Quantifying Recent Storm-Induced Change on a Small Fetch-Limited Barrier Island along North Carolina’s Crystal Coast Using Aerial Imagery and LiDAR
Abstract
:1. Introduction
2. Site Description and Historical Context
3. Data and Methods
3.1. Data Availability and Description
3.2. Image Analysis and Classification Workflow
3.3. Habitat, Shoreline, and Volumetric Change Detection
4. Results
4.1. Habitat Change and Model Validation
4.2. Shoreline Change
4.3. Volumetric Change
4.4. Storm Characteristics
5. Discussion
5.1. Morphological Indicators of Dominant Storm Impact Regimes
5.2. Implications for Future Restoration Monitoring
5.3. Study Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stutz, M.L.; Pilkey, O.H. Open-ocean barrier islands: Global influence of climatic, oceanographic, and depositional settings. J. Coast. Res. 2011, 27, 207–222. [Google Scholar] [CrossRef]
- De Beaumont, L.E. Lecons de Geologie Practique; Bertrand, S.L.P., Ed.; Biblioteca Santa Scholastica: Subiaco, Italy, 1845; pp. 221–252. [Google Scholar]
- Gilbert, G.K. The Topographic Features of Lake Shores; 5th Annual Report; US Government Printing Office: Washington, DC, USA, 1885; pp. 69–123. [Google Scholar]
- Johnson, D.W. Shore Processes and Shoreline Development; Hafner Publishing Company: New York, NY, USA, 1919. [Google Scholar]
- Hoyt, J.H. Barrier island formation. Geol. Soc. Amer. Bull. 1967, 78, 1125–1135. [Google Scholar] [CrossRef]
- Dolan, R. Barrier Dune system along the Outer Banks of North Carolina: A reappraisal. Science 1972, 176, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Godfrey, P.J.; Godfrey, M.M. Barrier Island Ecology of Cape Lookout National Seashore and Vicinity, North Carolina; National Park Service Scientific Monograph Series, No. 9; National Park Service: Washington, DC, USA, 1976; p. 160. [Google Scholar]
- Oertel, G.F. The Barrier Island System. Mar. Geol. 1985, 63, 1–18. [Google Scholar] [CrossRef]
- Davis, R.A. Geology of Holocene Barrier Island Systems; Springer: New York, NY, USA, 1994; p. 464. [Google Scholar]
- Hayes, M.O. Barrier island morphology as a function of tidal and wave regime. In Barrier Islands: From the Gulf of St. Lawrence to the Gulf of Mexico; Leatherman, S.P., Ed.; Academic Press: New York, NY, USA, 1979; pp. 1–29. [Google Scholar]
- Hayes, M.O. The Georgia Bight barrier system. In Geology of Holocene Barrier Island Systems; Davis, R.A., Jr., Ed.; Springer: Berlin, Germany, 1994; pp. 233–304. [Google Scholar]
- Riggs, S.R.; Cleary, W.J.; Snyder, S.W. Influence of inherited geologic framework on barrier shoreface morphology and dynamics. Mar. Geol. 1995, 126, 213–234. [Google Scholar] [CrossRef]
- Pilkey, O.H. Celebration of the World’s Barrier Islands; Columbia University Press: New York, NY, USA, 2003; p. 400. [Google Scholar]
- Lewis, D.A.; Cooper, J.A.G.; Pilkey, O.H. Fetch-limited barrier islands of Chesapeake Bay and Delaware Bay USA. Southeast. Geol. 2005, 44, 1–17. [Google Scholar]
- Pilkey, O.H.; Cooper, J.A.G.; Lewis, D.A. Global distribution and geomorphology of fetch-limited barrier islands. J. Coast. Res. 2009, 254, 819–837. [Google Scholar] [CrossRef]
- Mallinson, D.J.; Smith, C.W.; Culver, S.J.; Riggs, S.R.; Ames, D.V. Geological characteristics and spatial distribution of paleo-inlet channels beneath the Outer Banks barrier islands, North Carolina, USA. Estuar. Coast Shelf Sci. 2010, 88, 175–189. [Google Scholar] [CrossRef]
