Coastal Dynamics Analysis Based on Orbital Remote Sensing Big Data and Multivariate Statistical Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Processing Steps
2.2.1. Orbital Remote Sensing Images
2.2.2. Database
2.2.3. Multivariate Statistical Models
3. Results
3.1. Description and Geographic Distribution
3.2. Associations, Dependency Relations, and Clusters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ynoue, R.Y.; Reboita, M.S.; Ambrizzi, T.; da Silva, G.A.M. Meteorologia: Noções Básicas; Oficina de Textos: Sao Paolo, Brazil, 2017. [Google Scholar]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Clarke, B.; Otto, F.; Stuart-Smith, R.; Harrington, L. Extreme weather impacts of climate change: An attribution perspective. Environ. Res. Clim. 2022, 1, 012001. [Google Scholar] [CrossRef]
- Cai, W.; Jia, F.; Li, S.; Purich, A.; Wang, G.; Wu, L.; Gan, B.; Santoso, A.; Geng, T.; Ng, B.; et al. Antarctic shelf ocean warming and sea ice melt affected by projected El Niño changes. Nat. Clim. Chang. 2023, 13, 235–239. [Google Scholar] [CrossRef]
- Prandi, P.; Meyssignac, B.; Ablain, M.; Spada, G.; Ribes, A.; Benveniste, J. Local sea level trends, accelerations and uncertainties over 1993–2019. Sci. Data 2021, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Kirezci, E.; Young, I.R.; Ranasinghe, R.; Muis, S.; Nicholls, R.J.; Lincke, D.; Hinkel, J. Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st Century. Sci. Rep. 2020, 10, 11629. [Google Scholar] [CrossRef] [PubMed]
- Taherkhani, M.; Vitousek, S.; Barnard, P.L.; Frazer, N.; Anderson, T.R.; Fletcher, C.H. Sea-level rise exponentially increases coastal flood frequency. Sci. Rep. 2020, 10, 6466. [Google Scholar] [CrossRef] [Green Version]
- Crespo, N.M.; Silva, N.P.D.; Palmeira, R.M.D.J.; Cardoso, A.A.; Kaufmann, C.L.G.; Lima, J.A.M.; Andrioni, M.; de Camargo, R.; da Rocha, R.P. Western South Atlantic Climate Experiment (WeSACEx): Extreme winds and waves over the Southeastern Brazilian sedimentary basins. Clim. Dyn. 2023, 60, 571–588. [Google Scholar] [CrossRef]
- Da Silva, N.P.; Crespo, N.M.; Kaufmann, C.L.G.; Lima, J.A.M.; Andrioni, M.; de Camargo, R.; da Rocha, R.P. Adjustment of extreme wind speed in regional climate downscaling over southwestern South Atlantic. Int. J. Climatol. 2022, 42, 9994–10008. [Google Scholar] [CrossRef]
- Hsu, C.-E.; Serafin, K.; Yu, X.; Hegermiller, C.; Warner, J.C.; Olabarrieta, M. Total water levels along the South Atlantic Bight during three along-shelf propagating tropical cyclones: Relative contributions of storm surge and wave runup. Nat. Hazards Earth Syst. Sci. 2023, 2023, 1–31. [Google Scholar] [CrossRef]
- Tadesse, M.G.; Wahl, T.; Rashid, M.M.; Dangendorf, S.; Rodríguez-Enríquez, A.; Talke, S.A. Long-term trends in storm surge climate derived from an ensemble of global surge reconstructions. Sci. Rep. 2022, 12, 13307. [Google Scholar] [CrossRef]
- Barnard, P.L.; Erikson, L.H.; Foxgrover, A.C.; Hart, J.A.F.; Limber, P.; O’Neill, A.C.; van Ormondt, M.; Vitousek, S.; Wood, N.; Hayden, M.K. Dynamic flood modeling essential to assess the coastal impacts of climate change. Sci. Rep. 2019, 9, 4309. [Google Scholar] [CrossRef] [Green Version]
- Da Veiga Lima, F.A.; de Souza, D.C. Climate change, seaports, and coastal management in Brazil: An overview of the policy framework. Reg. Stud. Mar. Sci. 2022, 52, 102365. [Google Scholar] [CrossRef]
