Sulforaphane Prevents Cadmium Chloride-Induced Reproductive Toxicity in Caenorhabditis elegans
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. C. Elegans Strains and Maintenance
2.3. Experimental Design
2.4. Survival
2.5. Number of Eggs Laid
2.6. Progeny Quality
2.7. Size and Development of C. Elegans
2.8. Expression of Glutathione S-Transferase-4 (GST-4)
2.9. Statistical Analysis
3. Results
3.1. SFN Prevented CdCl2-Induced Reduction in Survival
3.2. SFN Prevented CdCl2-Induced Alterations in Egg Deposition
3.3. SFN Prevents the Reduction in Size and Developmental Delay in C. elegans Exposed to CdCl2
3.4. GST-4 Expression Is Not Associated with the Protective Effect of SFN Against CdCl2-Induced Damage
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of Variance |
ARE | Antioxidant Response Element |
C. elegans | Caenorhabditis elegans |
CAT | Catalase |
Cd | Cadmium |
CdCl2 | Cadmium chloride |
CGC | Caenorhabditis Genetics Center |
DMSO | Dimethyl sulfoxide |
GFP | Green Fluorescent Protein |
GST-4 | Glutathione S-transferase 4 |
IIS | Insulin/IGF-like Signaling |
KCl | Potassium chloride |
K2HPO4 | Dibasic potassium phosphate |
KH2PO4 | Monobasic potassium phosphate |
LB | Lysogeny Broth |
LC50 | Lethal Concentration 50 |
MgSO4 | Magnesium sulfate heptahydrate |
NaCl | Sodium chloride |
NaClO | Sodium hypochlorite |
Na2HPO4 | Disodium phosphate |
NaOH | Sodium hydroxide |
NGM | Nematode Growth Medium |
Nrf2 | Nuclear factor erythroid 2–related factor 2 |
OD600 | Optical Density at 600 nm |
PAIP | Research and Graduate Support Program |
ROI | Region of Interest |
ROS | Reactive oxygen species |
SEM | Standard Error of the Mean |
SFN | Sulforaphane |
SOD | Superoxide dismutase |
References
- Charkiewicz, A.E.; Omeljaniuk, W.J.; Nowak, K.; Garley, M.; Nikliński, J. Cadmium Toxicity and Health Effects—A Brief Summary. Molecules 2023, 28, 6620. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Reynolds, M. Cadmium Exposure in Living Organisms: A Short Review. Sci. Total Environ. 2019, 678, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Rafati Rahimzadeh, M.; Rafati Rahimzadeh, M.; Kazemi, S.; Moghadamnia, A.-A. Cadmium Toxicity and Treatment: An Update. Casp. J. Intern. Med. 2017, 8, 135–145. [Google Scholar] [CrossRef]
- Tägt, J.; Helte, E.; Donat-Vargas, C.; Larsson, S.C.; Michaëlsson, K.; Wolk, A.; Vahter, M.; Kippler, M.; Åkesson, A. Long-Term Cadmium Exposure and Fractures, Cardiovascular Disease, and Mortality in a Prospective Cohort of Women. Environ. Int. 2022, 161, 107114. [Google Scholar] [CrossRef]
- Fatima, G.; Raza, A.M.; Hadi, N.; Nigam, N.; Mahdi, A.A. Cadmium in Human Diseases: It’s More than Just a Mere Metal. Indian J. Clin. Biochem. 2019, 34, 371–378. [Google Scholar] [CrossRef]
