Maximizing Bioactive Compound Extraction from Mandarin (Citrus reticulata) Peels through Green Pretreatment Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Collection and Handling of Mandarin Peels
2.3. Instrumentation
2.4. Mandarin Peel Extraction Procedure
2.5. Response Surface Methodology (RSM) Optimization and Design of the Experiment
2.6. Bioactive Compound Quantification
2.6.1. Total Polyphenol Content (TPC)
2.6.2. Individual Polyphenol Quantification
2.6.3. Determination of Ascorbic Acid Content (AAC)
2.7. Antioxidant Assays
2.7.1. Ferric-Reducing Antioxidant Power (FRAP) Assay
2.7.2. DPPH• Antiradical Activity
2.8. Statistical Analysis
3. Results and Discussion
3.1. Bioactive Compound Concentration and Antioxidant Activity of the Extracts
3.2. Assessing Extraction Parameter Impact Through Pareto Plot
3.3. Optimal Extraction Conditions
3.4. Principal Component Analysis (PCA) and Multivariate Correlation Analysis (MCA)
3.5. Partial Least-Squares (PLS) Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mahato, N.; Sharma, K.; Sinha, M.; Cho, M.H. Citrus Waste Derived Nutra-/Pharmaceuticals for Health Benefits: Current Trends and Future Perspectives. J. Funct. Foods 2018, 40, 307–316. [Google Scholar] [CrossRef]
- FAO. Citrus Fruit Statistical Compendium 2020; FAO: Rome, Italy, 2021. [Google Scholar]
- Putnik, P.; Barba, F.J.; Lorenzo, J.M.; Gabrić, D.; Shpigelman, A.; Cravotto, G.; Bursać Kovačević, D. An Integrated Approach to Mandarin Processing: Food Safety and Nutritional Quality, Consumer Preference, and Nutrient Bioaccessibility. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1345–1358. [Google Scholar] [CrossRef] [PubMed]
- Sebghatollahi, Z.; Ghanadian, M.; Agarwal, P.; Ghaheh, H.S.; Mahato, N.; Yogesh, R.; Hejazi, S.H. Citrus Flavonoids: Biological Activities, Implementation in Skin Health, and Topical Applications: A Review. ACS Food Sci. Technol. 2022, 2, 1417–1432. [Google Scholar] [CrossRef]
- Cho, E.J.; Lee, Y.G.; Chang, J.; Bae, H.-J. A High-Yield Process for Production of Biosugars and Hesperidin from Mandarin Peel Wastes. Molecules 2020, 25, 4286. [Google Scholar] [CrossRef] [PubMed]
- Hajialyani, M.; Hosein Farzaei, M.; Echeverría, J.; Nabavi, S.M.; Uriarte, E.; Sobarzo-Sánchez, E. Hesperidin as a Neuroprotective Agent: A Review of Animal and Clinical Evidence. Molecules 2019, 24, 648. [Google Scholar] [CrossRef] [PubMed]
- Roohbakhsh, A.; Parhiz, H.; Soltani, F.; Rezaee, R.; Iranshahi, M. Molecular Mechanisms behind the Biological Effects of Hesperidin and Hesperetin for the Prevention of Cancer and Cardiovascular Diseases. Life Sci. 2015, 124, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Martinez, R.M.; Pinho-Ribeiro, F.A.; Steffen, V.S.; Caviglione, C.V.; Vignoli, J.A.; Baracat, M.M.; Georgetti, S.R.; Verri, W.A.; Casagrande, R. Hesperidin Methyl Chalcone Inhibits Oxidative Stress and Inflammation in a Mouse Model of Ultraviolet B Irradiation-Induced Skin Damage. J. Photochem. Photobiol. B 2015, 148, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Akram, N.A.; Shafiq, F.; Ashraf, M. Ascorbic Acid-A Potential Oxidant Scavenger and Its Role in Plant Development and Abiotic Stress Tolerance. Front. Plant Sci. 2017, 8, 613. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, S.; Kaul, R.; Sofi, S.A.; Bashir, N.; Nazir, F.; Ahmad Nayik, G. Citrus Peel as a Source of Functional Ingredient: A Review. J. Saudi Soc. Agric. Sci. 2018, 17, 351–358. [Google Scholar] [CrossRef]
- Çalışkan Eleren, S.; Öziş Altınçekiç, Ş.; Altınçekiç, E. Biofuel Potential of Fruit Juice Industry Waste. J. Hazard. Toxic Radioact. Waste 2018, 22, 05018002. [Google Scholar] [CrossRef]
- Sharma, K.; Mahato, N.; Cho, M.H.; Lee, Y.R. Converting Citrus Wastes into Value-Added Products: Economic and Environmently Friendly Approaches. Nutrition 2017, 34, 29–46. [Google Scholar] [CrossRef] [PubMed]
- Giovanoudis, I.; Athanasiadis, V.; Chatzimitakos, T.; Kalompatsios, D.; Bozinou, E.; Gortzi, O.; Nanos, G.D.; Lalas, S.I. Isolation of Polyphenols from Two Waste Streams of Clingstone Peach Canneries Utilizing the Cloud Point Extraction Method. Biomass 2023, 3, 291–305. [Google Scholar] [CrossRef]
- Yadav, V.; Sarker, A.; Yadav, A.; Miftah, A.O.; Bilal, M.; Iqbal, H.M.N. Integrated Biorefinery Approach to Valorize Citrus Waste: A Sustainable Solution for Resource Recovery and Environmental Management. Chemosphere 2022, 293, 133459. [Google Scholar] [CrossRef] [PubMed]
- Alibardi, L.; Astrup, T.F.; Asunis, F.; Clarke, W.P.; De Gioannis, G.; Dessì, P.; Lens, P.N.L.; Lavagnolo, M.C.; Lombardi, L.; Muntoni, A.; et al. Organic Waste Biorefineries: Looking towards Implementation. Waste Manag. 2020, 114, 274–286. [Google Scholar] [CrossRef] [PubMed]
- Nayak, A.; Bhushan, B. An Overview of the Recent Trends on the Waste Valorization Techniques for Food Wastes. J. Environ. Manag. 2019, 233, 352–370. [Google Scholar] [CrossRef] [PubMed]
- Kalompatsios, D.; Athanasiadis, V.; Palaiogiannis, D.; Lalas, S.I.; Makris, D.P. Valorization of Waste Orange Peels: Aqueous Antioxidant Polyphenol Extraction as Affected by Organic Acid Addition. Beverages 2022, 8, 71. [Google Scholar] [CrossRef]
- Osorio-Tobón, J.F. Recent Advances and Comparisons of Conventional and Alternative Extraction Techniques of Phenolic Compounds. J. Food Sci. Technol. 2020, 57, 4299–4315. [Google Scholar] [CrossRef]
- Picot-Allain, C.; Mahomoodally, M.F.; Ak, G.; Zengin, G. Conventional versus Green Extraction Techniques—A Comparative Perspective. Curr. Opin. Food Sci. 2021, 40, 144–156. [Google Scholar] [CrossRef]
- Rodríguez García, S.L.; Raghavan, V. Green Extraction Techniques from Fruit and Vegetable Waste to Obtain Bioactive Compounds—A Review. Crit. Rev. Food Sci. Nutr. 2022, 62, 6446–6466. [Google Scholar] [CrossRef]