- Milad, B.; Ibrahim, Z.Z.; Shattri, M.; Latifah, A.M.; Akhir, M.F.; Talaat, W.I.A.W.; Wolf, I.D. Hazard Assessment and Modeling of Erosion and Sea Level Rise under Global Climate Change Conditions for Coastal City Management. Nat. Hazards Rev. 2023, 24, 04022038. [Google Scholar]
- Simões, R.S.; Calliari, L.J.; de Figueiredo, S.A.; de Oliveira, U.R.; de Almeida, L.P.M. Coastline dynamics in the extreme south of Brazil and their socio-environmental impacts. Ocean Coast. Manag. 2022, 230, 106373. [Google Scholar] [CrossRef]
- Reguero, B.G.; Griggs, G. Adaptation to Coastal Climate Change and Sea-Level Rise. Water 2022, 14, 996. [Google Scholar] [CrossRef]
- Emery, K.O. A simple method of measuring beach profiles. Limnol. Ocean. 1961, 6, 90–93. [Google Scholar] [CrossRef]
- Birkemeier, W.A.; DeWall, A.E.; Gorbics, C.S.; Miller, H.C. A User’s Guide to CERC’s Field Research Facility; Coastal Engineering Research Center Fort Belvoir Virginia U.S.: Fort Belvoir, VA, USA, 1981. [Google Scholar]
- Muehe, D. Geomorfologia costeira. In Geomorfologia: Exercícios, Técnicas e Aplicações; Cunha, S.B., Guerra, A.J.T., Eds.; Editora Bertrand Brasil S.A.: Rio De Janeiro, Brazil, 2002; pp. 191–238. [Google Scholar]
- Stein, L.P.; Siegle, E. Overtopping events on seawall-backed beaches: Santos Bay, SP, Brazil. Reg. Stud. Mar. Sci. 2020, 40, 101492. [Google Scholar] [CrossRef]
- Ferreira, A.T.D.S.; Amaro, V.E.; Santos, M.S.T. Geodésia aplicada à integração de dados topográficos e batimétricos na caracterização de superfícies de praia. Rev. Bras. Cartogr. 2014, 66, 167–184. [Google Scholar] [CrossRef]
- Ferreira, A.T.D.S.; Siegle, E.; Ribeiro, M.C.H.; Santos, M.S.T.; Grohmann, C.H. The dynamics of plastic pellets on sandy beaches: A new methodological approach. Mar. Environ. Res. 2021, 163, 105219. [Google Scholar] [CrossRef]
- Klemas, V. Beach Profiling and LIDAR Bathymetry: An Overview with Case Studies. J. Coast. Res. 2011, 27, 1019–1028. [Google Scholar] [CrossRef]
- Gonçalves, J.A.; Henriques, R. UAV photogrammetry for topographic monitoring of coastal areas. ISPRS J. Photogramm. Remote Sens. 2015, 104, 101–111. [Google Scholar] [CrossRef]
- Grohmann, C.H.; Garcia, G.P.B.; Affonso, A.A.; Albuquerque, R.W. Dune migration and volume change from airborne LiDAR, terrestrial LiDAR and Structure from Motion-Multi View Stereo. Comput. Geosci. 2020, 143, 104569. [Google Scholar] [CrossRef]
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S. The State of the World’s Beaches. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Mentaschi, L.; Vousdoukas, M.I.; Pekel, J.-F.; Voukouvalas, E.; Feyen, L. Global long-term observations of coastal erosion and accretion. Sci. Rep. 2018, 8, 12876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vos, K.; Harley, M.D.; Splinter, K.D.; Walker, A.; Turner, I.L. Beach Slopes from Satellite-Derived Shorelines. Geophys. Res. Lett. 2020, 47, e2020GL088365. [Google Scholar] [CrossRef]
- Tessler, M.; Goya, S.; Yoshikawa, P.H.S.; Hurtado, S.N. Erosão e Progradação do Litoral Brasileiro–São Paulo. In Erosão e Progradação no Litoral Brasileiro. Dieter Muehe (org.); Muehe, D., Ed.; MMA: Brasília, Brazil, 2018; pp. 297–346. [Google Scholar]
- Suguio, K.; Tessler, M.G. Planícies de cordões litorâneos do estado de São Paulo. Bol. IG-USP 1984, 10, 477. [Google Scholar]