- de Angelis, C.; Galdiero, M.; Pivonello, C.; Salzano, C.; Gianfrilli, D.; Piscitelli, P.; Lenzi, A.; Colao, A.; Pivonello, R. The Environment and Male Reproduction: The Effect of Cadmium Exposure on Reproductive Function and Its Implication in Fertility. Reprod. Toxicol. 2017, 73, 105–127. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, A. Cadmium Toxicity: Effects on Human Reproduction and Fertility. Rev. Environ. Health 2019, 34, 327–338. [Google Scholar] [CrossRef]
- Zhao, L.-I.; Ru, Y.-F.; Liu, M.; Tang, J.-N.; Zheng, J.-F.; Wu, B.; Gu, Y.-H.; Shi, H.-J. Reproductive Effects of Cadmium on Sperm Function and Early Embryonic Development In Vitro. PLoS ONE 2017, 12, e0186727. [Google Scholar] [CrossRef]
- Liu, J.; Wang, E.; Jing, W.; Dahms, H.-U.; Murugan, K.; Wang, L. Mitigative Effects of Zinc on Cadmium-Induced Reproductive Toxicity in the Male Freshwater Crab Sinopotamon Henanense. Environ. Sci. Pollut. Res. 2020, 27, 16282–16292. [Google Scholar] [CrossRef]
- Wang, S.; Chu, Z.; Zhang, K.; Miao, G. Cadmium-Induced Serotonergic Neuron and Reproduction Damages Conferred Lethality in the Nematode Caenorhabditis Elegans. Chemosphere 2018, 213, 11–18. [Google Scholar] [CrossRef]
- Henson, M.C.; Chedrese, P.J. Endocrine Disruption by Cadmium, a Common Environmental Toxicant with Paradoxical Effects on Reproduction. Exp. Biol. Med. 2004, 229, 383–392. [Google Scholar] [CrossRef]
- Vanduchova, A.; Anzenbacher, P.; Anzenbacherova, E. Isothiocyanate from Broccoli, Sulforaphane, and Its Properties. J. Med. Food 2019, 22, 121–126. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, X.; Liu, Y.; Yang, X. Sulforaphane and Ophthalmic Diseases. Food Sci. Nutr. 2024, 12, 5296–5311. [Google Scholar] [CrossRef] [PubMed]
- Alkharashi, N.A.O.; Periasamy, V.S.; Athinarayanan, J.; Alshatwi, A.A. Sulforaphane Mitigates Cadmium-Induced Toxicity Pattern in Human Peripheral Blood Lymphocytes and Monocytes. Environ. Toxicol. Pharmacol. 2017, 55, 223–239. [Google Scholar] [CrossRef]
- Alkharashi, N.A.O.; Periasamy, V.S.; Athinarayanan, J.; Alshatwi, A.A. Assessment of Sulforaphane-Induced Protective Mechanisms against Cadmium Toxicity in Human Mesenchymal Stem Cells. Environ. Sci. Pollut. Res. 2018, 25, 10080–10089. [Google Scholar] [CrossRef]
- He, Q.; Luo, Y.; Xie, Z. Sulforaphane Ameliorates Cadmium Induced Hepatotoxicity through the Up-Regulation of /Nrf2/ARE Pathway and the Inactivation of NF-ΚB. J. Funct. Foods 2021, 77, 104297. [Google Scholar] [CrossRef]
- Hernández-Cruz, E.Y.; Aparicio-Trejo, O.E.; Eugenio-Pérez, D.; Juárez-Peredo, E.; Zurita-León, M.; Valdés, V.J.; Pedraza-Chaverri, J. Sulforaphane Exposure Prevents Cadmium-Induced Toxicity and Mitochondrial Dysfunction in the Nematode Caenorhabditis Elegans by Regulating the Insulin/Insulin-like Growth Factor Signaling (IIS) Pathway. Antioxidants 2024, 13, 584. [Google Scholar] [CrossRef]
