Detection of Beach–Dune Geomorphic Changes by Means of Satellite and Unmanned Aerial Vehicle Data: The Case of Altamura Island in the Gulf of California
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Wind and Rainfall Data
2.3. Field Survey and Preliminary Data Collection
2.4. UAV Geomorphic Change Detection
2.5. Airborne LiDAR and Satellite-Based CoastSat Assessment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tershy, B.R.; Shen, K.-W.; Newton, K.M.; Holmes, N.D.; Croll, D.A. The Importance of Islands for the Protection of Biological and Linguistic Diversity. Bioscience 2015, 65, 592–597. [Google Scholar] [CrossRef]
- Kindeberg, T.; Almström, B.; Skoog, M.; Olsson, P.A.; Hollander, J. Toward a Multifunctional Nature-based Coastal Defense: A Review of the Interaction between Beach Nourishment and Ecological Restoration. Nord. J. Bot. 2023, 2023, e03751. [Google Scholar] [CrossRef]
- Defeo, O.; McLachlan, A.; Schoeman, D.S.; Schlacher, T.A.; Dugan, J.; Jones, A.; Lastra, M.; Scapini, F. Threats to Sandy Beach Ecosystems: A Review. Estuar. Coast. Shelf. Sci. 2009, 81, 1–12. [Google Scholar] [CrossRef]
- Castillo-Guerrero, J.A.; González-Medina, E.; Fernández, G. Seabird Colonies of the Small Islands of Bahia Santa Maria-La Reforma, Sinaloa, Mexico. Waterbirds 2014, 4, 439–445. [Google Scholar] [CrossRef]
- Valderrama-Landeros, L.; Flores-de-Santiago, F. Assessing Coastal Erosion and Accretion Trends along Two Contrasting Subtropical Rivers Based on Remote Sensing Data. Ocean Coast. Manag. 2019, 169, 58–67. [Google Scholar] [CrossRef]
- Yekeen, S.T.; Balogun, A.; Aina, Y.A. A Review of the Development in the Remote Sensing of Sand Dunes. Sand Dunes of the Northern Hemisphere: Distribution, Formation, Migration and Management. In Sand Dunes of the Northern Hemisphere: Distribution, Formation, Migration and Management; Qi, L., Gaur, M.K., Squires, V.R., Eds.; CRC Taylor and Francis Group: Abingdon, UK, 2023; Volume 1, pp. 1–39. [Google Scholar]
- Vimpere, L. Parabolic Dune Distribution, Morphology and Activity during the Last 20,000 Years: A Global Overview. Earth Surf. Process Landf. 2023. [Google Scholar] [CrossRef]
- López-Saavedra, M.; Martí, J. Reviewing the Multi-Hazard Concept. Application to Volcanic Islands. Earth Sci. Rev. 2023, 236, 104286. [Google Scholar] [CrossRef]
- Mury, A.; Collin, A.; James, D. Morpho–Sedimentary Monitoring in a Coastal Area, from 1D to 2.5D, Using Airborne Drone Imagery. Drones 2019, 3, 62. [Google Scholar] [CrossRef]
- Fabbri, S.; Grottoli, E.; Armaroli, C.; Ciavola, P. Using High-Spatial Resolution UAV-Derived Data to Evaluate Vegetation and Geomorphological Changes on a Dune Field Involved in a Restoration Endeavour. Remote Sens. 2021, 13, 1987. [Google Scholar] [CrossRef]
- Cook, K.L. An Evaluation of the Effectiveness of Low-Cost UAVs and Structure from Motion for Geomorphic Change Detection. Geomorphology 2017, 278, 195–208. [Google Scholar] [CrossRef]