- Souza, C.R.d.G. Praias Arenosas Oceânicas Do Estado De São Paulo (Brasil): Síntese Dos Conhecimentos Sobre Morfodinâmica, Sedimentologia, Transporte Costeiro E Erosão Costeira; Geography Department, University of Sao Paulo: Sao Paolo, Brazil, 2012. [Google Scholar] [CrossRef]
- Reid, J.; Seiler, L.; Siegle, E. The influence of dredging on estuarine hydrodynamics: Historical evolution of the Santos estuarine system, Brazil. Estuar. Coast. Shelf Sci. 2022, 279, 108131. [Google Scholar] [CrossRef]
- Suguio, K.; Martin, L.; Bittencourt, A.; Bittencourt, A.; Dominguez, J.; Flexor, A. Flutuações do nível do mar durante o Quaternário superior ao longo do litoral brasileiro e suas implicâncias na sedimentação costeira. Rev. Bras. Geociências 1985, 15, 273–286. [Google Scholar] [CrossRef]
- Campos, E.; Miller, J.; Müller, T.; Peterson, R. Physical Oceanography of the Southwest Atlantic Ocean. Oceanography 1995, 8, 87–91. [Google Scholar] [CrossRef]
- De Souza, R.B.; Robinson, I.S. Lagrangian and satellite observations of the Brazilian Coastal Current. Cont. Shelf Res. 2004, 24, 241–262. [Google Scholar] [CrossRef]
- Möller, O.O.; Piola, A.R.; Freitas, A.C.; Campos, E.J.D. The effects of river discharge and seasonal winds on the shelf off southeastern South America. Cont. Shelf. Res. 2008, 28, 1607–1624. [Google Scholar] [CrossRef]
- Castro Filho, B.M.; de Miranda, L.B.; de Miyao, S.Y. Condições hidrográficas na plataforma continental ao largo de Ubatuba: Variações sazonais e em média escala. Bol. Inst. Ocean 1987, 35, 135–151. [Google Scholar] [CrossRef] [Green Version]
- De Andrade, T.S.; de Oliveira Sousa, P.H.G.; Siegle, E. Vulnerability to beach erosion based on a coastal processes approach. Appl. Geogr. 2019, 102, 12–19. [Google Scholar] [CrossRef]
- Harari, J.; De Camargo, R.; França, C.A.S.; Mesquita, A.; Picarelli, S. Numerical Modeling of the Hydrodynamics in the Coastal Area of Sao Paulo State Brazil. J. Coast. Res. 2006, 39, 1560–1563. [Google Scholar]
- Pianca, C.; Mazzini, P.L.F.; Siegle, E. Brazilian offshore wave climate based on NWW3 reanalysis. Braz. J. Oceanogr. 2010, 58, 53–70. [Google Scholar] [CrossRef] [Green Version]
- Corrêa, M.R.; Xavier, L.Y.; Gonçalves, L.R.; Andrade, M.M.; de Oliveiram, M.; de Malinconico, N.; Botero, C.M.; Milanés, C.; Montero, O.P.; Defeo, O. Desafios para promoção da abordagem ecossistêmica à gestão de praias na América Latina e Caribe. Estud. Avançados 2021, 35, 219–236. [Google Scholar] [CrossRef]
- Franzen, M.O.; Fernandes, E.H.L.; Siegle, E. Impacts of coastal structures on hydro-morphodynamic patterns and guidelines towards sustainable coastal development: A case studies review. Reg. Stud. Mar. Sci. 2021, 44, 101800. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Storey, J.C.; Choate, M.J.; Lee, K. Landsat 8 operational land imager on-orbit geometric calibration and performance. Remote Sens. 2014, 6, 11127–11152. [Google Scholar] [CrossRef] [Green Version]
- Teillet, P.M.; Barker, J.L.; Markham, B.L.; Irish, R.R.; Fedosejevs, G.; Storey, J.C. Radiometric cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on tandem data sets. Remote Sens. Environ. 2001, 78, 39–54. [Google Scholar] [CrossRef] [Green Version]
- U.S. Geological Survey. Landsat Collection 1 Level 1 Landsat; U.S. Geological Survey: Reston, VI, USA, 2019.
