Indications from C:N:P Ratios in Surface Sediments along Land-to-Sea Gradients to Support Coastal Nutrient Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sediment Sampling Taking into Consideration Local Bathymetry
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Source and Fate of Nutrients
Study Site | RCN | RCP | RNP | Source |
---|---|---|---|---|
Eckernförde Bay, Baltic Sea, Germany (coastal waters close to outlets) | 28.1 | 35.5 | 3.9 | This study * |
Yellow River Delta, Yellow Sea, China (at farmland converted into wetland) | 40.5 | 71.2 | 2.0 | Qu et al. 2014 [37] |
Yellow River Delta, Yellow Sea, China (at newly formed wetland) | 26.5 | 42.6 | 1.6 | Qu et al. 2014 [37] |
Gulf of Trieste, Northern Adriatic Sea, Italy | 13.3 | 563.0 | Faganeli et al. 1988 [43] | |
Darss-Zingst-Bodden Chain, Baltic Sea, Germany (at reed fringe zone, Dabitz) | 11.4 | 112.6 | 25.4 | Karstens et al. 2016 [44] |
Bothnian Sea, Baltic Sea, Sweden | 11.4 | 78.0 | 6.8 | Carman and Cederwall 2001 [45] |
Bothnian Bay, Baltic Sea, Sweden | 11.2 | 90.6 | 8.1 | Carman and Cederwall 2001 [45] |
Nakaumi, coastal lagoon, Sea of Japan, Japan | 10.2 | 143.0 | 14.2 | Yamamuro 2000 [46] |
Shinji, coastal lagoon, Sea of Japan, Japan | 9.6 | 89.0 | 9.3 | Yamamuro 2000 [46] |
Gulf of Finland, Baltic Sea, Finland | 9.6 | 68.7 | 7.2 | Carman and Cederwall 2001 [45] |
Pojo Bay, Baltic Sea, Finland | 9.6 | 51.0 | Heiskanen et al. 1999 [47] | |
Shallow part of the Gulf of Gdansk, Baltic Sea, Poland | 9.3 | 82.2 | Łukawska-Matuszewska and Bolałek 2008 [48] | |
Baltic proper, Baltic Sea, Sweden | 9.2 | 118.8 | 12.9 | Carman and Cederwall 2001 [45] |
Pomeranian Bight, Baltic Sea | 8.7 | 93.0 | 10.7 | Emeis et al. 2000 [40] |
Darss-Zingst-Bodden Chain, Baltic Sea, Germany (at reed fringe zone, Michaelsdorf) | 8.6 | 145.7 | 43.9 | Karstens et al. 2016 [44] |
Deeper part of the Gulf of Gdansk, Baltic Sea, Poland | 8.2 | 560.7 | Łukawska-Matuszewska and Bolałek 2008 [48] | |
Daya Bay, South China Sea, China | 7.7 | 49.7 | 6.5 | Chen et al. 2021 [49] |
4.2. Management Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newton, A.; Icely, J.; Cristina, S.; Brito, A.; Cardoso, A.C.; Colijn, F.; Riva, S.D.; Gertz, F.; Hansen, J.W.; Holmer, M.; et al. An overview of ecological status, vulnerability and future perspectives of European large shallow, semi-enclosed coastal systems, lagoons and transitional waters. Estuar. Coast. Shelf Sci. 2014, 140, 95–122. [Google Scholar] [CrossRef]
- Rabalais, N.N.; Turner, R.E.; Díaz, R.J.; Justić, D. Global change and eutrophication of coastal waters. ICES J. Mar. Sci. 2009, 66, 1528–1537. [Google Scholar] [CrossRef]
- Cloern, J.E. Our evolving conceptual model of the coastal eutrophication problem. Mar. Ecol. Prog. Ser. 2001, 210, 223–253. [Google Scholar] [CrossRef]
- Lloret, J.; Marín, A.; Marín-Guirao, L. Is coastal lagoon eutrophication likely to be aggravated by global climate change? Estuar. Coast. Shelf Sci. 2008, 78, 403–412. [Google Scholar] [CrossRef]
- Chislock, M.F.; Doster, E.; Zitomer, R.A.; Wilson, A.E. Eutrophication: Causes, consequences, and controls in aquatic ecosystems. Nat. Educ. Knowl. 2013, 4, 10. [Google Scholar]