- Hunt, P.R.; The, C. Elegans Model in Toxicity Testing. J. Appl. Toxicol. 2017, 37, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, A.; Tissenbaum, H.A. Reproduction and Longevity: Secrets Revealed by C. Elegans. Trends Cell Biol. 2007, 17, 65–71. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Li, P.; Zhou, Q.; Zheng, X.; Gu, Q. Caenorhabditis Elegans: A Nature Present for Advanced Food Science. Curr. Opin. Food Sci. 2023, 49, 100971. [Google Scholar] [CrossRef]
- Hernández-Cruz, E.Y.; Eugenio-Pérez, D.; Ramírez-Magaña, K.J.; Pedraza-Chaverri, J. Effects of Vegetal Extracts and Metabolites against Oxidative Stress and Associated Diseases: Studies in Caenorhabditis Elegans. ACS Omega 2023, 8, 8936–8959. [Google Scholar] [CrossRef]
- Qu, Z.; Liu, L.; Wu, X.; Guo, P.; Yu, Z.; Wang, P.; Song, Y.; Zheng, S.; Liu, N. Cadmium-Induced Reproductive Toxicity Combined with a Correlation to the Oogenesis Process and Competing Endogenous RNA Networks Based on a Caenorhabditis Elegans Model. Ecotoxicol. Environ. Saf. 2023, 268, 115687. [Google Scholar] [CrossRef]
- Huang, X.; Ye, Q.; Dai, W.; Zheng, J.; Li, Y.; Wang, C.; Luo, Z.; Yang, J.; Zhuo, W.; Wan, Q.-L. Cadmium Exposure Induces Multigenerational Inheritance of Germ Cell Apoptosis and Fertility Suppression in Caenorhabditis Elegans. Environ. Int. 2024, 191, 108952. [Google Scholar] [CrossRef]
- Pestov, N.B.; Shakhparonov, M.I.; Korneenko, T.V. Matricide in Caenorhabditis Elegans as an Example of Programmed Death of an Animal Organism: The Role of Mitochondrial Oxidative Stress. Russ. J. Bioorg. Chem. 2011, 37, 634–639. [Google Scholar] [CrossRef]
- Pei, C.; Sun, L.; Zhao, Y.; Ni, S.; Nie, Y.; Wu, L.; Xu, A. Enhanced Uptake of Arsenic Induces Increased Toxicity with Cadmium at Non-Toxic Concentrations on Caenorhabditis Elegans. Toxics 2022, 10, 133. [Google Scholar] [CrossRef]
- Popham, J.D.; Webster, J.M. Cadmium Toxicity in the Free-Living Nematode, Caenorhabditis Elegans. Environ. Res. 1979, 20, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Brenner, S. The Genetics of Caenorhabditis Elegans. Genetics 1974, 77, 71–94. [Google Scholar] [CrossRef] [PubMed]
- Leiers, B.; Kampkötter, A.; Grevelding, C.G.; Link, C.D.; Johnson, T.E.; Henkle-Dührsen, K. A Stress-Responsive Glutathione S-Transferase Confers Resistance to Oxidative Stress in Caenorhabditis Elegans. Free Radic. Biol. Med. 2003, 34, 1405–1415. [Google Scholar] [CrossRef]
- Ke, T.; Santamaría, A.; Tinkov, A.A.; Bornhorst, J.; Aschner, M. Generating Bacterial Foods in Toxicology Studies with Caenorhabditis Elegans. Curr. Protoc. Toxicol. 2020, 84, e94. [Google Scholar] [CrossRef]
- Stiernagle, T. Maintenance of C. elegans. In WormBook: The Online Review of C. elegans Biology [Internet]; WormBook: Pasadena, CA, USA, 2006. Available online: https://www.ncbi.nlm.nih.gov/books/NBK19649/ (accessed on 20 May 2025).