- Yetemen, O.; Istanbulluoglu, E.; Flores-Cervantes, J.H.; Vivoni, E.R.; Bras, R.L. Ecohydrologic Role of Solar Radiation on Landscape Evolution. Water Resour. Res. 2015, 51, 1127–1157. [Google Scholar] [CrossRef]
- Gonçalves, J.A.; Henriques, R. UAV Photogrammetry for Topographic Monitoring of Coastal Areas. ISPRS J. Photogramm. Remote Sens. 2015, 104, 101–111. [Google Scholar] [CrossRef]
- van der Meulen, F.; IJff, S.; van Zetten, R. Nature-based Solutions for Coastal Adaptation Management, Concepts and Scope, an Overview. Nord. J. Bot. 2023, 2023. [Google Scholar] [CrossRef]
- McLeman, R. Migration and Displacement Risks Due to Mean Sea-Level Rise. Bull. At. Sci. 2018, 74, 148–154. [Google Scholar] [CrossRef]
- Powell, E.J.; Tyrrell, M.C.; Milliken, A.; Tirpak, J.M.; Staudinger, M.D. A Review of Coastal Management Approaches to Support the Integration of Ecological and Human Community Planning for Climate Change. J. Coast. Conserv. 2019, 23, 1–18. [Google Scholar] [CrossRef]
- Perkins, M.J.; Ng, T.P.T.; Dudgeon, D.; Bonebrake, T.C.; Leung, K.M.Y. Conserving Intertidal Habitats: What is the Potential of Ecological Engineering to Mitigate Impacts of Coastal Structures? Estuar. Coast. Shelf. Sci. 2015, 167, 504–515. [Google Scholar] [CrossRef]
- Barnard, P.L.; Short, A.D.; Harley, M.D.; Splinter, K.D.; Vitousek, S.; Turner, I.L.; Allan, J.; Banno, M.; Bryan, K.R.; Doria, A.; et al. Coastal Vulnerability across the Pacific Dominated by El Niño/Southern Oscillation. Nat. Geosci. 2015, 8, 801–807. [Google Scholar] [CrossRef]
- van Wiechen, P.P.J.; de Vries, S.; Reniers, A.J.H.M.; Aarninkhof, S.G.J. Dune Erosion during Storm Surges: A Review of the Observations, Physics and Modelling of the Collision Regime. Coast. Eng. 2023, 186, 104383. [Google Scholar] [CrossRef]
- Adade, R.; Aibinu, A.M.; Ekumah, B.; Asaana, J. Unmanned Aerial Vehicle (UAV) Applications in Coastal Zone Management—a Review. Environ. Monit. Assess. 2021, 193, 154. [Google Scholar] [CrossRef]
- Valderrama-Landeros, L.; Flores-de-Santiago, F.; Kovacs, J.M.; Flores-Verdugo, F. An Assessment of Commonly Employed Satellite-Based Remote Sensors for Mapping Mangrove Species in Mexico Using an NDVI-Based Classification Scheme. Environ. Monit. Assess. 2018, 190, 23. [Google Scholar] [CrossRef]
- Hugenholtz, C.H.; Whitehead, K.; Brown, O.W.; Barchyn, T.E.; Moorman, B.J.; LeClair, A.; Riddell, K.; Hamilton, T. Geomorphological Mapping with a Small Unmanned Aircraft System (SUAS): Feature Detection and Accuracy Assessment of a Photogrammetrically-Derived Digital Terrain Model. Geomorphology 2013, 194, 16–24. [Google Scholar] [CrossRef]
- Guisado-Pintado, E.; Jackson, D.W.T.; Rogers, D. 3D Mapping Efficacy of a Drone and Terrestrial Laser Scanner over a Temperate Beach-Dune Zone. Geomorphology 2019, 328, 157–172. [Google Scholar] [CrossRef]