- Ghoshal, G. Comprehensive Review on Pulsed Electric Field in Food Preservation: Gaps in Current Studies for Potential Future Research. Heliyon 2023, 9, e17532. [Google Scholar] [CrossRef]
- Zhang, C.; Lyu, X.; Arshad, R.N.; Aadil, R.M.; Tong, Y.; Zhao, W.; Yang, R. Pulsed Electric Field as a Promising Technology for Solid Foods Processing: A Review. Food Chem. 2023, 403, 134367. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; You, S.; Xu, Z.; Li, Z.; Guo, J.; Ren, Z.; Fu, C. Novel Extraction Methods and Potential Applications of Polyphenols in Fruit Waste: A Review. J. Food Meas. Charact. 2021, 15, 3250–3261. [Google Scholar] [CrossRef]
- González-Centeno, M.R.; Comas-Serra, F.; Femenia, A.; Rosselló, C.; Simal, S. Effect of Power Ultrasound Application on Aqueous Extraction of Phenolic Compounds and Antioxidant Capacity from Grape Pomace (Vitis vinifera L.): Experimental Kinetics and Modeling. Ultrason. Sonochem. 2015, 22, 506–514. [Google Scholar] [CrossRef]
- Parniakov, O.; Lebovka, N.I.; Van Hecke, E.; Vorobiev, E. Pulsed Electric Field Assisted Pressure Extraction and Solvent Extraction from Mushroom (Agaricus bisporus). Food Bioprocess Technol. 2014, 7, 174–183. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Chatzimitakos, T.; Makrygiannis, I.; Kalompatsios, D.; Bozinou, E.; Lalas, S.I. Antioxidant-Rich Extracts from Lemon Verbena (Aloysia citrodora L.) Leaves through Response Surface Methodology. Oxygen 2024, 4, 1–19. [Google Scholar] [CrossRef]
- Wang, P.; Cheng, C.; Ma, Y.; Jia, M. Degradation Behavior of Polyphenols in Model Aqueous Extraction System Based on Mechanical and Sonochemical Effects Induced by Ultrasound. Sep. Purif. Technol. 2020, 247, 116967. [Google Scholar] [CrossRef]
- Cao, X.; Cai, C.; Wang, Y.; Zheng, X. The Inactivation Kinetics of Polyphenol Oxidase and Peroxidase in Bayberry Juice during Thermal and Ultrasound Treatments. Innov. Food Sci. Emerg. Technol. 2018, 45, 169–178. [Google Scholar] [CrossRef]
- Sun, J.; Bai, W.; Zhang, Y.; Liao, X.; Hu, X. Identification of Degradation Pathways and Products of Cyanidin-3-Sophoroside Exposed to Pulsed Electric Field. Food Chem. 2011, 126, 1203–1210. [Google Scholar] [CrossRef]
- Yilmaz, C.; Krishna, A.S.; Memon, A.; Porter, A.; Schmidt, D.C.; Gokhale, A.; Natarajan, B. Main Effects Screening: A Distributed Continuous Quality Assurance Process for Monitoring Performance Degradation in Evolving Software Systems. In Proceedings of the27th International Conference on Software Engineering-ICSE’05, St. Louis, MO, USA, 15–21 May 2005; ACM Press: St. Louis, MO, USA, 2005; p. 293. [Google Scholar]
- Lekivetz, R.; Sitter, R.; Bingham, D.; Hamada, M.S.; Moore, L.M.; Wendelberger, J.R. On Algorithms for Obtaining Orthogonal and Near-Orthogonal Arrays for Main-Effects Screening. J. Qual. Technol. 2015, 47, 2–13. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Chatzimitakos, T.; Mantiniotou, M.; Kalompatsios, D.; Bozinou, E.; Lalas, S.I. Investigation of the Polyphenol Recovery of Overripe Banana Peel Extract Utilizing Cloud Point Extraction. Eng 2023, 4, 3026–3038. [Google Scholar] [CrossRef]