- Mallinson, D.J.; Smith, C.W.; Mahan, S.; Culver, S.J.; McDowell, K. Barrier island processes and response to late Holocene climate patterns: Outer Banks barrier islands, North Carolina, USA. Quat. Res. 2011, 76, 46–57. [Google Scholar] [CrossRef]
- Fitzgerald, D.M.; Georgiou, I.; Hein, C.; Hughes, Z.; Kulp, M.; Miner, M. Runaway barrier island transgression concept: Global case studies. In Barrier Dynamics and the Impact of Climate Change on Barrier Evolution; Moore, L., Murray, B., Eds.; Springer: New York, NY, USA, 2018. [Google Scholar]
- Cooper, J.A.G.; Lewis, D.A.; Pilkey, O.H. Fetch-limited barrier islands: Overlooked coastal landforms. GSA Today 2007, 17, 4–9. [Google Scholar] [CrossRef]
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Future coastal population growth and exposure to sea-level rise and coastal flooding–a global assessment. PLoS ONE 2015, 10, e0118571. [Google Scholar] [CrossRef]
- Seymour, A.C.; Ridge, J.T.; Newton ERodriguez, A.B.; Johnston, D.W. Geomorphic response of inlet barrier islands to storms. Geomorphology 2019, 339, 127–140. [Google Scholar] [CrossRef]
- Feagin, R.A.; Smith, W.K.; Psuty, N.P.; Young, D.R.; Martinez, M.L.; Carter, G.A.; LUCAS, K.L.; Gibeaut, J.C.; Gemma, J.N.; Koske, R.E. Barrier islands: Coupling anthropogenic stability with ecological sustainability. J. Coast. Res. 2010, 26, 987–992. [Google Scholar] [CrossRef]
- Anderson, C.P.; Carter, G.A.; Funderburk, W.R. The Use of Aerial RGB Imagery and LIDAR in Comparing Ecological Habitats and Geomorphic Features on a Natural versus Man-Made Barrier Island. Remote Sens. 2016, 8, 602. [Google Scholar] [CrossRef] [Green Version]
- Valle-Levinson, A.; Dutton, A.; Martin, J.B. Spatial and temporal variability of sea level rise hot spots over the eastern United States. Geophys. Res. Lett. 2017, 44, 7876–7882. [Google Scholar] [CrossRef]
- Paerl, H.W.; Hall, N.S.; Hounshell, A.G.; Luettich, R.A., Jr.; Rossingnol, K.L.; Osburn, C.L.; Bales, J. Recent increase in catastrophic tropical cyclone flooding in coastal North Carolina, USA: Long-term observations suggest a regime shift. Sci. Rep. 2019, 9, 10620. [Google Scholar] [CrossRef] [Green Version]
- Mariotti, G.; Hein, C.J. Lag in response of coastal barrier-island retreat to sea-level rise. Nat. Geosci. 2022, 15, 633–638. [Google Scholar] [CrossRef]
- Jackson, N.L. Wind and waves: Influence of local and non-local waves on mesoscale beach behaviour in estuarine environments. Ann. Assoc. Am. Geogr. 1995, 85, 21–37. [Google Scholar]
- Jackson, N.L.; Nordstrom, K.F.; Eliot, I.; Masselink, G. “Low energy” sandy beaches in marine and estuarine environments: A review. Geomorphology 2002, 48, 147–162. [Google Scholar] [CrossRef]
- Baustian, J.J.; Mendelssohn, I.A. Hurricane-induced sedimentation improves marsh resilience and vegetation vigor under high rates of relative sea level rise. Wetlands 2015, 35, 795–802. [Google Scholar] [CrossRef]
- Nordstrom, K.F. Cyclic and seasonal beach response: A comparison of oceanside and bayside beaches. Phys. Geogr. 1980, 1, 177–196. [Google Scholar] [CrossRef]
- Suanez, S.; Cariolet, J.M.; Cancouët, R.; Ardhuin, F.; Delacourt, C. Dune recovery after storm erosion on a high-energy beach: Vougot Beach, Brittany (France). Geomorphology 2012, 139–140, 16–33. [Google Scholar] [CrossRef]