- Flores-de-Santiago, F.; Rodríguez-Sobreyra, R.; Álvarez-Sánchez, L.F.; Valderrama-Landeros, L.; Amezcua, F.; Flores-Verdugo, F. Understanding the Natural Expansion of White Mangrove (Laguncularia racemosa) in an Ephemeral Inlet Based on Geomorphological Analysis and Remote Sensing Data. J. Environ. Manag. 2023, 338, 117820. [Google Scholar] [CrossRef]
- Malerba, M.E.; Duarte de Paula Costa, M.; Friess, D.A.; Schuster, L.; Young, M.A.; Lagomasino, D.; Serrano, O.; Hickey, S.M.; York, P.H.; Rasheed, M.; et al. Remote Sensing for Cost-Effective Blue Carbon Accounting. Earth Sci. Rev. 2023, 238, 104337. [Google Scholar] [CrossRef]
- Pham, T.D.; Ha, N.T.; Saintilan, N.; Skidmore, A.; Phan, D.C.; Le, N.N.; Viet, H.L.; Takeuchi, W.; Friess, D.A. Advances in Earth Observation and Machine Learning for Quantifying Blue Carbon. Earth Sci. Rev. 2023, 243, 104501. [Google Scholar] [CrossRef]
- Chen, B.; Yang, Y.; Wen, H.; Ruan, H.; Zhou, Z.; Luo, K.; Zhong, F. High-Resolution Monitoring of Beach Topography and Its Change Using Unmanned Aerial Vehicle Imagery. Ocean Coast. Manag. 2018, 160, 103–116. [Google Scholar] [CrossRef]
- Zhang, J.; Virk, S.; Porter, W.; Kenworthy, K.; Sullivan, D.; Schwartz, B. Applications of Unmanned Aerial Vehicle Based Imagery in Turfgrass Field Trials. Front. Plant Sci. 2019, 10, 279. [Google Scholar] [CrossRef]
- Stecz, W.; Gromada, K. UAV Mission Planning with SAR Application. Sensors 2020, 20, 1080. [Google Scholar] [CrossRef]
- Wang, D.; Wan, B.; Liu, J.; Su, Y.; Guo, Q.; Qiu, P.; Wu, X. Estimating Aboveground Biomass of the Mangrove Forests on Northeast Hainan Island in China Using an Upscaling Method from Field Plots, UAV-LiDAR Data and Sentinel-2 Imagery. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 101986. [Google Scholar] [CrossRef]
- Jaud, M.; Delacourt, C.; Le Dantec, N.; Allemand, P.; Ammann, J.; Grandjean, P.; Nouaille, H.; Prunier, C.; Cuq, V.; Augereau, E.; et al. Diachronic UAV Photogrammetry of a Sandy Beach in Brittany (France) for a Long-Term Coastal Observatory. ISPRS Int. J. Geoinf. 2019, 8, 267. [Google Scholar] [CrossRef]
- Almeida, L.; Almar, R.; Bergsma, E.; Berthier, E.; Baptista, P.; Garel, E.; Dada, O.; Alves, B. Deriving High Spatial-Resolution Coastal Topography from Sub-Meter Satellite Stereo Imagery. Remote Sens. 2019, 11, 590. [Google Scholar] [CrossRef]
- Chowdhury, S.; Dey, P.; Joel-Edgar, S.; Bhattacharya, S.; Rodriguez-Espindola, O.; Abadie, A.; Truong, L. Unlocking the Value of Artificial Intelligence in Human Resource Management through AI Capability Framework. Hum. Resour. Manag. Rev. 2023, 33, 100899. [Google Scholar] [CrossRef]
- CONABIO. Distribución de Los Manglares En México En 2020 Escala: 1:50000. Edición: 1; CONABIO: Ciudad de México, Mexico, 2021. [Google Scholar]
- Rivera-Arriaga, E.; Villalobos, G.J. The Coast of Mexico: Approaches for its management. Ocean. Coast. Manag. 2001, 44, 729–756. [Google Scholar] [CrossRef]