- Christodoulou, M.C.; Orellana Palacios, J.C.; Hesami, G.; Jafarzadeh, S.; Lorenzo, J.M.; Domínguez, R.; Moreno, A.; Hadidi, M. Spectrophotometric Methods for Measurement of Antioxidant Activity in Food and Pharmaceuticals. Antioxidants 2022, 11, 2213. [Google Scholar] [CrossRef] [PubMed]
- Jagota, S.K.; Dani, H.M. A New Colorimetric Technique for the Estimation of Vitamin C Using Folin Phenol Reagent. Anal. Biochem. 1982, 127, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Shehata, E.; Grigorakis, S.; Loupassaki, S.; Makris, D.P. Extraction Optimisation Using Water/Glycerol for the Efficient Recovery of Polyphenolic Antioxidants from Two Artemisia Species. Sep. Purif. Technol. 2015, 149, 462–469. [Google Scholar] [CrossRef]
- Kawasaki, H.; Shimanouchi, T.; Kimura, Y. Recent Development of Optimization of Lyophilization Process. J. Chem. 2019, 2019, 9502856. [Google Scholar] [CrossRef]
- Calín-Sánchez, Á.; Lipan, L.; Cano-Lamadrid, M.; Kharaghani, A.; Masztalerz, K.; Carbonell-Barrachina, Á.A.; Figiel, A. Comparison of Traditional and Novel Drying Techniques and Its Effect on Quality of Fruits, Vegetables and Aromatic Herbs. Foods 2020, 9, 1261. [Google Scholar] [CrossRef] [PubMed]
- Cicco, N.; Lanorte, M.T.; Paraggio, M.; Viggiano, M.; Lattanzio, V. A Reproducible, Rapid and Inexpensive Folin–Ciocalteu Micro-Method in Determining Phenolics of Plant Methanol Extracts. Microchem. J. 2009, 91, 107–110. [Google Scholar] [CrossRef]
- Šeruga, M.; Novak, I.; Jakobek, L. Determination of Polyphenols Content and Antioxidant Activity of Some Red Wines by Differential Pulse Voltammetry, HPLC and Spectrophotometric Methods. Food Chem. 2011, 124, 1208–1216. [Google Scholar] [CrossRef]
- Alessandri, S.; Ieri, F.; Romani, A. Minor Polar Compounds in Extra Virgin Olive Oil: Correlation between HPLC-DAD-MS and the Folin-Ciocalteu Spectrophotometric Method. J. Agric. Food Chem. 2014, 62, 826–835. [Google Scholar] [CrossRef] [PubMed]
- de Araújo, J.S.F.; de Souza, E.L.; Oliveira, J.R.; Gomes, A.C.A.; Kotzebue, L.R.V.; da Silva Agostini, D.L.; de Oliveira, D.L.V.; Mazzetto, S.E.; da Silva, A.L.; Cavalcanti, M.T. Microencapsulation of Sweet Orange Essential Oil (Citrus aurantium Var. Dulcis) by Liophylization Using Maltodextrin and Maltodextrin/Gelatin Mixtures: Preparation, Characterization, Antimicrobial and Antioxidant Activities. Int. J. Biol. Macromol. 2020, 143, 991–999. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.; Sang, S.; McClements, D.J.; Chen, L.; Long, J.; Jiao, A.; Jin, Z.; Qiu, C. Polyphenols as Plant-Based Nutraceuticals: Health Effects, Encapsulation, Nano-Delivery, and Application. Foods 2022, 11, 2189. [Google Scholar] [CrossRef]