- U.S. Geological Survey. Landsat 8 Data Users Handbook; U.S. Geological Survey: Reston, VI, USA, 2016.
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Diniz, C.; Cortinhas, L.; Pinheiro, M.L.; Sadeck, L.; Fernandes Filho, A.; Baumann, L.R.F.; Adami, M.; Souza-Filho, P.W.M. A Large-Scale Deep-Learning Approach for Multi-Temporal Aqua and Salt-Culture Mapping. Remote Sens. 2021, 13, 1415. [Google Scholar] [CrossRef]
- Pontius, R.G.; Millones, M. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Himmelstoss, E.A.; Henderson, R.E.; Kratzmann, M.G.; Farris, A.S. Digital. Digital Shoreline Analysis System (DSAS) Version 5.0 User Guide; U.S. Geological Survey: Reston, VI, USA, 2018.
- Thieler, E.R.; Hammar-Klose, E.S. National assessment of coastal vulnerability to sea-level rise: Preliminary results for the U.S. Atlantic Coast. In Open-File Report; U.S. Geological Survey: Reston, VI, USA, 1999. [Google Scholar] [CrossRef]
- Burrough, P.A.; McDonnell, R.A.; Lloyd, C.D. Principles of Geographical Information Systems; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- F-41-Descrição de Estação Maregráfica: Praticagem Santos. 2017. Available online: https://www.marinha.mil.br/chm/sites/www.marinha.mil.br.chm/files/dados_de_mare/50227_-_praticagem_santos_f-41_padrao_v1-17.pdf (accessed on 19 June 2023).
- Parreiras, T.C.; Bolfe, E.L.; Sano, E.S.; Victoria, D.D.C.; Sanches, I.D.; Vicente, L.E. Exploring the Harmonized Landsat Sentinel (hls) Datacube to Map AN Agricultural Landscape in the Brazilian Savanna. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 43, 967–973. [Google Scholar] [CrossRef]
- Flater, D. WXTide32. 2007. Available online: http://www.wxtide32.com/ (accessed on 19 June 2023).
- Bujan, N.; Cox, R.; Masselink, G. From fine sand to boulders: Examining the relationship between beach-face slope and sediment size. Mar. Geol. 2019, 417, 106012. [Google Scholar] [CrossRef]
- Box, G.E.P.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. Ser. B 1964, 26, 211–243. [Google Scholar] [CrossRef]
- Fávero, L.; Fávero, P. Análise de Dados: Técnicas Multivariadas Exploratórias com SPSS e STATA; Elsevier: Centro Rio de Janeiro, Brasil, 2017. [Google Scholar]
- Fávero, L.P.; Belfiore, P. Manual de Análise de Dados: Estatística e Modelagem Multivariada com Excel®, SPSS® e Stata®; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Fávero, L.P.L.; Belfiore, P.P.; Silva, F.L.d.; de Chan, B.L.P.P.-R.J. Análise de Dados: Modelagem Multivariada para Tomada de Decisões; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Haberman, S.J. Analysis of Qualitative Data: Introductory Topics; Academic Press, Incorporated: New York, NY, USA, 1978. [Google Scholar]
- Härdle WK, Simar L: Applied Multivariate Statistical Analysis; Springer: Berlin/Heidelberg, Germany, 2019.