- Ruiz-Luna, A.; Cervantes-Escobar, A.; Berlanga-Robles, C. Assessing Distribution Patterns, Extent, and Current Condition of Northwest Mexico Mangroves. Wetlands 2010, 30, 717–723. [Google Scholar] [CrossRef]
- De-León-Herrera, R.; Flores-Verdugo, F.; Flores-de-Santiago, F.; González-Farías, F. Nutrient Removal in a Closed Silvofishery System Using Three Mangrove Species (Avicennia Germinans, Laguncularia Racemosa, and Rhizophora Mangle). Mar. Pollut. Bull. 2015, 91, 243–248. [Google Scholar] [CrossRef]
- Flores-Verdugo, F.; Ramírez-Barrón, E.; Flores-de-Santiago, F. Hydroperiod Enhancement Using Underground Pipes for the Efficient Removal of Hypersaline Conditions in a Semiarid Coastal Lagoon. Cont. Shelf. Res. 2018, 162, 39–47. [Google Scholar] [CrossRef]
- Lavín, M.F.; Castro, R.; Beier, E.; Godínez, V.M. Mesoscale Eddies in the Southern Gulf of California during Summer: Characteristics and Interaction with the Wind Stress. J. Geophys. Res. Ocean. 2013, 118, 1367–1381. [Google Scholar] [CrossRef]
- Klein Hentz, Â.; Kinder, P.; Hubbart, J.; Kellner, E. Accuracy and Optimal Altitude for Physical Habitat Assessment (PHA) of Stream Environments Using Unmanned Aerial Vehicles (UAV). Drones 2018, 2, 20. [Google Scholar] [CrossRef]
- Sona, G.; Pinto, L.; Pagliari, D.; Passoni, D.; Gini, R. Experimental Analysis of Different Software Packages for Orientation and Digital Surface Modelling from UAV Images. Earth Sci. Inform. 2014, 7, 97–107. [Google Scholar] [CrossRef]
- Flores-de-Santiago, F.; Valderrama-Landeros, L.; Rodríguez-Sobreyra, R.; Flores-Verdugo, F. Assessing the Effect of Flight Altitude and Overlap on Orthoimage Generation for UAV Estimates of Coastal Wetlands. J. Coast. Conserv. 2020, 24, 35. [Google Scholar] [CrossRef]
- Casella, E.; Rovere, A.; Pedroncini, A.; Mucerino, L.; Casella, M.; Cusati, L.A.; Vacchi, M.; Ferrari, M.; Firpo, M. Study of Wave Runup Using Numerical Models and Low-Altitude Aerial Photogrammetry: A Tool for Coastal Management. Estuar. Coast. Shelf. Sci. 2014, 149, 160–167. [Google Scholar] [CrossRef]
- Clapuyt, F.; Vanacker, V.; Van Oost, K. Reproducibility of UAV-Based Earth Topography Reconstructions Based on Structure-from-Motion Algorithms. Geomorphology 2016, 260, 4–15. [Google Scholar] [CrossRef]
- Vos, K.; Splinter, K.D.; Harley, M.D.; Simmons, J.A.; Turner, I.L. CoastSat: A Google Earth Engine-Enabled Python Toolkit to Extract Shorelines from Publicly Available Satellite Imagery. Environ. Model. Softw. 2019, 122, 104528. [Google Scholar] [CrossRef]
- Himmelstoss, E.A.; Henderson, R.E.; Kratzmann, M.G.; Farris, A.S. Digital Shoreline Analysis System (DSAS) Version 5.0 User Guide; US Geological Survey: Reston, VA, USA, 2018. [Google Scholar]