- Koraqi, H.; Petkoska, A.T.; Khalid, W.; Sehrish, A.; Ambreen, S.; Lorenzo, J.M. Optimization of the Extraction Conditions of Antioxidant Phenolic Compounds from Strawberry Fruits (Fragaria x ananassa Duch.) Using Response Surface Methodology. Food Anal. Methods 2023, 16, 1030–1042. [Google Scholar] [CrossRef] [PubMed]
- Singanusong, R.; Nipornram, S.; Tochampa, W.; Rattanatraiwong, P. Low Power Ultrasound-Assisted Extraction of Phenolic Compounds from Mandarin (Citrus reticulata Blanco Cv. Sainampueng) and Lime (Citrus aurantifolia) Peels and the Antioxidant. Food Anal. Methods 2015, 8, 1112–1123. [Google Scholar] [CrossRef]
- Safdar, M.N.; Kausar, T.; Jabbar, S.; Mumtaz, A.; Ahad, K.; Saddozai, A.A. Extraction and Quantification of Polyphenols from Kinnow (Citrus reticulate L.) Peel Using Ultrasound and Maceration Techniques. J. Food Drug Anal. 2017, 25, 488–500. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, G.; Vitale, E.; Iesce, M.R.; Naviglio, D.; Amoresano, A.; Fontanarosa, C.; Spinelli, M.; Ciaravolo, M.; Arena, C. Antioxidant Properties of Pulp, Peel and Seeds of Phlegrean Mandarin (Citrus reticulata Blanco) at Different Stages of Fruit Ripening. Antioxidants 2022, 11, 187. [Google Scholar] [CrossRef] [PubMed]
- Anticona, M.; Blesa, J.; Lopez-Malo, D.; Frigola, A.; Esteve, M.J. Effects of Ultrasound-Assisted Extraction on Physicochemical Properties, Bioactive Compounds, and Antioxidant Capacity for the Valorization of Hybrid Mandarin Peels. Food Biosci. 2021, 42, 101185. [Google Scholar] [CrossRef]
- Milardović, S.; Iveković, D.; Grabarić, B.S. A Novel Amperometric Method for Antioxidant Activity Determination Using DPPH Free Radical. Bioelectrochemistry 2006, 68, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Abramovič, H.; Grobin, B.; Poklar Ulrih, N.; Cigić, B. Relevance and Standardization of In Vitro Antioxidant Assays: ABTS, DPPH, and Folin–Ciocalteu. J. Chem. 2018, 2018, 4608405. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Meullemiestre, A.; Turk, M.; Perino, S.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Review of Green Food Processing Techniques. Preservation, Transformation, and Extraction. Innov. Food Sci. Emerg. Technol. 2017, 41, 357–377. [Google Scholar] [CrossRef]
- Sik, B.; Hanczné, E.L.; Kapcsándi, V.; Ajtony, Z. Conventional and Nonconventional Extraction Techniques for Optimal Extraction Processes of Rosmarinic Acid from Six Lamiaceae Plants as Determined by HPLC-DAD Measurement. J. Pharm. Biomed. Anal. 2020, 184, 113173. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, J.; Zhang, H.; Dzah, C.S.; Zandile, M.; Duan, Y.; Ma, H.; Luo, X. Advances in Ultrasound Assisted Extraction of Bioactive Compounds from Cash Crops—A Review. Ultrason. Sonochem. 2018, 48, 538–549. [Google Scholar] [CrossRef]
- Chatzimitakos, T.; Athanasiadis, V.; Kalompatsios, D.; Mantiniotou, M.; Bozinou, E.; Lalas, S.I. Pulsed Electric Field Applications for the Extraction of Bioactive Compounds from Food Waste and By-Products: A Critical Review. Biomass 2023, 3, 367–401. [Google Scholar] [CrossRef]