- Donkin, S.G.; Williams, P.L. Influence of Developmental Stage, Salts and Food Presence on Various End Points Using Caenorhabditis Elegans for Aquatic Toxicity Testing. Environ. Toxicol. Chem. 1995, 14, 2139–2147. [Google Scholar] [CrossRef]
- Song, S.; Han, Y.; Zhang, Y.; Ma, H.; Zhang, L.; Huo, J.; Wang, P.; Liang, M.; Gao, M. Protective Role of Citric Acid against Oxidative Stress Induced by Heavy Metals in Caenorhabditis Elegans. Environ. Sci. Pollut. Res. 2019, 26, 36820–36831. [Google Scholar] [CrossRef]
- Qi, Z.; Ji, H.; Le, M.; Li, H.; Wieland, A.; Bauer, S.; Liu, L.; Wink, M.; Herr, I. Sulforaphane Promotes, C. Elegans Longevity and Healthspan via DAF-16/DAF-2 Insulin/IGF-1 Signaling. Aging 2021, 13, 1649–1670. [Google Scholar] [CrossRef]
- Park, H.-E.H.; Jung, Y.; Lee, S.-J.V. Survival Assays Using Caenorhabditis Elegans. Mol. Cells 2017, 40, 90–99. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Y.; Zhang, Z. Age-Dependent Effects of Floxuridine (FUdR) on Senescent Pathology and Mortality in the Nematode Caenorhabditis Elegans. Biochem. Biophys. Res. Commun. 2019, 509, 694–699. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Scharf, A.; Pohl, F.; Egan, B.M.; Kocsisova, Z.; Kornfeld, K. Reproductive Aging in Caenorhabditis Elegans: From Molecules to Ecology. Front. Cell Dev. Biol. 2021, 9, 718522. [Google Scholar] [CrossRef] [PubMed]
- Mignerot, L.; Gimond, C.; Bolelli, L.; Bouleau, C.; Sandjak, A.; Boulin, T.; Braendle, C. Natural Variation in the Caenorhabditis Elegans Egg-Laying Circuit Modulates an Intergenerational Fitness Trade-Off. eLife 2024, 12, RP88253. [Google Scholar] [CrossRef]
- Geng, H.-X.; Wang, L. Cadmium: Toxic Effects on Placental and Embryonic Development. Environ. Toxicol. Pharmacol. 2019, 67, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.; Bannigan, J. Cadmium: Toxic Effects on the Reproductive System and the Embryo. Reprod. Toxicol. 2008, 25, 304–315. [Google Scholar] [CrossRef]
- Trent, C.; Tsung, N.; Horvitz, H.R. Egg-Laying Defective Mutants of the Nematode Caenorhabditis Elegans. Genetics 1983, 104, 619–647. [Google Scholar] [CrossRef]
- Roy, D.; Michaelson, D.; Hochman, T.; Santella, A.; Bao, Z.; Goldberg, J.D.; Hubbard, E.J.A. Cell Cycle Features of C. Elegans Germline Stem/Progenitor Cells Vary Temporally and Spatially. Dev. Biol. 2016, 409, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Degraeve, N. Carcinogenic, Teratogenic and Mutagenic Effects of Cadmium. Mutat. Res./Rev. Genet. Toxicol. 1981, 86, 115–135. [Google Scholar] [CrossRef]
- Preez, G.D.; Fourie, H.; Daneel, M.; Miller, H.; Höss, S.; Ricci, C.; Engelbrecht, G.; Zouhar, M.; Wepener, V. Oxygen Consumption Rate of Caenorhabditis Elegans as a High-Throughput Endpoint of Toxicity Testing Using the Seahorse XFe96 Extracellular Flux Analyzer. Sci. Rep. 2020, 10, 4239. [Google Scholar] [CrossRef]
- Carrasco-Pozo, C.; Tan, K.N.; Gotteland, M.; Borges, K. Sulforaphane Protects against High Cholesterol-Induced Mitochondrial Bioenergetics Impairments, Inflammation, and Oxidative Stress and Preserves Pancreatic β-Cells Function. Oxid. Med. Cell Longev. 2017, 2017, 3839756. [Google Scholar] [CrossRef]
