Correlation between Microbial Population and Oxidative Stability of the Yogurt-Based Tzatziki Salad
Abstract
:1. Introduction
2. Materials and Methods
2.1. Food Ingredients
2.2. Reagents
2.3. Instruments
2.4. Recipes
2.5. Determination of Colony-Forming Units (CFUs)
2.6. Extraction of Fat
2.7. Determination of Oxidation Stability
2.8. Determination of the Tocopherol Composition
2.9. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lalas, S.; Athanasiadis, V.; Karageorgou, I.; Bozinou, E.; Dourtoglou, V.G. Study of the self-stabilization ability of Tzatziki (a traditional Greek ready-to-eat deli salad). Int. J. Food Stud. 2019, 8, 76–86. [Google Scholar] [CrossRef]
- Wade, A.T.; Davis, C.R.; Dyer, K.A.; Hodgson, J.M.; Woodman, R.J.; Keage, H.A.D.; Murphy, K.J. A mediterranean diet to improve cardiovascular and cognitive health: Protocol for a randomised controlled intervention study. Nutrients 2017, 9, 145. [Google Scholar] [CrossRef] [Green Version]
- Detopoulou, P.; Aggeli, M.; Andrioti, E.; Detopoulou, M. Macronutrient content and food exchanges for 48 Greek Mediterranean dishes. Nutr. Diet. 2017, 74, 200–209. [Google Scholar] [CrossRef]
- Vardavas, I.C. Nutritional and Chemical Quality of Traditional Spreads and Pies of Mediterranean Diet of Greece. J. Food Nutr. Disord. 2013, 2, 2. [Google Scholar] [CrossRef]
- Vasilopoulou, E.; Dilis, V.; Trichopoulou, A. Nutrition claims: A potentially important tool for the endorsement of Greek Mediterranean traditional foods. Med. J. Nutr. Metab. 2013, 6, 105–111. [Google Scholar] [CrossRef]
- Tsiraki, M.I.; Yehia, H.M.; Elobeid, T.; Osaili, T.; Sakkas, H.; Savvaidis, I.N. Viability of and Escherichia coli O157:H7 and Listeria monocytogenes in a delicatessen appetizer (yogurt-based) salad as affected by citrus extract (Citrox©) and storage temperature. Food Microbiol. 2018, 69, 11–17. [Google Scholar] [CrossRef]
- Tsiraki, M.I.; Savvaidis, I.N. The effects of citrus extract (Citrox©) on the naturally occurring microflora and inoculated pathogens, Bacillus cereus and Salmonella enterica, in a model food system and the traditional Greek yogurt-based salad Tzatziki. Food Microbiol. 2016, 53, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Jia, H.Y.; Chen, G.C.; Li, C.Y.; Hao, M. Yogurt Intake Reduces All-Cause and Cardiovascular Disease Mortality: A Meta-Analysis of Eight Prospective Cohort Studies. Chin. J. Integr. Med. 2020, 26, 462–468. [Google Scholar] [CrossRef]
- Gil, Á.; Ortega, R.M. Introduction and Executive Summary of the Supplement, Role of Milk and Dairy Products in Health and Prevention of Noncommunicable Chronic Diseases: A Series of Systematic Reviews. Adv. Nutr. 2019, 10, S67–S73. [Google Scholar] [CrossRef] [PubMed]
- Manzocco, L.; Romano, G.; Calligaris, S.; Nicoli, M.C. Modeling the effect of the oxidation status of the ingredient oil on stability and shelf life of low-moisture bakery products: The case study of crackers. Foods 2020, 9, 749. [Google Scholar] [CrossRef]
- Citta, A.; Folda, A.; Scalcon, V.; Scutari, G.; Bindoli, A.; Bellamio, M.; Feller, E.; Rigobello, M.P. Oxidative changes in lipids, proteins, and antioxidants in yogurt during the shelf life. Food Sci. Nutr. 2017, 5, 1079–1087. [Google Scholar] [CrossRef]
- Jacobsen, C.; Let, M.B.; Nielsen, N.S.; Meyer, A.S. Antioxidant strategies for preventing oxidative flavour deterioration of foods enriched with n-3 polyunsaturated lipids: A comparative evaluation. Trends Food Sci. Technol. 2008, 19, 76–93. [Google Scholar] [CrossRef] [Green Version]