- Casella, G.; Fienberg, S.; Olkin, I.; New, S.; Berlin, Y.; Barcelona, H.; London, H.K.; Paris, M.; Tokyo, S. Springer Texts in Statistics; Springer Nature: Berlin, Germany, 2006. [Google Scholar]
- Timm, N.H. Applied Multivariate Analysis; Springer: New York, NY, USA, 2002. [Google Scholar]
- Ferreira, A.T.; Amaro, V.E.; Santos, M.S.T. Imagens do AQUA-MODIS aplicadas à estimativa e Monitoramento dos valores de material particulado Em suspensão na plataforma continental do Rio Grande do Norte, nordeste do Brasil. Rev. Bras. Geomorfol. 2013, 14. [Google Scholar] [CrossRef]
- Sousa, P.H.G.O.; Siegle, E.; Tessler, M.G. Vulnerability assessment of Massaguaçú beach (SE Brazil). Ocean Coast. Manag. 2013, 77, 24–30. [Google Scholar] [CrossRef]
- Young, I.R.; Zieger, S.; Babanin, A.V. Global trends in wind speed and wave height. Science 2011, 332, 451–455. [Google Scholar] [CrossRef]
- Reguero, B.G.; Losada, I.J.; Méndez, F.J. A recent increase in global wave power as a consequence of oceanic warming. Nat. Commun. 2019, 10, 205. [Google Scholar] [CrossRef] [Green Version]
- Gramcianinov, C.B.; Campos, R.M.; de Camargo, R.; Hodges, K.I.; Guedes Soares, C.; da Silva Dias, P.L. Analysis of Atlantic extratropical storm tracks characteristics in 41 years of ERA5 and CFSR/CFSv2 databases. Ocean Eng. 2020, 216, 108111. [Google Scholar] [CrossRef]
- Gramcianinov, C.B.; de Camargo, R.; Campos, R.M.; Guedes Soares, C.; da Silva Dias, P.L. Impact of extratropical cyclone intensity and speed on the extreme wave trends in the Atlantic Ocean. Clim. Dyn. 2022, 60, 1447–1466. [Google Scholar] [CrossRef]
- Gramcianinov, C.B.; Campos, R.M.; Camargo, R. Climate Change Perspectives of the Cyclones and Oceanic Hazards in the Western South Atlantic Ocean. Arq. Ciên. Mar 2022, 55, 141–162. [Google Scholar] [CrossRef]
- Mahiques MM de Siegle, E.; Alcántara-Carrió, J.; Silva, F.G.; de Oliveira Sousa, P.H.G.; Martins, C.C. The Beaches of the State of São Paulo. In Brazilian Beach Systems; Short, A.D., Klein, A.H.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 397–418. [Google Scholar]
- Mascagni, M.L.; Siegle, E.; Tessler, M.G.; Y Goya, S.C. Morphodynamics of a wave dominated embayed beach on an irregular rocky coastline. Braz. J. Oceanogr. 2018, 66, 172–188. [Google Scholar] [CrossRef]
- Silva, M.S.; Guedes, C.C.F.; da Silva, G.A.M.; Ribeiro, G.P. Active mechanisms controlling morphodynamics of a coastal barrier: Ilha Comprida, Brazil. Ocean Coast. Res. 2021, 69, e21004. [Google Scholar] [CrossRef]
- Stein, L.P.; Siegle, E. Santos beach morphodynamics under high-energy conditions. Rev. Bras. Geomorfol. 2019, 20, 445–456. [Google Scholar] [CrossRef]
- Komar, P.D. Beach Processes and Sedimentation; Pascal and Francis: Vandœuvre-Lès-Nancy, France, 1977. [Google Scholar]
- Longuet-Higgins, M.S. Longshore currents generated by obliquely incident sea waves: 2. J. Geophys. Res. 1970, 75, 6790–6801. [Google Scholar] [CrossRef]
- Giannini, P.C.F.; Guedes, C.C.F.; Nascimento DR do Tanaka, A.P.B.; Angulo, R.J.; Souza MC de Assine, M.L. Sedimentology and Morphological Evolution of the Ilha Comprida Barrier System, Southern São Paulo Coast; Springer Nature: Berlin, Germany, 2009; pp. 177–224. [Google Scholar]
- Souza, C.R.D.G.; Souza, A.P.; Harari, J. Long term analysis of meteorological-oceanographic extreme events for the Baixada Santista region. In Climate Change in Santos Brazil: Projections, Impacts and Adaptation Options; Springer: Berlin/Heidelberg, Germany, 2019; pp. 97–134. [Google Scholar]