- Sohel, M.M.H.; Amin, A.; Prastowo, S.; Linares-Otoya, L.; Hoelker, M.; Schellander, K.; Tesfaye, D. Sulforaphane Protects Granulosa Cells against Oxidative Stress via Activation of NRF2-ARE Pathway. Cell Tissue Res. 2018, 374, 629–641. [Google Scholar] [CrossRef]
- Yang, S.-H.; Long, M.; Yu, L.-H.; Li, L.; Li, P.; Zhang, Y.; Guo, Y.; Gao, F.; Liu, M.-D.; He, J.-B. Sulforaphane Prevents Testicular Damage in Kunming Mice Exposed to Cadmium via Activation of Nrf2/ARE Signaling Pathways. Int. J. Mol. Sci. 2016, 17, 1703. [Google Scholar] [CrossRef] [PubMed]
- Huo, L.; Su, Y.; Xu, G.; Zhai, L.; Zhao, J. Sulforaphane Protects the Male Reproductive System of Mice from Obesity-Induced Damage: Involvement of Oxidative Stress and Autophagy. Int. J. Environ. Res. Public Health 2019, 16, 3759. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, D.; Fan, A.; Zhou, X.; Yang, C.; Zhou, J.; Shen, M.; Liu, H.; Zou, K.; Tao, J. A Novel Effect of Sulforaphane on Promoting Mouse Granulosa Cells Proliferation via the NRF2–TKT Pathway. J. Adv. Res. 2024, 74, 25–41. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, M.; Sharma, M.; Bhatia, M.; Awasthi, Y.C.; Nath, R. Effect of Chronic Cadmium Exposure on Glutathione S-Transferase and Glutathione Peroxidase Activities in Rhesus Monkey: The Role of Selenium. Toxicology 1993, 83, 203–213. [Google Scholar] [CrossRef]
- Espinoza, H.M.; Williams, C.R.; Gallagher, E.P. Effect of Cadmium on Glutathione S-Transferase and Metallothionein Gene Expression in Coho Salmon Liver, Gill and Olfactory Tissues. Aquat. Toxicol. 2012, 110–111, 37–44. [Google Scholar] [CrossRef]
Well | Treatment 1: for 24 h | Treatment 2: Another 24 h |
---|---|---|
Control | Vehicle only | Vehicle only |
DMSO | DMSO (0.01%) | DMSO (0.01%) |
CdCl2 | Vehicle only | CdCl2 (4600 µM) |
* SFN + CdCl2 | SFN (100 µM) | SFN (100 µM) + CdCl2 (4600 µM) |
SFN | SFN (100 µM) | SFN (100 µM) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Cruz, E.Y.; Juárez-Peredo, E.; Avendaño-Briseño, K.A.; Escutia-Martínez, J.; Ramírez-Magaña, K.J.; Gómez-Sierra, T.; Pedraza-Chaverri, J. Sulforaphane Prevents Cadmium Chloride-Induced Reproductive Toxicity in Caenorhabditis elegans. Oxygen 2025, 5, 15. https://doi.org/10.3390/oxygen5030015
Hernández-Cruz EY, Juárez-Peredo E, Avendaño-Briseño KA, Escutia-Martínez J, Ramírez-Magaña KJ, Gómez-Sierra T, Pedraza-Chaverri J. Sulforaphane Prevents Cadmium Chloride-Induced Reproductive Toxicity in Caenorhabditis elegans. Oxygen. 2025; 5(3):15. https://doi.org/10.3390/oxygen5030015
Chicago/Turabian StyleHernández-Cruz, Estefani Yaquelin, Elí Juárez-Peredo, Karla Alejandra Avendaño-Briseño, Jorge Escutia-Martínez, Karla Jaqueline Ramírez-Magaña, Tania Gómez-Sierra, and José Pedraza-Chaverri. 2025. "Sulforaphane Prevents Cadmium Chloride-Induced Reproductive Toxicity in Caenorhabditis elegans" Oxygen 5, no. 3: 15. https://doi.org/10.3390/oxygen5030015
APA StyleHernández-Cruz, E. Y., Juárez-Peredo, E., Avendaño-Briseño, K. A., Escutia-Martínez, J., Ramírez-Magaña, K. J., Gómez-Sierra, T., & Pedraza-Chaverri, J. (2025). Sulforaphane Prevents Cadmium Chloride-Induced Reproductive Toxicity in Caenorhabditis elegans. Oxygen, 5(3), 15. https://doi.org/10.3390/oxygen5030015