- Bheeroo, R.A.; Chandrasekar, N.; Kaliraj, S.; Magesh, N.S. Shoreline Change Rate and Erosion Risk Assessment along the Trou Aux Biches–Mont Choisy Beach on the Northwest Coast of Mauritius Using GIS-DSAS Technique. Environ. Earth Sci. 2016, 75, 444. [Google Scholar] [CrossRef]
- Kalacska, M.; Lucanus, O.; Arroyo-Mora, J.; Laliberté, É.; Elmer, K.; Leblanc, G.; Groves, A. Accuracy of 3D Landscape Reconstruction without Ground Control Points Using Different UAS Platforms. Drones 2020, 4, 13. [Google Scholar] [CrossRef]
- Jayson-Quashigah, P.-N.; Appeaning Addo, K.; Amisigo, B.; Wiafe, G. Assessment of Short-Term Beach Sediment Change in the Volta Delta Coast in Ghana Using Data from Unmanned Aerial Vehicles (Drone). Ocean Coast. Manag. 2019, 182, 104952. [Google Scholar] [CrossRef]
- Mancini, F.; Dubbini, M.; Gattelli, M.; Stecchi, F.; Fabbri, S.; Gabbianelli, G. Using Unmanned Aerial Vehicles (UAV) for High-Resolution Reconstruction of Topography: The Structure from Motion Approach on Coastal Environments. Remote Sens. 2013, 5, 6880–6898. [Google Scholar] [CrossRef]
- Yu, J.J.; Kim, D.W.; Lee, E.J.; Son, S.W. Determining the Optimal Number of Ground Control Points for Varying Study Sites through Accuracy Evaluation of Unmanned Aerial System-Based 3D Point Clouds and Digital Surface Models. Drones 2020, 4, 49. [Google Scholar] [CrossRef]
- Long, N.; Millescamps, B.; Guillot, B.; Pouget, F.; Bertin, X. Monitoring the Topography of a Dynamic Tidal Inlet Using UAV Imagery. Remote Sens. 2016, 8, 387. [Google Scholar] [CrossRef]
- Harwin, S.; Lucieer, A. Assessing the Accuracy of Georeferenced Point Clouds Produced via Multi-View Stereopsis from Unmanned Aerial Vehicle (UAV) Imagery. Remote Sens. 2012, 4, 1573–1599. [Google Scholar] [CrossRef]
- Casella, E.; Rovere, A.; Pedroncini, A.; Stark, C.P.; Casella, M.; Ferrari, M.; Firpo, M. Drones as Tools for Monitoring Beach Topography Changes in the Ligurian Sea (NW Mediterranean). Geo-Mar. Lett. 2016, 36, 151–163. [Google Scholar] [CrossRef]
- Otto, R.; Krüsi, B.O.; Kienast, F. Degradation of an Arid Coastal Landscape in Relation to Land Use Changes in Southern Tenerife (Canary Islands). J. Arid Environ. 2007, 70, 527–539. [Google Scholar] [CrossRef]
- Valderrama-Landeros, L.; Blanco y Correa, M.; Flores-Verdugo, F.; Álvarez-Sánchez, L.F.; Flores-de-Santiago, F. Spatiotemporal Shoreline Dynamics of Marismas Nacionales, Pacific Coast of Mexico, Based on a Remote Sensing and GIS Mapping Approach. Environ. Monit. Assess. 2020, 192, 123. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Sun, X.; Su, Y.; Guan, H.; Sun, Q.; Kelly, M.; Guo, Q. Development and Performance Evaluation of a Very Low-Cost UAV-Lidar System for Forestry Applications. Remote Sens. 2020, 13, 77. [Google Scholar] [CrossRef]
Flight Altitude (m) | Spatial Resolution (cm/Pixel) | Cloud Density (Points/m2) | Processing Time (Minutes) | RMSEZ (m) | RMSEH (m) |
---|---|---|---|---|---|
40 | 1.93 | 2690 | 653 | 0.503 | 3.236 |