- Kemp, W.M.; Testa, J.M.; Conley, D.J.; Gilbert, D.; Hagy, J.D. Temporal responses of coastal hypoxia to nutrient loading and physical controls. Biogeosciences 2009, 6, 2985–3008. [Google Scholar] [CrossRef]
- Berg, P.; Røy, H.; Janssen, F.; Meyer, V.; Jørgensen, B.B.; Huettel, M.; de Beer, D. Oxygen uptake by aquatic sediments measured with a novel non-invasive eddy-correlation technique. Mar. Ecol. Prog. Ser. 2003, 261, 75–83. [Google Scholar] [CrossRef]
- Karstens, S.; Buczko, U.; Glatzel, S. Phosphorus storage and mobilization in coastal Phragmites wetlands: Influence of local-scale hydrodynamics. Estuar. Coast. Shelf Sci. 2015, 164, 124–133. [Google Scholar] [CrossRef]
- Krull, E.; Haynes, D.; Lamontagne, S.; Gell, P.; McKirdy, D.; Hancock, G.; McGowan, J.; Smernik, R. Changes in the chemistry of sedimentary organic matter within the Coorong over space and time. Biogeochemistry 2009, 92, 9–25. [Google Scholar] [CrossRef]
- Yamamuro, M.; Kamiya, H. Elemental (C, N, P) and isotopic (δ13C, δ15N) signature of primary producers and their contribution to the organic matter in coastal lagoon sediment. Landsc. Ecol. Eng. 2014, 10, 65–75. [Google Scholar] [CrossRef]
- Kjerfve, B. Chapter 1 Coastal Lagoons. Elsevier Oceanogr. Ser. 1994, 60, 1–8. [Google Scholar]
- de la Lanza-Espino, G.; Flores-Verdugo, F.J.; Hernandez-Pulido, S.; Penié-Rodríguez, I. Concentration of nutrients and C:N:P rations in surface sediments of a tropical coastal lagoon complex affected by agricultural runoff. Univ. Cienc. 2011, 27, 145–155. [Google Scholar]
- Nasir, A.; Lukman, M.; Tuwo, A.; Hatta, M.; Tambaru, R. The use of C/N ratio in assessing the influence of land-based material in Coastal Water of South Sulawesi and Spermonde Archipelago, Indonesia. Front. Mar. Sci. 2016, 3, 266. [Google Scholar] [CrossRef]
- Meng, L.; Qu, F.; Bi, X.; Xia, J.; Li, Y.; Wang, X.; Yu, J. Elemental stoichiometry (C, N, P) of soil in the Yellow River Delta nature reserve: Understanding N and P status of soil in the coastal estuary. Sci. Total Environ. 2021, 751, 141737. [Google Scholar] [CrossRef]
- Redfield, A.C.; Ketchum, B.H.; Richards, F.A. The influence of organisms on the composition of seawater. In The Sea; Hill, M.N., Ed.; Wiley: Chichester, UK, 1963; Volume 2, pp. 26–77. [Google Scholar]
- Ruttenberg, K.C.; Goñi, M.A. Phosphorus distribution, C:N:P ratios, and δ13Coc in arctic, temperate, and tropical coastal sediments: Tools for characterizing bulk sedimentary organic matter. Mar. Geol. 1997, 139, 123–145. [Google Scholar] [CrossRef]
- Davidson-Arnott, R.; Bauer, B.; Houser, C. Introduction to Coastal Processes and Geomorphology; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Reusch, T.B.H.; Dierking, J.; Andersson, H.C.; Bonsdorff, E.; Carstensen, J.; Casini, M.; Czajkowski, M.; Hasler, B.; Hinsby, K.; Hyytiäinen, K.; et al. The Baltic Sea as a time machine for the future coastal ocean. Sci. Adv. 2018, 4, eaar8195. [Google Scholar] [CrossRef]
- Hupfer, P. Die Ostsee—Kleines Meer mit Großen Problemen; Borntraeger: Stuttgart, Germany, 2010. [Google Scholar]
- HELCOM. Ecosystem Health of the Baltic Sea 2003–2007: HELCOM Initial Holistic Assessment. In Baltic Sea Environment Proceedings; Baltic Marine Environment Protection Commission: Helsinki, Finnland, 2010; Volume 122, p. 2010. [Google Scholar]