- Kalompatsios, D.; Palaiogiannis, D.; Makris, D.P. Optimized Production of a Hesperidin-Enriched Extract with Enhanced Antioxidant Activity from Waste Orange Peels Using a Glycerol/Sodium Butyrate Deep Eutectic Solvent. Horticulturae 2024, 10, 208. [Google Scholar] [CrossRef]
- Plaskova, A.; Mlcek, J. New Insights of the Application of Water or Ethanol-Water Plant Extract Rich in Active Compounds in Food. Front. Nutr. 2023, 10, 1118761. [Google Scholar] [CrossRef]
- Monroy, Y.M.; Rodrigues, R.A.F.; Sartoratto, A.; Cabral, F.A. Influence of Ethanol, Water, and Their Mixtures as Co-Solvents of the Supercritical Carbon Dioxide in the Extraction of Phenolics from Purple Corn Cob (Zea mays L.). J. Supercrit. Fluids 2016, 118, 11–18. [Google Scholar] [CrossRef]
- Segovia, F.J.; Luengo, E.; Corral-Pérez, J.J.; Raso, J.; Almajano, M.P. Improvements in the Aqueous Extraction of Polyphenols from Borage (Borago officinalis L.) Leaves by Pulsed Electric Fields: Pulsed Electric Fields (PEF) Applications. Ind. Crops Prod. 2015, 65, 390–396. [Google Scholar] [CrossRef]
- More, P.R.; Jambrak, A.R.; Arya, S.S. Green, Environment-Friendly and Sustainable Techniques for Extraction of Food Bioactive Compounds and Waste Valorization. Trends Food Sci. Technol. 2022, 128, 296–315. [Google Scholar] [CrossRef]
- Thoo, Y.; Ng, S.Y.; Khoo, M.; Mustapha, W.; Ho, C. A Binary Solvent Extraction System for Phenolic Antioxidants and Its Application to the Estimation of Antioxidant Capacity in Andrographis paniculata Extracts. Int. Food Res. J. 2013, 20, 1103. [Google Scholar]
- Kotsou, K.; Stoikou, M.; Athanasiadis, V.; Chatzimitakos, T.; Mantiniotou, M.; Sfougaris, A.I.; Lalas, S.I. Enhancing Antioxidant Properties of Prunus spinosa Fruit Extracts via Extraction Optimization. Horticulturae 2023, 9, 942. [Google Scholar] [CrossRef]
- Ma, Y.-Q.; Ye, X.-Q.; Fang, Z.-X.; Chen, J.-C.; Xu, G.-H.; Liu, D.-H. Phenolic Compounds and Antioxidant Activity of Extracts from Ultrasonic Treatment of Satsuma Mandarin (Citrus unshiu Marc.) Peels. J. Agric. Food Chem. 2008, 56, 5682–5690. [Google Scholar] [CrossRef]
- Kaur, S.; Panesar, P.S.; Chopra, H.K. Standardization of Ultrasound-Assisted Extraction of Bioactive Compounds from Kinnow Mandarin Peel. Biomass Convers. Biorefinery 2023, 13, 8853–8863. [Google Scholar] [CrossRef]
- Hwang, H.-J.; Kim, H.-J.; Ko, M.-J.; Chung, M.-S. Recovery of Hesperidin and Narirutin from Waste Citrus unshiu Peel Using Subcritical Water Extraction Aided by Pulsed Electric Field Treatment. Food Sci. Biotechnol. 2021, 30, 217–226. [Google Scholar] [CrossRef] [PubMed]
Independent Variable | Coded Unit | Coded Variable Level | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
Technique | X1 | ST | PEF + ST | US + ST | PEF + US + ST | – |
C (%, v/v) | X2 | 0 | 25 | 50 | 75 | 100 |
t (min) | X3 | 30 | 60 | 90 | 120 | 150 |
T (°C) | X4 | 20 | 35 | 50 | 65 | 80 |