- Houser, C.; Wernette, P.; Rentschlar, E.; Jones, H.; Hammond, B.; Trimble, S. Poststorm beach and dune recovery: Implications for barrier island resilience. Geomorphology 2015, 234, 54–63. [Google Scholar] [CrossRef]
- Sallenger, A.H. Storm impact scale for barrier islands. J. Coast. Res. 2000, 16, 890–895. [Google Scholar]
- Wang, P.; Briggs, T. Storm-Induced Morphology Changes along Barrier Islands and Poststorm Recovery. In Coastal and Marine Hazards, Risks, and Disasters; Shroder, J.F., Ellis, J.T., Sherman, D.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 271–306. [Google Scholar]
- Morton, R.A. Factors controlling storm impacts on coastal barriers and beaches-a preliminary basis for near real-time forecasting. J. Coast. Res. 2002, 18, 486–501. [Google Scholar]
- Stockdon, H.F.; Sallenger, A.H., Jr.; Holman, R.A.; Howd, P.A. A simple model for the spatially-variable coastal response to hurricanes. Mar. Geol. 2007, 238, 1–20. [Google Scholar] [CrossRef]
- Liu, H.X. Shoreline mapping and coastal change studies using remote sensing imagery and LIDAR data. In Remote Sensing and Geospatial Technologies for Coastal Ecosystem Assessment and Management; Yang, X., Ed.; Springer: New York, NY, USA, 2009; pp. 297–322. [Google Scholar]
- Glennie, C.L.; Carter, W.E.; Shrestha, R.L.; Dietrich, W.E. Geodetic imaging with airborne LiDAR: The Earth’s surface revealed. Rep. Prog. Phys. 2013, 76, 086801. [Google Scholar] [CrossRef]
- Smith, C.G.; Culver, S.J.; Riggs, S.R.; Ames, D.; Corbett, D.R.; Mallinson, D. Geospatial analysis of barrier island width of two segments of the Outer Banks, North Carolina, USA: Anthropogenic curtailment of natural self-sustaining processes. J. Coast. Res. 2008, 24, 70–83. [Google Scholar] [CrossRef]
- Juel, A.; Groom, G.B.; Svenning, J.C.; Ejrnaes, R. Spatial application of Random Forest models for fine-scale coastal vegetation classification using object based analysis of aerial orthophoto and DEM data. Int. J. Appl. Earth Obs. Geoinf. 2015, 42, 106–114. [Google Scholar] [CrossRef]
- McCarthy, M.J.; Colna, K.E.; El-Mezayen, M.M.; Laureano-Rosario, A.E.; Méndez-Lázaro, P.; Otis, D.B.; Toro-Farmer, G.; Vega-Rodriguez, M.; Muller-Karger, F.E. Satellite Remote Sensing for Coastal Management: A Review of Successful Applications. Environ. Manag. 2017, 60, 323–339. [Google Scholar] [CrossRef]
- Crawford, T. North Carolina’s Final Coastal Frontier: Land Cover Change in the Inner Banks, 1996–2001. N. C. Geog. 2007, 15, 37–52. [Google Scholar]
- Gharagozlou, A.; Dietrich, J.C.; Karanci, A.; Luettich, R.A.; Overton, M.F. Storm-driven erosion and inundation of barrier islands from dune-to region-scales. Coast. Eng. 2020, 158, 103674. [Google Scholar] [CrossRef]
- United States Coast and Geodetic Survey. Coast Chart No. 147, Core Sound to Bogue Inlet Including Cape Lookout, North Carolina; United States Coast and Geodetic Survey: Washington, DC, USA, 1888. [Google Scholar]
- United States Coast and Geodetic Survey. Coast Chart No. 147, Core Sound to Bogue Inlet Including Cape Lookout, North Carolina; United States Coast and Geodetic Survey: Washington, DC, USA, 1913. [Google Scholar]
- Angley, F.W. Historical Overview of Beaufort Inlet, Cape Lookout Area of North Carolina; North Carolina Department of Natural and Cultural Resources: Raleigh, NC, USA, 1982. Available online: https://digital.ncdcr.gov/digital/collection/p16062coll6/id/10345/ (accessed on 25 October 2022).