- Snoeijs-Leijonmalm, P.; Andrén, E. Why is the Baltic Sea so special to live in? In Biological Oceanography of the Baltic Sea; Springer: Dordrecht, The Netherlands, 2017; pp. 23–84. [Google Scholar]
- Elmgren, R.; Hill, C. Ecosystem function at low biodiversity—The Baltic example. In Marine Biodiversity: Patterns and Processes; Cambridge University Press: Cambridge, UK, 1997; pp. 319–336. [Google Scholar]
- Seibold, E.; Exon, N.; Hartmann, M.; Kögler, F.C.; Krumm, H.; Lutze, G.F.; Newton, R.S.; Werner, F. Marine Geology of Kiel Bay; Kramer, Geologisch-Paläontologisches Institut Kiel: Kiel, Germany, 1971. [Google Scholar]
- Kullenberg, G.; Jacobsen, T.S. The Baltic Sea: An outline of its physical oceanography. Mar. Pollut. Bull. 1981, 12, 183–186. [Google Scholar] [CrossRef]
- Sterr, H. Assessment of vulnerability and adaptation to sea-level rise for the coastal zone of Germany. J. Coast. Res. 2008, 24, 380–393. [Google Scholar] [CrossRef]
- Ahrendt, K. Untersuchungen Möglicher Standorte für Ein Künstliches Hartsubstrat als Tauchrevier in der Eckernförder Bucht; Contract work for the city of Eckernförde; Büro für Umwelt und Küste: Kiel, Germany, 2006. [Google Scholar]
- MELUR. Managementplan für das Fauna-Flora-Habitat-Gebiet “DE-1526-391 Südküste der Eckernförder Bucht und vorgelagerte Flachgründe” Teilbereich “Ostseeflächen” sowie Managementplan für das Europäische Vogelschutzgebiet “DE 1525-491 Eckernförder Bucht mit Flachgründen”. 2016. Available online: https://www.schleswig-holstein.de/DE/fachinhalte/S/schutzgebiete/ffh/FFHSchutzgebiete.html?nn=b438bc76-d74c-40b3-944d-b550def6a663 (accessed on 2 July 2023).
- MEKUN. Seen Schleswig-Holstein. 2023. Available online: https://umweltanwendungen.schleswig-holstein.de/nuis/wafis/seen/seenanzeige.php?see=hemmelmarker&alle=ja (accessed on 2 July 2023).
- Tetzlaff, B.; Keller, L.; Kuhr, P.; Kreins, P.; Kunkel, R.; Wendland, F. Räumlich differenzierte Quantifizierung der Nährstoffeinträge ins Grundwasser und in die Oberflächengewässer Schleswig-Holsteins unter Anwendung der Modellkombination RAUMIS-GROWA-WEKU-MEPhos. Endbericht zum Forschungsprojekt, Forschungszentrum Jülich. 2017. Available online: https://www.schleswig-holstein.de/mm/downloads/Fachinhalte/Wasserrahmenrichtlinie/endberichtNaehrstoffmodellierung.pdf (accessed on 2 July 2023).
- Kreuzburg, M.; Scholten, J.; Hsu, F.H.; Liebetrau, V.; Sültenfuß, J.; Rapaglia, J.; Schlüter, M. Submarine Groundwater Discharge-Derived Nutrient Fluxes in Eckernförde Bay (Western Baltic Sea). Estuar. Coasts 2023, 46, 1190–1207. [Google Scholar] [CrossRef]
- Schlüter, M.; Sauter, E.J.; Andersen, C.E.; Dahlgaard, H.; Dando, P.R. Spatial distribution and budget for submarine groundwater discharge in Eckernförde Bay (Western Baltic Sea). Limnol. Oceanogr. 2004, 49, 157–167. [Google Scholar] [CrossRef]
- Smetacek, V. The annual cycle of Kiel Bight plankton: A long-term analysis. Estuaries 1985, 8, 145–157. [Google Scholar] [CrossRef]
- Bange, H.W.; Bergmann, K.; Hansen, H.P.; Kock, A.; Koppe, R.; Malien, F.; Ostrau, C. Dissolved methane during hypoxic events at the Boknis Eck time series station (Eckernförde Bay, SW Baltic Sea). Biogeosciences 2010, 7, 1279–1284. [Google Scholar] [CrossRef]