- Amaral, A.B.; Solva, M.V.D.; Lannes, S.C.D.S. Lipid oxidation in meat: Mechanisms and protective factors—A review. Food Sci. Technol. 2018, 38, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Sahraee, S.; Milani, J.M.; Regenstein, J.M.; Kafil, H.S. Protection of foods against oxidative deterioration using edible films and coatings: A review. Food Biosci. 2019, 32, 100451. [Google Scholar] [CrossRef]
- AOAC (Official Methods of Analysis). Official Method of Analysis Method 935.60. Oil in Food Dressings, 15th ed.; Association of Official Analytical Communities: Arlington, VA, USA, 1990. [Google Scholar]
- Lalas, S.; Athanasiadis, V.; Gortzi, O.; Bounitsi, M.; Giovanoudis, I.; Tsaknis, J.; Bogiatzis, F. Enrichment of table olives with polyphenols extracted from olive leaves. Food Chem. 2011, 127, 1521–1525. [Google Scholar] [CrossRef]
- Nadathur, S.R.; Zhou, L.; Lowry, R.R.; Bakalinsky, A.T. Effects of Hydrolysis of Milk Glycerides on the Antimutagenicity of a Hexane Extract of Milk. J. Dairy Sci. 1998, 81, 664–671. [Google Scholar] [CrossRef]
- Stefanakis, A.; Stavrakakis, E.; Adamopoulos, K.; Vareltzis, P.; Goula, A. Effect of various proteins on characteristics and synerisis of tzatziki. In Proceedings of the Inrternational Congress on Engineering and Food (ICEF11), Athens, Greece, 22–26 May 2011. [Google Scholar]
- Tribst, A.A.L.; Falcade, L.T.P.; Carvalho, N.S.; de Castro Leite Junior, B.R.; de Oliveira, M.M. Using stirring and homogenization to improve the fermentation profile and physicochemical characteristics of set yogurt from fresh, refrigerated and frozen/thawed sheep milk. LWT 2020, 130, 109557. [Google Scholar] [CrossRef]
- Maragkoudakis, P.A.; Miaris, C.; Rojez, P.; Manalis, N.; Magkanari, F.; Kalantzopoulos, G.; Tsakalidou, E. Production of traditional Greek yoghurt using Lactobacillus strains with probiotic potential as starter adjuncts. Int. Dairy J. 2006, 16, 52–60. [Google Scholar] [CrossRef]
- Chramostová, J.; Mošnová, R.; Lisová, I.; Pešek, E.; Drbohlav, J.; Němečková, I. Influence of cultivation conditions on the growth of Lactobacillus acidophilus, Bifidobacterium sp., and Streptococcus thermophiles, and on the production of organic acids in fermented milks. Czech J. Food Sci. 2014, 32, 422–429. [Google Scholar] [CrossRef] [Green Version]
- da Costa, M.P.; Frasao, B.D.S.; Lima, B.R.C.D.C.; Rodrigues, B.L.; Junior, C.A.C. Simultaneous analysis of carbohydrates and organic acids by HPLC-DAD-RI for monitoring goat’s milk yogurts fermentation. Talanta 2016, 152, 162–170. [Google Scholar] [CrossRef]
- Putnik, P.; Gabrić, D.; Roohinejad, S.; Barba, F.J.; Granato, D.; Mallikarjunan, K.; Lorenzo, J.M.; Bursać Kovačević, D. An overview of organosulfur compounds from Allium spp.: From processing and preservation to evaluation of their bioavailability, antimicrobial, and anti-inflammatory properties. Food Chem. 2019, 276, 680–691. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Zucca, P.; Orhan, I.E.; Azzini, E.; Adetunji, C.O.; Mohammed, S.A.; Banerjee, S.K.; Sharopov, F.; Rigano, D.; Sharifi-Rad, J.; et al. Allicin and health: A comprehensive review. Trends Food Sci. Technol. 2019, 86, 502–516. [Google Scholar] [CrossRef]