- Evans, J.P. Plant Succession and Stabilization of Dredge Spoil Habitats in the Rachel Carson National Estuarine Research Reserve; NC. National Oceanic and Atmospheric Administration Technical Memorandum: Washington, DC, USA, 1988. [Google Scholar]
- United States Environmental Protection Agency; United States Army Corps of Engineers. Morehead City Ocean Dredged Material Disposal Site (ODMDS) Site Management and Monitoring Plan; United States Environmental Protection Agency: Washington, DC, USA; Fort Belvoir, VA, USA, 2020. [Google Scholar]
- Google Earth Engine Timelapse. Available online: https://earthengine.google.com/timelapse/#v=34.716758,-76.710594,11.973,latLng&t=3.23 (accessed on 15 October 2018).
- Suchrow, S.; Jensen, K. Plant Species Responses to an Elevational Gradient in German North Sea Salt Marshes. Wetlands 2010, 30, 735–746. [Google Scholar] [CrossRef]
- Zhang, C.; Denka, S.; Mishra, D.R. Mapping Freshwater Marsh Species in the Wetlands of Lake Okeechobee using Very High-resolution Aerial Photography and Lidar Data. Int. J. Remote Sens. 2018, 39, 5600–5618. [Google Scholar] [CrossRef]
- Office for Coastal Management. 2022: 2014 NOAA Post-Sandy Topobathymetric LiDAR: Void DEMs South Carolina to New York. Available online: https://www.fisheries.noaa.gov/inport/item/48367 (accessed on 25 October 2022).
- National Geodetic Survey. 2022a: 2019–2020 NOAA NGS Topobathy Lidar DEM: Coastal VA, NC, SC. Available online: https://www.fisheries.noaa.gov/inport/item/66714 (accessed on 25 October 2022).
- National Geodetic Survey. 2022b: 2014 NOAA Ortho-Rectified Mosaic of Hurricane Sandy Coastal Impact Area. Available online: https://www.fisheries.noaa.gov/inport/item/48588 (accessed on 25 October 2022).
- National Geodetic Survey. 2022c: 2020 NOAA NGS Ortho-Rectified Color Mosaic Hurricane Florence: NC, SC, and VA. Available online: https://www.fisheries.noaa.gov/inport/item/66699 (accessed on 25 October 2022).
- Boak, E.H.; Turner, I.L. Shoreline Definition and Detection: A Review. J. Coast. Res. 2005, 21, 688–703. [Google Scholar] [CrossRef]
- Nyandwi, N. Reassessment of the nature of beach erosion north of Dar es Salaam, Tanzania. Marine SCIENCE development in Tanzania and Eastern Africa. In Proceedings of the 20th Anniversary Conference on Advances in Marine Science in Tanzania, Zanzibar, Tanzania, 28 June–1 July 1999; Richmond, M.D., Francis, J., Eds.; IMS/WIOMSA: Zanzibar, Tanzania; pp. 107–120. [Google Scholar]
- Nayak, S.R. Use of satellite data in coastal mapping. In. Cart. 2002, 22, 1. [Google Scholar]
- Pugh, D. Changing Sea Levels: Effects of Tides, Weather and Climate; Cambridge University Press: Cambridge, UK, 2004; p. 280. [Google Scholar]
- Shaghude, Y.W.; Wannäs, K.O.; Lunden, B. Assessment of shoreline changes in the western side of Zanzibar channel using satellite remote sensing. Int. J. Remote Sens. 2003, 24, 4955–4969. [Google Scholar] [CrossRef]
- Shaghude, Y.W. Coastal Impacts of Water Abstraction and Impoundment in Africa: The Case of Rufiji River. Final Report Submitted to START; OceanDocs: E-Repository of Ocean Publications. 2004. Available online: https://aquadocs.org/handle/1834/187 (accessed on 25 October 2022).