- Steinle, L.; Maltby, J.; Treude, T.; Kock, A.; Bange, H.W.; Engbersen, N.; Zopfi, J.; Lehmann, M.F.; Niemann, H. Effects of low oxygen concentrations on aerobic methane oxidation in seasonally hypoxic coastal waters. Biogeosciences 2017, 14, 1631–1645. [Google Scholar] [CrossRef]
- Dietze, H.; Löptien, U. Retracing Hypoxia in Eckernförde Bight (Baltic Sea). Biogeosciences 2021, 18, 4243–4264. [Google Scholar] [CrossRef]
- Jensen, J.B.; Kuijpers, A.; Bennike, O.; Laier, T.; Werner, F. New geological aspects for freshwater seepage and formation in Eckernförde Bay, Western Baltic. Cont. Shelf Res. 2002, 22, 2159–2173. [Google Scholar] [CrossRef]
- Qu, F.; Yu, J.; Du, S.; Li, Y.; Lv, X.; Ning, K.; Wu, H.; Meng, L. Influences of anthropogenic cultivation on C, N and P stoichiometry of reed-dominated coastal wetlands in the Yellow River Delta. Geoderma 2014, 235, 227–232. [Google Scholar] [CrossRef]
- Wei, T.; Simko, V.; R Package ‘Corrplot’: Visualization of a Correlation Matrix. (Version 0.92). 2021. Available online: https://github.com/taiyun/corrplot (accessed on 2 July 2023).
- Sterr, H. Das Ostseelitoral von Flensburg bis Fehmarnsund: Formungs- und Entwicklungsdynamik einer Küstenlandschaft; Habilitation treatise; University of Kiel: Kiel, Germany, 1988; 465p. [Google Scholar]
- Emeis, K.C.; Struck, U.; Leipe, T.; Pollehne, F.; Kunzendorf, H.; Christiansen, C. Changes in the C, N, P burial rates in some Baltic Sea sediments over the last 150 years—Relevance to P regeneration rates and the phosphorus cycle. Mar. Geol. 2000, 167, 43–59. [Google Scholar] [CrossRef]
- Saunders, D.L.; Kalff, J. Nitrogen retention in wetlands, lakes and rivers. Hydrobiologia 2001, 443, 205–212. [Google Scholar] [CrossRef]
- Rücker, K.; Schrautzer, J. Nutrient retention function of a stream wetland complex—A high-frequency monitoring approach. Ecol. Eng. 2010, 36, 612–622. [Google Scholar] [CrossRef]
- Faganeli, J.; Malej, A.; Pezdic, J.; Malacic, V. C:N:P ratios and stable c-isotopic ratios as indicators of sources of organic-matter in the Gulf of Trieste (Northern Adriatic). Oceanol. Acta 1988, 11, 377–382. [Google Scholar]
- Karstens, S.; Buczko, U.; Jurasinski, G.; Peticzka, R.; Glatzel, S. Impact of adjacent land use on coastal wetland sediments. Sci. Total Environ. 2016, 550, 337–348. [Google Scholar] [CrossRef]
- Carman, R.; Cederwall, H. Sediments and macrofauna in the Baltic Sea—Characteristics, nutrient contents and distribution. In A Systems Analysis of the Baltic Sea; Springer: Berlin/Heidelberg, Germany, 2001; pp. 289–327. [Google Scholar]
- Yamamuro, M. Chemical tracers of sediment organic matter origins in two coastal lagoons. J. Mar. Syst. 2000, 26, 127–134. [Google Scholar] [CrossRef]
- Heiskanen, A.S.; Tallberg, P. Sedimentation and particulate nutrient dynamics along a coastal gradient from a fjord-like bay to the open sea. In Biological, Physical and Geochemical Features of Enclosed and Semi-enclosed Marine Systems, Proceedings of the Joint BMB 15 and ECSA 27 Symposium, Åland Islands, Finland, 9–13 June 1997; Springer: Dordrecht, The Netherlands, 1999; pp. 127–140. [Google Scholar]
- Łukawska-Matuszewska, K.; Bolałek, J. Spatial distribution of phosphorus forms in sediments in the Gulf of Gdańsk (southern Baltic Sea). Cont. Shelf Res. 2008, 28, 977–990. [Google Scholar] [CrossRef]
