Pentoxifylline Enhances Sperm Quality, Reduces Oxidative Stress in Semen, and Decreases Sperm DNA Damage in Men with Asthenozoospermia Undergoing Assisted Reproductive Technology
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Preparation of Pentoxifylline
2.3. Preparation and Incubation of Spermatozoa
2.4. Sperm Motility Assessment
2.5. Sperm Viability Studies
2.6. Measurement of Sperm ROS Production: Nitro Blue Tetrazolium Staining
2.7. Measurement of Sperm ROS Production: Chemiluminescence Assay
2.8. Assessment of DNA Fragmentation by the Comet Assay
2.9. Statistical Analyses
3. Results
3.1. Effect of PTX on Sperm Motility
3.2. Effects of PTX on Sperm Viability
3.3. Effects of PTX on Sperm ROS Production
- By using a colorimetric nitro blue tetrazolium (NBT) test
- By using a chemiluminescent assay
3.4. Effects of PTX In Vitro on Sperm DNA Integrity
3.5. Correlations Between ROS Production with Semen Parameters and sDF
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zegers-Hochschild, F.; Adamson, G.D.; De Mouzon, J.; Ishihara, O.; Mansour, R.; Nygren, K. The International Committee for monitoring assisted reproductive technology (ICMART) and the World Health Organization (WHO) revised the glossary on ART terminology. Hum. Reprod. 2009, 24, 2683–2687. [Google Scholar] [CrossRef] [PubMed]
- Turchi, P. Prevalence, definition, and classification of infertility. In Clinical Management of Male Infertility; Cavallini, G., Beretta, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 5–11. [Google Scholar]
- Jungwirth, A.; Giwercman, A.; Tournaye, H.; Diemer, T.; Kopa, Z.; Dohle, G. European Association of Urology guidelines on male infertility: The 2012 update. Eur. Urol. 2012, 62, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Tournaye, H.; Krausz, C.; Oates, R.D. Novel concepts in the aetiology of male reproductive impairment. Lancet Diabetes Endocrinol. 2017, 5, 544–553. [Google Scholar] [CrossRef]
- Ammar, O.; Mehdi, M.; Muratori, M. Teratozoospermia: Its association with sperm DNA defects, apoptotic alterations, and oxidative stress. Andrology 2020, 8, 1095–1106. [Google Scholar] [CrossRef] [PubMed]
- Oumaima, A.; Tesnim, A.; Zohra, H.; Amira, S.; Ines, Z.; Sana, C.; Intissar, G.; Lobna, E.; Ali, J.; Meriem, M. Investigation on the origin of sperm morphological defects: Oxidative attacks, chromatin immaturity, and DNA fragmentation. Environ. Sci. Pollut. Res. Int. 2018, 25, 13775–13786. [Google Scholar] [CrossRef]
- Delli Muti, N.; Di Paolo, A.; Salvio, G.; Membrino, V.; Ciarloni, A.; Alia, S.; Salvolini, E.; Vignini, A.; Balercia, G. Effect of resveratrol on sperm motility in subjects affected by idiopathic asthenozoospermia: An in vitro study. Tissue Cell 2025, 95, 102857. [Google Scholar] [CrossRef] [PubMed]
- Esteves, S.C.; Spaine, D.M.; Cedenho, A.P. Effects of pentoxifylline treatment before freezing on motility, viability and acrosome status of poor quality human spermatozoa cryopreserved by the liquid nitrogen vapor method. Braz. J. Med. Biol. Res. 2007, 334, 985–992. [Google Scholar] [CrossRef]
- Tash, J.S. Role of cAMP, calcium and protein phosphorylation insperm motility. In Controls of Sperm Motility: Biological and Clinical Aspects; Gagnon, C., Ed.; CRC Press: Boca Raton, FL, USA, 1990; pp. 229–241. [Google Scholar]
- Naz, R.K.; Rajesh, P.B. Role of tyrosine phosphorylation in sperm capacitation/acrosome reaction. Reprod. Biol. Endocrinol. 2004, 2, 75. [Google Scholar] [CrossRef]
- Carrel, D.T.; Aston, K.I. Spermatogenesis: Methods and Protocols; Springer Science + Business Media: New York, NY, USA, 2013. [Google Scholar]