50 | 2.15 | 2170 | 419 | 0.700 | 3.682 |
60 | 2.18 | 2110 | 355 | 0.723 | 3.809 |
70 | 2.46 | 1660 | 260 | 0.856 | 4.899 |
80 | 2.75 | 1320 | 253 | 1.033 | 5.029 |
90 | 2.78 | 1300 | 158 | 1.039 | 5.306 |
100 | 3.08 | 1060 | 156 | 1.065 | 5.733 |
110 | 3.29 | 925 | 149 | 1.097 | 5.873 |
120 | 3.3 | 921 | 121 | 1.121 | 6.146 |
130 | 3.57 | 783 | 90 | 1.137 | 6.594 |
140 | 3.9 | 657 | 87 | 1.138 | 6.622 |
150 | 4.19 | 571 | 71 | 1.143 | 6.672 |
160 | 4.43 | 510 | 70 | 1.173 | 6.691 |
170 | 5.27 | 361 | 70 | 1.227 | 6.835 |
180 | 5.6 | 319 | 68 | 1.244 | 7.334 |
190 | 5.9 | 287 | 63 | 1.255 | 7.426 |
200 | 6.1 | 269 | 62 | 1.278 | 7.757 |
210 | 6.31 | 251 | 59 | 1.286 | 8.054 |
220 | 6.34 | 234 | 57 | 1.340 | 8.137 |
230 | 9.39 | 113 | 32 | 1.378 | 8.819 |
240 | 9.88 | 102 | 22 | 1.635 | 8.890 |
Along/across path overlap (%) at 110 m | Spatial resolution (cm/pixel) | Cloud density (points/m2) | Processing time (minutes) | RMSEZ (m) | RMSEH (m) |
60/60 | 3.3 | 917 | 43 | 1.592 | 6.426 |
70/70 | 3.3 | 919 | 53 | 1.070 | 4.711 |
80/80 | 3.3 | 925 | 118 | 0.518 | 2.967 |
90/90 | 3.3 | 927 | 429 | 0.222 | 2.705 |
70/60 | 3.3 | 917 | 53 | 1.277 | 5.640 |
70/80 | 3.3 | 921 | 88 | 1.041 | 5.019 |
70/90 | 3.3 | 926 | 164 | 0.879 | 5.195 |
80/60 | 3.3 | 916 | 71 | 1.124 | 5.333 |
80/90 | 3.3 | 929 | 224 | 0.800 | 4.390 |
90/60 | 3.3 | 916 | 133 | 1.120 | 5.616 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores-de-Santiago, F.; Valderrama-Landeros, L.; Villaseñor-Aguirre, J.; Álvarez-Sánchez, L.F.; Rodríguez-Sobreyra, R.; Flores-Verdugo, F. Detection of Beach–Dune Geomorphic Changes by Means of Satellite and Unmanned Aerial Vehicle Data: The Case of Altamura Island in the Gulf of California. Coasts 2023, 3, 383-400. https://doi.org/10.3390/coasts3040023
Flores-de-Santiago F, Valderrama-Landeros L, Villaseñor-Aguirre J, Álvarez-Sánchez LF, Rodríguez-Sobreyra R, Flores-Verdugo F. Detection of Beach–Dune Geomorphic Changes by Means of Satellite and Unmanned Aerial Vehicle Data: The Case of Altamura Island in the Gulf of California. Coasts. 2023; 3(4):383-400. https://doi.org/10.3390/coasts3040023
Chicago/Turabian StyleFlores-de-Santiago, Francisco, Luis Valderrama-Landeros, Julen Villaseñor-Aguirre, León F. Álvarez-Sánchez, Ranulfo Rodríguez-Sobreyra, and Francisco Flores-Verdugo. 2023. "Detection of Beach–Dune Geomorphic Changes by Means of Satellite and Unmanned Aerial Vehicle Data: The Case of Altamura Island in the Gulf of California" Coasts 3, no. 4: 383-400. https://doi.org/10.3390/coasts3040023
APA StyleFlores-de-Santiago, F., Valderrama-Landeros, L., Villaseñor-Aguirre, J., Álvarez-Sánchez, L. F., Rodríguez-Sobreyra, R., & Flores-Verdugo, F. (2023). Detection of Beach–Dune Geomorphic Changes by Means of Satellite and Unmanned Aerial Vehicle Data: The Case of Altamura Island in the Gulf of California. Coasts, 3(4), 383-400. https://doi.org/10.3390/coasts3040023