Design Point | Independent Variable | Response | ||||||
---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | TPC 1 | FRAP 2 | DPPH 3 | AAC 4 | |
1 | 3 | 1 | 3 | 4 | 16.26 | 100.53 | 42.42 | 6.52 |
2 | 3 | 2 | 1 | 3 | 19.30 | 120.03 | 51.05 | 7.49 |
3 | 2 | 3 | 4 | 3 | 19.62 | 102.39 | 56.98 | 6.09 |
4 | 2 | 4 | 5 | 4 | 17.65 | 75.89 | 40.64 | 11.94 |
5 | 3 | 5 | 4 | 2 | 14.50 | 57.34 | 27.04 | 17.34 |
6 | 4 | 1 | 4 | 5 | 14.03 | 62.99 | 26.37 | 3.46 |
7 | 4 | 2 | 3 | 1 | 20.40 | 87.59 | 24.45 | 2.90 |
8 | 1 | 3 | 3 | 2 | 20.34 | 122.90 | 59.48 | 8.78 |
9 | 1 | 4 | 4 | 1 | 18.64 | 106.50 | 59.15 | 16.12 |
10 | 1 | 5 | 1 | 4 | 20.24 | 72.22 | 35.75 | 17.39 |
11 | 1 | 1 | 2 | 3 | 18.50 | 128.64 | 60.79 | 7.37 |
12 | 1 | 2 | 5 | 5 | 16.06 | 81.94 | 31.68 | 1.90 |
13 | 4 | 3 | 2 | 4 | 18.33 | 129.52 | 53.44 | 10.16 |
14 | 3 | 4 | 2 | 5 | 20.57 | 114.18 | 53.96 | 13.44 |
15 | 2 | 5 | 3 | 5 | 20.33 | 64.05 | 37.21 | 20.29 |
16 | 2 | 1 | 1 | 1 | 15.28 | 69.49 | 33.16 | 2.37 |
17 | 2 | 2 | 2 | 2 | 20.44 | 93.33 | 47.93 | 2.07 |
18 | 3 | 3 | 5 | 1 | 16.47 | 102.27 | 56.79 | 6.79 |
19 | 4 | 4 | 1 | 2 | 17.85 | 113.08 | 47.90 | 18.73 |
20 | 4 | 5 | 5 | 3 | 10.77 | 58.67 | 19.57 | 16.95 |
Response | Second-Order Polynomial Equation (Model) | R2 Predicted | R2 Adjusted | p-Value | Equation |
---|---|---|---|---|---|
TPC | Y = 5.37 + 2.13X1 + 5.41X2 + 3.03X3 + 1.34X4 − 0.08X12 − 0.84X22 − 0.62X32 − 0.02X42 − 0.41X1X2 − 0.005X1X3 − 0.44X1X4 + 0.06X2X3 + 0.19X2X4 − 0.14X3X4 | 0.9536 | 0.8237 | 0.0189 | (6) |
FRAP | Y = 52.85 − 28.98X1 − 20.47X2 + 53.74X3 + 33.87X4 + 5.93X12 − 1.28X22 + 0.78X32 − 5.29X42 + 4.48X1X2 − 9.77X1X3 + 4.7X1X4 − 2.52X2X3 + 4.58X2X4 − 9.11X3X4 | 0.9745 | 0.9032 | 0.0046 | (7) |
DPPH | Y = 28.37 − 7.84X1 − 19.81X2 + 38.57X3 + 7.96X4 − 0.65X12 + 1.15X22 + 1.25X32 − 3.79X42 + 3.03X1X2 − 6.14X1X3 + 5.81X1X4 −4.28X2X3 + 4.34X2X4 − 4.96X3X4 | 0.9530 | 0.8216 | 0.0194 | (8) |
AAC | Y = 4.61 − 0.48X1 − 15.14X2 + 10.1X3 + 2.18X4 + 0.88X12 + 2.72X22 + 0.42X32 − 0.96X42 + 0.23X1X2 − 2.58X1X3 + 1.21X1X4 − 0.72X2X3 + 1.09X2X4 − 1.11X3X4 | 0.9716 | 0.8920 | 0.0060 | (9) |
Response | Optimal Condition | ||||
---|---|---|---|---|---|
Maximum Predicted Response | Technique (X1) | C (%, v/v) (X2) | t (min) (X3) | T (°C) (X4) | |
TPC (mg GAE/g dw) | 21.88 ± 2.36 | ST (1) | 50 (3) | 90 (3) | 50 (3) |
FRAP (μmol AAE/g dw) | 138.13 ± 14.35 | PEF + US + ST (4) | 50 (3) | 60 (2) | 65 (4) |
DPPH (μmol AAE/g dw) | 64.93 ± 12.70 | ST (1) | 50 (3) | 120 (4) | 50 (3) |
AAC (mg/g dw) | 22.06 ± 5.03 | PEF + ST (2) | 100 (5) | 60 (2) | 65 (4) |
Response | TPC | FRAP | DPPH | AAC |
---|---|---|---|---|
TPC | – | 0.526 | 0.5595 | −0.0319 |
FRAP | – | 0.8685 | −0.1835 | |
DPPH | – | −0.0544 | ||
AAC | – |
Variable | Linear Regression Equation | LOD a | LOQ b | R2 c | PLS Model Value | Experimental Value | |
---|---|---|---|---|---|---|---|
TPC | y = 0.0138x − 0.0044 | 1.75 1 | 5.29 1 | 0.9996 | 19.55 4 | 18.69 ± 1.16 4 | 946.84 ± 58.77 1 |