- Senadeera, S.S.; Prasanna, P.H.P.; Jayawardana, N.W.I.A.; Gunasekara, D.C.S.; Senadeera, P.; Chandrasekara, A. Antioxidant, physicochemical, microbiological, and sensory properties of probiotic yoghurt incorporated with various Annona species pulp. Heliyon 2018, 4, e00955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yousef, A.E.; Juneja, V.K. Microbial Stress Adaptation and Food Safety; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Repine, J.E.; Fox, R.B.; Berger, E.M. Hydrogen peroxide kills Staphylococcus aureus by reacting with staphylococcal iron to form hydroxyl radical. J. Biol. Chem. 1981, 256, 7094–7096. [Google Scholar] [CrossRef]
- Saffari, Y.; Sadrzadeh, S.M.H. Green tea metabolite EGCG protects membranes against oxidative damage in vitro. Life Sci. 2004, 74, 1513–1518. [Google Scholar] [CrossRef]
- Lin, X.; Xia, Y.; Wang, G.; Yang, Y.; Xiong, Z.; Lv, F.; Zhou, W.; Ai, L. Lactic acid bacteria with antioxidant activities alleviating oxidized oil induced hepatic injury in mice. Front. Microbiol. 2018, 9, 2684. [Google Scholar] [CrossRef]
- Feng, T.; Wang, J. Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: A systematic review. Gut Microbes 2020, 12, 1801944. [Google Scholar] [CrossRef]
Tzatziki Sample | Soybean Oil(% w/w) | Virgin Olive Oil (% w/w) | Set Sheep Yogurt (% w/w) | Traditional Greek-Style Sheep Yogurt (% w/w) | Vinegar (% w/w) | Cucumber (% w/w) | Garlic (% w/w) |
---|---|---|---|---|---|---|---|
S1 | 9 | - | 67 | - | 5 | 17 | 2 |
S2 | 9 | - | - | 67 | 5 | 17 | 2 |
S3 | - | 9 | - | 67 | 5 | 17 | 2 |
S4 | - | 9 | 67 | - | 5 | 17 | 2 |
Ingredient | M1 (% w/w) | M2 (% w/w) |
---|---|---|
Set sheep yogurt | 43.5 | 43.5 |
Cucumber | 24.8 | - |
Water | 17.1 | 43.2 |
Soybean oil | 8.4 | 8.4 |
Wheat starch | 2.9 | 2.9 |
Salt | 1.0 | 1.0 |
Vinegar | 0.9 | 0.9 |
Garlic | 1.2 | - |
Preservatives (sodium benzoate/potassium sorbate) | 0.05/0.05 | - |
Guar gum | 0.05 | 0.05 |
Xanthan gum | 0.05 | 0.05 |
Lipid Phase of Samples | Induction Period (h) | Tocopherol Content (mg/kg of Lipid Phase) | ||
---|---|---|---|---|
α-Tocopherol | γ-Tocopherol | δ-Tocopherol | ||
Soybean oil (control) | 33.0 ± 0.8 | 239.1 ± 11.3 | 999.2 ± 22.9 | 328.4 ± 16.3 |
S1 | 45.9 * ± 1.1 | 204.2 ± 12.6 | 944.6 * ± 15.9 | 300.1 * ± 8.2 |
S2 | 42.1 * ± 1.1 | 178.7 * ± 11.9 | 901.8 * ± 9.6 | 279.6 * ± 10.1 |
Virgin olive oil (control) | 40.0 ± 1.0 | 160.4 ± 10.7 | 9.9 ± 0.5 | 1.6 ± 0.1 |
S3 | 62.8 * ± 1.4 | 126.7 * ± 9.8 | 6.1 * ± 0.7 | 1.5 ± 0.1 |
S4 | 54.1 * ± 1.3 | 93.1 * ± 9.0 | 4.3 * ± 0.2 | 1.2 * ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bozinou, E.; Athanasiadis, V.; Chatzimitakos, T.; Salakidou, C.; Dourtoglou, V.G.; Lalas, S.I. Correlation between Microbial Population and Oxidative Stability of the Yogurt-Based Tzatziki Salad. Oxygen 2022, 2, 286-294. https://doi.org/10.3390/oxygen2030020
Bozinou E, Athanasiadis V, Chatzimitakos T, Salakidou C, Dourtoglou VG, Lalas SI. Correlation between Microbial Population and Oxidative Stability of the Yogurt-Based Tzatziki Salad. Oxygen. 2022; 2(3):286-294. https://doi.org/10.3390/oxygen2030020
Chicago/Turabian StyleBozinou, Eleni, Vassilis Athanasiadis, Theodoros Chatzimitakos, Chrysanthi Salakidou, Vassilis G. Dourtoglou, and Stavros I. Lalas. 2022. "Correlation between Microbial Population and Oxidative Stability of the Yogurt-Based Tzatziki Salad" Oxygen 2, no. 3: 286-294. https://doi.org/10.3390/oxygen2030020
APA StyleBozinou, E., Athanasiadis, V., Chatzimitakos, T., Salakidou, C., Dourtoglou, V. G., & Lalas, S. I. (2022). Correlation between Microbial Population and Oxidative Stability of the Yogurt-Based Tzatziki Salad. Oxygen, 2(3), 286-294. https://doi.org/10.3390/oxygen2030020