p. [Google Scholar]
- Lee, B.K.; Park, S.J.; Nam, S.Y.; Kang, S.; Hwang, J.; Lee, S.J.; Im, D.S. Anti-allergic effects of sesquiterpene lactones Saussurea costus (Falc.) Lipsch. determined using in vivo and in vitro experiments. J. Ethnopharmacol. 2018, 213, 256–261. [Google Scholar] [CrossRef]
- Pyun, H.; Kang, U.; Seo, E.K.; Lee, K. Dehydrocostus lactone, a sesquiterpene from Saussurea lappa Clarke, suppresses allergic airway inflammation by binding to dimerized translationally controlled tumor protein. Phytomedicine 2018, 43, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Bakun, P.; Czarczynska-Goslinska, B.; Goslinski, T.; Lijewski, S. In vitro and in vivo biological activities of azulene derivatives with potential applications in medicine. Med. Chem. Res. 2021, 30, 834–846. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Xie, L.; Liu, K.; Zhang, X.; Wang, X.; Dai, X.; Liang, Y.; Cao, Y.; Li, X. Bilobalide: A review of its pharmacology, pharmacokinetics, toxicity, and safety. Phytother. Res. 2021, 35, 6114–6130. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roshchina, V.V.; Konovalov, D.A. Single Cell Plant Model of Equisetum arvense for the Study Antihistamine Effects of Azulene and Sesquiterpene Lactones. Future Pharmacol. 2022, 2, 126-134. https://doi.org/10.3390/futurepharmacol2020010
Roshchina VV, Konovalov DA. Single Cell Plant Model of Equisetum arvense for the Study Antihistamine Effects of Azulene and Sesquiterpene Lactones. Future Pharmacology. 2022; 2(2):126-134. https://doi.org/10.3390/futurepharmacol2020010
Chicago/Turabian StyleRoshchina, Victoria V., and Dmitrii A. Konovalov. 2022. "Single Cell Plant Model of Equisetum arvense for the Study Antihistamine Effects of Azulene and Sesquiterpene Lactones" Future Pharmacology 2, no. 2: 126-134. https://doi.org/10.3390/futurepharmacol2020010
APA StyleRoshchina, V. V., & Konovalov, D. A. (2022). Single Cell Plant Model of Equisetum arvense for the Study Antihistamine Effects of Azulene and Sesquiterpene Lactones. Future Pharmacology, 2(2), 126-134. https://doi.org/10.3390/futurepharmacol2020010