- Kumar, D.A.; Venkatanarayana, M.; Murthy, V.S.S. Object-Based Image Analysis. In Encyclopedia of Mathematical Geosciences; Daya Sagar, B., Cheng, Q., McKinley, J., Agterberg, F., Eds.; Encyclopedia of Earth Sciences Series; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Draguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogram. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Zhang, C.; Mishra, D.R.; Pennings, S. Mapping Salt Marsh Soil Properties Using Imaging Spectroscopy. ISPRS J. Photogram. Remote Sens. 2019, 148, 221–234. [Google Scholar] [CrossRef]
- Comaniciu, D. Mean Shift: A Robust Approach Toward Feature Extraction Space Analysis. IEEE PAMI 2022, 24, 603–619. [Google Scholar] [CrossRef] [Green Version]
- Gens, R. Remote sensing of coastlines: Detection, extraction and monitoring. Int. J. Remote Sens. 2010, 31, 1819–1836. [Google Scholar] [CrossRef]
- Fisher, J.S.; Overton, M.F. Interpretation of shoreline position from aerial photographs. In Proceedings of the 24th International Conference on Coastal Engineering, Kobe, Japan, 23–28 October 1994. [Google Scholar]
- Woolard, J.W.; Aslaksen, M.; Longenecker, J.L.T.; Ryerson, A. Shoreline mapping from airborne lidar in Shilshole Bay, Washington. In Proceedings of the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS), US Hydrographic Conference, Washington, DC, USA, 3 February 2003. [Google Scholar]
- Office of Coast Survey. Hydrographic Survey Specifications and Deliverables. 2014. Available online: https://nauticalcharts.noaa.gov/publications/docs/standards-and-requirements/specs/HSSD_2022.pdf (accessed on 25 October 2022).
- Cowart, L.; Walsh, J.P.; Corbett, D.R. Analyzing estuarine shoreline change: A case study of cedar island, North Carolina. J. Coast. Res. 2010, 26, 817–830. [Google Scholar] [CrossRef]
- Currin, C.; Davis, J.; Cowart Baron, L.; Malhotra, A.; Fonseca, M. Shoreline change in the New River Estuary, North Carolina: Rates and consequences. J. Coast. Res. 2015, 31, 1069–1077. [Google Scholar] [CrossRef]
- Lane, S.N.; Chandler, J.H.; Richards, K.S. Developments in monitoring and modeling small-scale river bed topography. Earth Surf. Process. Landf. 1994, 19, 349–368. [Google Scholar] [CrossRef]
- Wheaton, J.M.; Brasington, J.; Darby, S.E.; Sear, D.A. Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surf. Process. Landf. 2010, 35, 136–156. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S.; Smith, M.W. 3-D uncertainty-based topographic change detection with structure-from-motion photogrammetry: Precision maps for ground control and directly georeferenced surveys. Earth Surf. Process. Landf. 2017, 42, 1769–1788. [Google Scholar] [CrossRef]
- Federal Geographic Data Committee (FGDC). Geospatial Positioning Accuracy Standards, Part 3: National Standard for Spatial Data Accuracy; US Geological Survey Report no. FGDC-STD-007.3-1998; Federal Geographic Data Committee Secretariat: Reston, VA, USA, 1998. [Google Scholar]
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; Geological Survey Professional Paper No. 964, U.S.; Government Printing Office: Washington, DC, USA, 1976; p. 28. [Google Scholar]
- USACE. Coastal Engineering Manual; Report No 110-2-1100; US Army Corps of Engineers: Washington, DC, USA, 2012; Available online: https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1100_App_A.pdf?ver=-p-RKiQ6Tulip3xuVl2Zvg%3d%3d (accessed on 25 October 2022).