- Nassar, A.; Morshedi, M.; Mahony, M.; Srisombut, C.; Lin, M.H.; Oehninger, S. Pentoxifylline stimulates various sperm motion parameters and cervical mucus penetrability in patients with asthenozoospermia. Andrologia 1999, 31, 9–15. [Google Scholar] [CrossRef]
- Kovacic, B.; Vlaisavljevic, V.; Reljic, M. Clinical use of pentoxifylline for activation of immotile testicular sperm before ICSI in patients with azoospermia. J. Androl. 2006, 27, 45–52. [Google Scholar] [CrossRef]
- Miroslava, M.; Lenka, V.; Petra, A.; Šárka, K.; Markéta, S. Influence of pentoxifylline and caffeine on stallion epididymal sperm motility after thawing. Acta Vet. Brno 2021, 90, 271–276. [Google Scholar] [CrossRef]
- Khalili, M.A.; Vahidi, S.; Fallah-Zadeh, H. The effect of pentoxifylline on motility of spermatozoa from asthenozoospermic samples: Fresh ejaculates, cryopreserved ejaculates, epididymal, and testicular. Middle East Fertil. Soc. J. 2001, 6, 144–151. [Google Scholar]
- Merino, G.; Martínez Chéquer, J.C.; Barahona, E.; Bermúdez, J.A.; Morán, C.; Carranza-Lira, S. Effects of pentoxifylline on sperm motility in normogonadotropic asthenozoospermic men. Arch Androl. 1997, 39, 65–69. [Google Scholar] [CrossRef] [PubMed]
- McKinney, K.A.; Lewis, S.E.; Thompson, W. Persistent effects of pentoxifylline on human sperm motility, after drug removal, in normozoospermic and asthenozoospermic individuals. Andrologia 1994, 26, 235–240. [Google Scholar] [CrossRef]
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen, 5th ed.; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Yovich, J.M.; Edirisinghe, W.R.; Cummings, J.M.; Yovich, J.L. Influence of pentoxifylline in severe male factor infertility. Fertil. Steril. 1990, 53, 715–722. [Google Scholar] [CrossRef]
- Auger, J.; Eustash, F. Standardisation de la classification morphologique des spermatozoïdes humains selon la méthode de David modifiée. Andrologie 2000, 10, 358–373. [Google Scholar] [CrossRef]
- Tunc, O.; Thompson, J.; Tremellen, K. Development of the NBT assay as a marker of sperm oxidative stress. Int. J. Androl. 2010, 33, 13–21. [Google Scholar] [CrossRef]
- Karim, M.M.; Lee, S.H.; Lee, H.S.; Bae, Z.U.; Choi, K.H. A batch chemiluminescence determination of enoxacin using a tris-(1,10-phenanthroline) ruthenium(II)-cerium(IV) system. J. Fluoresc. 2006, 16, 535–540. [Google Scholar] [CrossRef]
- Ammar, O.; Haouas, Z.; Hamouda, B.; Hamdi, H.; Hellara, I.; Jlali, A.; Cheikh, H.B.; Mehdi, M. Relationship between sperm DNA damage with sperm parameters, oxidative markers in teratozoospermic men. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019, 233, 70–75. [Google Scholar] [CrossRef]
- Bongso, T.A.; Ng, S.C.; Mok, H.; Lim, M.N.; Teo, H.L.; Wong, P.C.; Ratnam, S.S. Effect of sperm motility on human in vitro fertilization. Arch. Androl. 1989, 22, 185–190. [Google Scholar] [CrossRef]
- Dai, X.; Lu, Y.; Zhang, M.; Miao, Y.; Zhou, C.; Cui, Z.; Xiong, B. Melatonin improves the fertilization ability of post-ovulatory aged mouse oocytes by stabilizing ovastacin and Juno to promote sperm binding and fusion. Hum. Reprod. 2017, 32, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Cheng, L.; Xia, W.; Liu, X.; Guo, Y.; Yang, X.; Guo, X.; Xu, E.Y. LYPD4, mouse homolog of a human acrosome protein, is essential for sperm fertilizing ability and male fertility†. Biol. Reprod. 2020, 102, 1033–1044. [Google Scholar] [CrossRef]
- Okada, H.; Tatsumi, N.; Kanzaki, M. Formation of reactive oxygen species by spermatozoa from asthenospermic patients: Response to treatment with pentoxifylline. J. Urol. 1997, 157, 2140–2146. [Google Scholar] [CrossRef] [PubMed]