FRAP | y = 0.0019x − 0.0005 | 7.06 2 | 21.39 2 | 0.9997 | 143.73 5 | 123.21 ± 6.41 5 | 6241.82 ± 324.73 2 |
DPPH | y = 0.0576x + 0.7960 | 86.18 2 | 261.15 2 | 0.9926 | 70.16 5 | 65.12 ± 2.67 5 | 3298.78 ± 135.26 2 |
AAC | y = 0.0016x − 0.0085 | 18.49 3 | 56.04 3 | 0.9980 | 21.38 6 | 18.25 ± 1.33 6 | 924.55 ± 67.38 3 |
Polyphenolic Compound | Linear Regression Equation | LOD a (mg/L) | LOQ b (mg/L) | R2 c | Optimal Extract (mg/L) | Optimal Extract (mg/g dw) |
---|---|---|---|---|---|---|
Neochlorogenic acid | y = 28,214x + 552 | 1.74 | 5.26 | 0.9987 | 17.8 ± 1.19 | 0.35 ± 0.01 |
Catechin | y = 11,921x − 128 | 2.54 | 7.71 | 0.9973 | 75.64 ± 4.54 | 1.49 ± 0.1 |
Chlorogenic acid | y = 50,320x − 23,038 | 3.67 | 11.11 | 0.9943 | 76.32 ± 1.6 | 1.51 ± 0.07 |
Vanillic acid | y = 20,883x + 6857 | 0.53 | 1.62 | 0.9994 | 1.61 ± 0.04 | 0.03 ± 0 |
Ferulic acid | y = 108,554x − 25,916 | 1.40 | 4.24 | 0.9992 | 6.68 ± 0.25 | 0.13 ± 0.01 |
Rutin | y = 46,366x − 31,563 | 2.65 | 8.03 | 0.9970 | 21.19 ± 0.55 | 0.42 ± 0.02 |
Quercetin 3-D-galactoside | y = 41,490x − 35,578 | 3.96 | 12.00 | 0.9934 | 17.33 ± 1.02 | 0.34 ± 0.02 |
Luteolin-7-glucoside | y = 34,876x − 16,827 | 1.28 | 3.89 | 0.9993 | 82.89 ± 3.9 | 1.64 ± 0.1 |
Narirutin | y = 48,756x + 20,854 | 1.98 | 6.00 | 0.9983 | 24.17 ± 0.82 | 0.48 ± 0.03 |
Hesperidin | y = 33,529x − 30,503 | 3.59 | 10.87 | 0.9946 | 708.44 ± 51.01 | 13.98 ± 0.74 |
Kaempferol | y = 93,385x − 18,613 | 1.34 | 4.05 | 0.9992 | 7.8 ± 0.23 | 0.15 ± 0.01 |
Total identified | – | – | – | – | 1039.87 ± 41.46 | 20.53 ± 1.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalompatsios, D.; Ionescu, A.-I.; Athanasiadis, V.; Chatzimitakos, T.; Mantiniotou, M.; Kotsou, K.; Bozinou, E.; Lalas, S.I. Maximizing Bioactive Compound Extraction from Mandarin (Citrus reticulata) Peels through Green Pretreatment Techniques. Oxygen 2024, 4, 307-324. https://doi.org/10.3390/oxygen4030018
Kalompatsios D, Ionescu A-I, Athanasiadis V, Chatzimitakos T, Mantiniotou M, Kotsou K, Bozinou E, Lalas SI. Maximizing Bioactive Compound Extraction from Mandarin (Citrus reticulata) Peels through Green Pretreatment Techniques. Oxygen. 2024; 4(3):307-324. https://doi.org/10.3390/oxygen4030018
Chicago/Turabian StyleKalompatsios, Dimitrios, Alexandra-Ioana Ionescu, Vassilis Athanasiadis, Theodoros Chatzimitakos, Martha Mantiniotou, Konstantina Kotsou, Eleni Bozinou, and Stavros I. Lalas. 2024. "Maximizing Bioactive Compound Extraction from Mandarin (Citrus reticulata) Peels through Green Pretreatment Techniques" Oxygen 4, no. 3: 307-324. https://doi.org/10.3390/oxygen4030018
APA StyleKalompatsios, D., Ionescu, A. -I., Athanasiadis, V., Chatzimitakos, T., Mantiniotou, M., Kotsou, K., Bozinou, E., & Lalas, S. I. (2024). Maximizing Bioactive Compound Extraction from Mandarin (Citrus reticulata) Peels through Green Pretreatment Techniques. Oxygen, 4(3), 307-324. https://doi.org/10.3390/oxygen4030018