- Barbier, E.B.; Koch, E.W.; Silliman, B.R.; Hacker, S.D.; Wolanski, E.; Primavera, J.; Reed, D.J. Coastal ecosystem-based management with nonlinear ecological functions and values. Science 2008, 319, 321–323. [Google Scholar] [CrossRef]
- Tiggeloven, T.; de Moel, H.; van Zelst, V.T.; van Wesenbeeck, B.K.; Winsemius, H.C.; Eilander, D.; Ward, P.J. The benefits of coastal adaptation through conservation of foreshore vegetation. J. Flood Risk Manag. 2022, 15, e12790. [Google Scholar] [CrossRef]
- Phillips, J.D. Geomorphic impacts of Hurricane Florence on the lower Neuse River: Portents and particulars. Geomorphology 2022, 397, 108026. [Google Scholar] [CrossRef]
- Davidson, S.G.; Hesp, P.A.; Silva, G.M.D. Controls on dune scarping. Prog. Phys. Geogr. Ear. Env. 2020, 44, 923–947. [Google Scholar] [CrossRef]
- Walters, D.C.; Kirwan, M.L. Optimal hurricane overwash thickness for maximizing marsh resilience to sea level rise. Ecol. Evol. 2016, 6, 2948–2956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, L.J.; Patsch, K.; List, J.H.; Williams, S.J. The potential for sea-level-rise-induced barrier island loss: Insights from the Chandeleur Islands, Louisiana, USA. Mar. Geol. 2014, 355, 244–259. [Google Scholar] [CrossRef]
- Sallenger, A.; Wright, W.; Lillycrop, J.; Howd, P.; Stockdon, H.; Guy, K.K.; Morgan, K. Extreme Changes to Barrier Islands along the Central Gulf of Mexico Coast during Hurricane Katrina; No. 1306-5C; US Geological Survey: Reston, VA, USA, 2007; pp. 113–118. [Google Scholar]
- Dingler, J.R.; Reiss, T.E. Beach erosion on Trinity Island, Louisiana caused by Hurricane Andrew. J. Coast. Res. 1995, 21, 254–264. [Google Scholar]
- Hein, C.J.; Fenster, M.S.; Gedan, K.B.; Tabar, J.R.; Hein, E.A.; DeMunda, T. Leveraging the Interdependencies Between Barrier Islands and Backbarrier Saltmarshes to Enhance Resilience to Sea-Level Rise. Front. Mar. Sci. 2021, 8, 721904. [Google Scholar] [CrossRef]
- Cahoon, D.R.; Reed, D.; Day, J.W.; Steyer, D.; Boumans, R.M.; Lynch, C.J.; McNally, D.; Latif, N. The influence of Hurricane Andrew on sediment distribution in Louisiana coastal marshes. J. Coast. Res. 1995, 21, 280–294. [Google Scholar]
- Tweel, A.W.; Turner, R.E. Contribution of tropical cyclones to the sediment budget for coastal wetlands in Louisiana. USA. Landsc. Ecol. 2014, 29, 1083–1094. [Google Scholar] [CrossRef]
- Dugan, J.E.; Airoldi, L.; Chapman, M.G.; Walker, S.J.; Schlacher, T.; Wolanski, E.; McLusky, D. Estuarine and coastal structures: Environmental effects a focus on shore and nearshore structures. Treat. Estuar. Coast. Sci. 2011, 8, 17–41. [Google Scholar]
- Riggs, S.R. Report No.: UNC-SG-01-11; Shoreline Erosion in North Carolina Estuaries; North Carolina Sea Grant Program Publication: Raleigh, NC, USA, 2001. [Google Scholar]
- Gittman, R.K.; Popowich, A.M.; Bruno, J.F.; Peterson, C.H. Marshes with and without sills protect estuarine shorelines from erosion better than bulkheads during a category 1 hurricane. Ocean Coast. Manag. 2014, 102, 94–102. [Google Scholar] [CrossRef]