- Chen, D.; Ke, Z.; Tan, Y. Distribution of C/N/P stoichiometry in suspended particulate matter and surface sediment in a bay under serious anthropogenic influence: Daya Bay, China. Environ. Sci. Pollut. Res. 2021, 28, 29177–29187. [Google Scholar] [CrossRef] [PubMed]
- Giordani, G.; Bartoli, M.; Cattadori, M.; Viaroli, P. Sulphide release from anoxic sediments in relation to iron availability and organic matter recalcitrance and its effects on inorganic phosphorus recycling. Hydrobiologia 1996, 329, 211–222. [Google Scholar] [CrossRef]
- Correll, D.L. The role of phosphorus in the eutrophication of receiving waters: A review. J. Environ. Qual. 1998, 27, 261–266. [Google Scholar] [CrossRef]
- Heijs, S.K.; Azzoni, R.; Giordani, G.; Jonkers, H.M.; Nizzoli, D.; Viaroli, V.; van Gemerden, H. Sulphide-induced release of phosphate from sediments of coastal lagoons and the possible relation to the disappearance of Ruppia sp. Aquat. Microb. Ecol. 2000, 23, 85–95. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, C.; Ji, L.; Liu, Y.; Xiao, J.; Cao, X.; Zhou, Y. Cause and effect of N/P ratio decline with eutrophication aggravation in shallow lakes. Sci. Total Environ. 2018, 627, 1294–1302. [Google Scholar] [CrossRef]
- Whiticar, M.J. Diagenetic relationships of methanogenesis, nutrients, acoustic turbidity, pockmarks and freshwater seepages in Eckernförde Bay. Mar. Geol. 2002, 182, 29–53. [Google Scholar] [CrossRef]
- Matthäus, W.; Ulrich Lass, H. The recent salt inflow into the Baltic Sea. J. Phys. Oceanogr. 1995, 25, 280–286. [Google Scholar] [CrossRef]
- Lennartz, S.T.; Lehmann, A.; Herrford, J.; Malien, F.; Hansen, H.P.; Biester, H.; Bange, H.W. Long-term trends at the Boknis Eck time series station (Baltic Sea), 1957–2013: Does climate change counteract the decline in eutrophication? Biogeosciences 2014, 11, 6323–6339. [Google Scholar] [CrossRef]
- Ringbom, H.; Bohman, B.; Ilvessalo, S. Combatting eutrophication in the Baltic Sea: Legal aspects of sea-based engineering measures. Brill Res. Perspect. Law Sea 2018, 2, 1–96. [Google Scholar] [CrossRef]
- Boesch, D.F. Barriers and bridges in abating coastal eutrophication. Front. Mar. Sci. 2019, 6, 123. [Google Scholar] [CrossRef]
- Ritzenhofen, L.; Schumacher, J.; Karstens, S.; Schernewski, G. Ecosystem service assessments within the EU water framework directive: Marine mussel cultivation as a controversial measure. Appl. Sci. 2022, 12, 1871. [Google Scholar] [CrossRef]
- Duarte, C.M.; Krause-Jensen, D. Intervention options to accelerate ecosystem recovery from coastal eutrophication. Front. Mar. Sci. 2018, 5, 470. [Google Scholar] [CrossRef]
- Duarte, C.M.; Losada, I.J.; Hendriks, I.E.; Mazarrasa, I.; Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Chang. 2013, 3, 961–968. [Google Scholar] [CrossRef]
- Trepel, M.; Kluge, W. WETTRANS: A flow-path-oriented decision-support system for the assessment of water and nitrogen exchange in riparian peatlands. Hydrol. Process. 2004, 18, 357–371. [Google Scholar] [CrossRef]
- Jickells, T.D.; Andrews, J.E.; Parkes, D.J.; Suratman, S.; Aziz, A.A.; Hee, Y.Y. Nutrient transport through estuaries: The importance of the estuarine geography. Estuar. Coast. Shelf Sci. 2014, 150, 215–229. [Google Scholar] [CrossRef]