- Imoedemhe, D.A.; Sigue, A.B.; Pacpaco, E.L.; Olazo, A.B. The effect of caffeine on the ability of spermatozoa to fertilize mature human oocytes. J. Assist. Reprod. Genet. 1992, 9, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Ghasemzadeh, A.; Karkon-Shayan, F.; Yousefzadeh, S.; Naghavi-Behzad, M.; Hamdi, K. Study of pentoxifylline effects on motility and viability of spermatozoa from infertile asthenozoospermic males. Niger. Med. J. 2016, 57, 324–328. [Google Scholar]
- Kemal Duru, N.; Morshedi, M.; Oehninger, S. Effects of hydrogen peroxide on DNA and plasma membrane integrity of human spermatozoa. Fertil. Steril. 2000, 74, 1200–1207. [Google Scholar] [CrossRef]
- Aliabadi, E.; Karimi, F.; Talaei-Khozani, T. Effects of L-carnitine and pentoxifylline on carbohydrate distribution of mouse testicular sperm membrane. Iran J. Med. Sci. 2013, 38, 107–115. [Google Scholar]
- Dutta, S.; Sengupta, P.; Roychoudhury, S.; Chakravarthi, S.; Wang, C.W.; Slama, P. Antioxidant Paradox in Male Infertility: ‘A Blind Eye’ on Inflammation. Antioxidants 2022, 11, 167. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Patients with asthenozoospermia N = 30 | Standard Semen Parameters | Mean ± SD |
Age | 34 ± 4.75 | |
BMI | 28.4 ± 4.95 | |
Volume (mL) | 3.45 ± 1.73 | |
Concentration (106/mL) | 39.47 ± 15.45 | |
Total motility (%) | 25.55 ± 8.27 | |
Normal morphology (%) | 18.56 ± 2.91 | |
Leucocyte concentration (106/mL) | 0.47 ± 0.01 | |
Sperm vitality (%) | 75.66 ± 10.35 |
Total Motility (%) | Time Intervals | ||||
---|---|---|---|---|---|
0 | 30 min | 1 h | 2 h | 24 h | |
PTX-untreated | 53 ± 11.44 | 47.47 ± 4.88 | 46 ± 10.7 | 38 ± 9.08 | 17.06 ± 7.6 |
PTX-treated | 68 ± 5.5 | 71.8 ± 23.03 | 55 ± 5 | 42 ± 10.1 | 17 ± 5.09 |
p value | <0.01 | <0.0001 | >0.05 | >0.05 | >0.05 |
% | PTX-Untreated | PTX-Treated | p Value |
---|---|---|---|
Comet I | 25.11 ± 8.98 | 42.29 ± 6.6 | <0.001 |
Comet II | 49.07 ± 5.51 | 43.62 ± 3.1 | >0.05 |
Comet III | 20.9 ± 11.2 | 11.48 ± 8.3 | <0.001 |
Comet IV | 4.9 ± 2.8 | 2.61 ± 1.9 | 0.006 |
Semen Parameters | Sperm ROS Production | |
---|---|---|
PTX-Untreated | PTX-Treated | |
Sperm motility (%) | r = −0.479; p = 0.002 | r = 0.315; p = 0.0164 |
Sperm viability (%) | r = −0.104; p = 0.4357 | r = 0.237; p = 0.0716 |
sDF (%) (Comet class IV) | r = 0.536; p = 0.0001 | r = −0.104; p = 0.0125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ammar, O.; Ben Ali Gannoun, M.; Ajina, T.; Hadj Ali, A.; Boussabbeh, M.; Sallem, A.; Haouas, Z.; Di Tommaso, M.; Mehdi, M. Pentoxifylline Enhances Sperm Quality, Reduces Oxidative Stress in Semen, and Decreases Sperm DNA Damage in Men with Asthenozoospermia Undergoing Assisted Reproductive Technology. Oxygen 2025, 5, 8. https://doi.org/10.3390/oxygen5020008
Ammar O, Ben Ali Gannoun M, Ajina T, Hadj Ali A, Boussabbeh M, Sallem A, Haouas Z, Di Tommaso M, Mehdi M. Pentoxifylline Enhances Sperm Quality, Reduces Oxidative Stress in Semen, and Decreases Sperm DNA Damage in Men with Asthenozoospermia Undergoing Assisted Reproductive Technology. Oxygen. 2025; 5(2):8. https://doi.org/10.3390/oxygen5020008
Chicago/Turabian StyleAmmar, Oumaima, Marwa Ben Ali Gannoun, Tesnim Ajina, Assila Hadj Ali, Manel Boussabbeh, Amira Sallem, Zohra Haouas, Mariarosaria Di Tommaso, and Meriem Mehdi. 2025. "Pentoxifylline Enhances Sperm Quality, Reduces Oxidative Stress in Semen, and Decreases Sperm DNA Damage in Men with Asthenozoospermia Undergoing Assisted Reproductive Technology" Oxygen 5, no. 2: 8. https://doi.org/10.3390/oxygen5020008
APA StyleAmmar, O., Ben Ali Gannoun, M., Ajina, T., Hadj Ali, A., Boussabbeh, M., Sallem, A., Haouas, Z., Di Tommaso, M., & Mehdi, M. (2025). Pentoxifylline Enhances Sperm Quality, Reduces Oxidative Stress in Semen, and Decreases Sperm DNA Damage in Men with Asthenozoospermia Undergoing Assisted Reproductive Technology. Oxygen, 5(2), 8. https://doi.org/10.3390/oxygen5020008