- Vousdoukas, M.I.; Ranasinghe, R.; Mentaschi, L.; Plomaritis, T.A.; Athanasiou, P.; Luijendijk, A.; Feyen, L. Sandy coastlines under threat of erosion. Nat. Clim. Chang. 2020, 10, 260–263. [Google Scholar] [CrossRef]
- Defeo, O.; McLachlan, A.; Armitage, D.; Elliott, M.; Pittman, J. Sandy beach social–ecological systems at risk: Regime shifts, collapses, and governance challenges. Front. Ecol. Environ. 2021, 19, 564–573. [Google Scholar] [CrossRef]
- Esteves, L. Managed Realignment: A Viable Long-Term Coastal Management Strategy? J. Coast. Res. 2014, 31, 771. [Google Scholar]
- Esteves, L.S. Is managed realignment a sustainable long-term coastal management approach? J. Coast. Res. 2013, 65, 933–938. [Google Scholar] [CrossRef]
- Cooper, J.A.G.; Masselink, G.; Coco, G.; Short, A.D.; Castelle, B.; Rogers, K.; Anthony, E.; Green, A.N.; Kelley, J.T.; Pilkey, O.H.; et al. Sandy beaches can survive sea-level rise. Nat. Clim. Chang. 2020, 10, 993–995. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Ranasinghe, R.; Mentaschi, L.; Plomaritis, T.A.; Athanasiou, P.; Luijendijk, A.; Feyen, L. Reply to: Sandy beaches can survive sea-level rise. Nat. Clim. Chang. 2020, 10, 996–997. [Google Scholar] [CrossRef]
- Sachs, J.; Kroll, C.; Lafortune, G.; Fuller, G.; Woelm, F. Sustainable Development Report 2022; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
Ilha do Cardoso–Serra de Itatins (C1) | Bertioga–Toque-Toque (C4) | ||||||
---|---|---|---|---|---|---|---|
Stat. | CLr | FaceDir | tanβ | Stat. | CLr | FaceDir | tanβ |
N | 158 | 158 | 158 | N | 71 | 71 | 71 |
Min. | −34.1 | 70 | 0.00 | Min. | −7.1 | 66 | 0.04 |
Max. | 103.4 | 225 | 0.03 | Max. | 1.9 | 245 | 0.06 |
Mean | 1.1 | 151 | 0.02 | Mean | −0.6 | 144 | 0.05 |
S.d. | 11.2 | 33 | 0.01 | S.d. | 1.3 | 35 | 0.01 |
Peruíbe–Praia Grande (C2) | Toque-Toque–Tabatinga (C5) | ||||||
Stat. | CLr | FaceDir | tanβ | Stat. | CLr | FaceDir | tanβ |
N | 83 | 83 | 83 | N | 67 | 67 | 67 |
Min. | −70.1 | 24 | 0.03 | Min. | −2.8 | 16 | 0.06 |
Max. | 24.7 | 264 | 0.03 | Max. | 28.3 | 235 | 0.08 |
Mean. | −0.7 | 156 | 0.03 | Mean | −0.3 | 142 | 0.07 |
S.d. | 8.2 | 35 | 0.00 | S.d. | 3.6 | 37 | 0.01 |
Santos–Bertioga (C3) | Tabatinga–Picinguaba (C6) | ||||||
Stat. | CLr | FaceDir | tanβ | Stat. | CLr | FaceDir | tanβ |
N | 43 | 43 | 43 | N | 63 | 63 | 63 |
Min. | −2.4 | 70 | 0.04 | Min. | −64.7 | 42 | 0.08 |
Max. | 0.5 | 216 | 0.04 | Max. | 0.9 | 201 | 0.22 |
Mean | −0.5 | 143 | 0.04 | Mean | −1.6 | 139 | 0.10 |
S.d. | 0.7 | 28 | 0.00 | S.d. | 8.1 | 31 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva Ferreira, A.T.; de Oliveira, R.C.; Ribeiro, M.C.H.; Grohmann, C.H.; Siegle, E. Coastal Dynamics Analysis Based on Orbital Remote Sensing Big Data and Multivariate Statistical Models. Coasts 2023, 3, 160-174. https://doi.org/10.3390/coasts3030010
da Silva Ferreira AT, de Oliveira RC, Ribeiro MCH, Grohmann CH, Siegle E. Coastal Dynamics Analysis Based on Orbital Remote Sensing Big Data and Multivariate Statistical Models. Coasts. 2023; 3(3):160-174. https://doi.org/10.3390/coasts3030010
Chicago/Turabian Styleda Silva Ferreira, Anderson Targino, Regina Célia de Oliveira, Maria Carolina Hernandez Ribeiro, Carlos Henrique Grohmann, and Eduardo Siegle. 2023. "Coastal Dynamics Analysis Based on Orbital Remote Sensing Big Data and Multivariate Statistical Models" Coasts 3, no. 3: 160-174. https://doi.org/10.3390/coasts3030010