- Andreu, V.; Gimeno-García, E.; Pascual, J.A.; Vazquez-Roig, P.; Picó, Y. Presence of pharmaceuticals and heavy metals in the waters of a Mediterranean coastal wetland: Potential interactions and the influence of the environment. Sci. Total Environ. 2016, 540, 278–286. [Google Scholar] [CrossRef]
- Vazquez-Roig, P.; Andreu, V.; Onghena, M.; Blasco, C.; Picó, Y. Assessment of the occurrence and distribution of pharmaceuticals in a Mediterranean wetland (L’Albufera, Valencia, Spain) by LC-MS/MS. Anal. Bioanal. Chem. 2011, 400, 1287–1301. [Google Scholar] [CrossRef]
Site | Bathymetry | C [%] | N [%] | P [%] |
---|---|---|---|---|
Aschau | (behind outlet) | 0.092 ± 0.018 | 0.009 ± 0.002 | 0.007 ± 0.001 |
Aschau | <8 m | 2.970 ± 0.333 | 0.176 ± 0.016 | 0.046 ± 0.001 |
Aschau | <12 m | 2.656 ± 0.119 | 0.119 ± 0.015 | 0.043 ± 0.002 |
Goossee | (behind outlet) | 0.589 ± 0.034 | 0.013 ± 0.002 | 0.019 ± 0.001 |
Goossee | <8 m | 0.093 ± 0.014 | 0.011 ± 0.002 | 0.016 ± 0.001 |
Goossee | <12 m | 0.948 ± 0.073 | 0.038 ± 0.006 | 0.025 ± 0.004 |
Hemmelmark | (behind outlet) | 0.405 ± 0.017 | 0.008 ± 0.001 | 0.022 ± 0.005 |
Hemmelmark | <8 m | 1.271 ± 0.694 | 0.072 ± 0.026 | 0.029 ± 0.005 |
Hemmelmark | <12 m | 1.865 ± 0.372 | 0.102 ± 0.015 | 0.041 ± 0.002 |
Site | Bathymetry | RCN | RCP | RNP | RCNP |
---|---|---|---|---|---|
Aschau | (behind outlet) | 12.50 ± 1.77 | 13.44 ± 0.54 | 2.85 ± 0.54 | 13.4:2.9:1 |
Aschau | <8 m | 19.64 ± 0.79 | 63.96 ± 4.49 | 8.40 ± 0.45 | 63.9:8.4:1 |
Aschau | <12 m | 26.16 ± 1.97 | 61.61 ± 2.15 | 6.11 ± 0.52 | 61.6:6.1:1 |
Goossee | (behind outlet) | 55.34 ± 8.47 | 30.37 ± 2.14 | 1.45 ± 0.25 | 30.4:1.5:1 |
Goossee | <8 m | 9.49 ± 0.31 | 5.66 ± 0.61 | 1.54 ± 0.13 | 5.7:1.5:1 |
Goossee | <12 m | 29.13 ± 2.63 | 37.83 ± 3.99 | 3.35 ± 0.20 | 37.8:3.4:1 |
Hemmelmark | (behind outlet) | 59.74 ± 7.92 | 19.37 ± 3.52 | 0.87 ± 0.26 | 19.4:0.9:1 |
Hemmelmark | <8 m | 19.67 ± 3.45 | 41.88 ± 13.28 | 5.36 ± 0.84 | 41.9:5.4:1 |
Hemmelmark | <12 m | 21.39 ± 3.55 | 44.89 ± 6.05 | 5.46 ± 0.47 | 44.9:5.5:1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karstens, S.; Friedrich, J.; Geuer, J.K.; Grosser, K.; Schneider von Deimling, J. Indications from C:N:P Ratios in Surface Sediments along Land-to-Sea Gradients to Support Coastal Nutrient Management. Coasts 2023, 3, 414-425. https://doi.org/10.3390/coasts3040025
Karstens S, Friedrich J, Geuer JK, Grosser K, Schneider von Deimling J. Indications from C:N:P Ratios in Surface Sediments along Land-to-Sea Gradients to Support Coastal Nutrient Management. Coasts. 2023; 3(4):414-425. https://doi.org/10.3390/coasts3040025
Chicago/Turabian StyleKarstens, Svenja, Jenny Friedrich, Jana K. Geuer, Katharina Grosser, and Jens Schneider von Deimling. 2023. "Indications from C:N:P Ratios in Surface Sediments along Land-to-Sea Gradients to Support Coastal Nutrient Management" Coasts 3, no. 4: 414-425. https://doi.org/10.3390/coasts3040025
APA StyleKarstens, S., Friedrich, J., Geuer, J. K., Grosser, K., & Schneider von Deimling, J. (2023). Indications from C:N:P Ratios in Surface Sediments along Land-to-Sea Gradients to Support Coastal Nutrient Management. Coasts, 3(4), 414-425. https://doi.org/10.3390/coasts3040025