- Gittman, R.K.; Peterson, C.H.; Currin, C.A.; Fodrie, F.J.; Piehler, M.F.; Bruno, J.F. Living shorelines can enhance the nursery role of threatened estuarine habitats. Ec. Soc. Am. 2016, 26, 249–263. [Google Scholar] [CrossRef]
- Gittman, R.K.; Smith, C.; Neylan, I.; Grabowski, J. Ecological consequences of shoreline hardening: A meta-analysis. BioScience 2016, 66, 760–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polk, M.A.; Gittman, R.K.; Smith, C.S.; Eulie, D.O. Coastal resilience surges as living shorelines reduce lateral erosion of salt marshes. Integr. Environ. Assess. Manag. 2022, 18, 82–98. [Google Scholar] [CrossRef] [PubMed]
- Stauble, D.K.; Tabar, J.R. The use of submerged narrow-crested breakwaters for shoreline erosion control. J. Coast. Res. 2003, 19, 684–722. [Google Scholar]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Grabowski, J.H.; Brumbaugh, R.D.; Conrad, R.F.; Keeler, A.G.; Opaluch, J.J.; Peterson, C.H.; Piehler, M.; Powers, S.; Smyth, A.R. Economic valuation of ecosystem services provided by oyster reefs. BioScince 2012, 81, 169–193. [Google Scholar] [CrossRef] [Green Version]
- Currin, C.A. Chapter 30—Living Shorelines for Coastal Resilience. In Coastal Wetlands; Perillo, G.M.E., Wolanski, E., Cahoon, D.R., Hopkinson, C.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1023–1053. ISBN 9780444638939. [Google Scholar] [CrossRef]
- Bilkovic, D.M.; Mitchell, M.; Mason, P.; Duhring, K. The role of living shorelines as estuarine habitat conservation strategies. Coast. Manag. 2016, 44, 161–174. [Google Scholar] [CrossRef]
- Duhring, K. Overview of Living Shoreline Design Options for Erosion Protection on Tidal Shorelines; VIMS Books and Book Chapters 123; Chesapeake Research Consortium: Edgewater, MD, USA, 2008; Available online: https://scholarworks.wm.edu/vimsbooks/126 (accessed on 25 October 2022).
- Tmušic, G.; Salvator, M.; Helge, A.; James, M.R.; Goncalves, G.; Ben-Dor, E.; Brook, A.; Polinova, M.; Arranz, J.J.; Mészáros, J.; et al. Current practices in UAS-based environmental monitoring. Remote Sens. 2020, 12, 1001. [Google Scholar] [CrossRef] [Green Version]
- Tysiac, P. Bringing bathymetry LiDAR to coastal zone assessment: A case study in the Southern Baltic. Remote Sens. 2020, 12, 3740. [Google Scholar] [CrossRef]
- Lamba, A.; Cassey, P.; Segaran, R.R.; Lian, P. Deep learning for environmental conservation. Curr. Biol. 2019, 29, R977–R982. [Google Scholar] [CrossRef]
- Cooper, H.; Zhang, C.; Davis, S.; Troxler, T. Object-based correction of LiDAR DEMs using RTK-GPS data and machine learning modeling in the Coastal Everglades. Env. Mod. Soft. 2019, 112, 179–191. [Google Scholar] [CrossRef]
- Guan, S.; Sirianni, H.; Wang, G.; Zhu, Z. sUAS monitoring of coastal environments: A review of best practices from field to lab. Drones 2022, 6, 142. [Google Scholar] [CrossRef]
Imagery Date | Overall Accuracy | Kappa Value |
---|---|---|
2014 | 0.921 | 0.895 |
2020 | 0.903 | 0.876 |
Classes | 2014 Imagery | 2020 Imagery | ||
---|---|---|---|---|
UA | PA | UA | PA | |
High Marsh | 0.866 | 0.866 | 0.750 | 0.857 |
Low Marsh | 0.937 | 1.000 | 0.818 | 0.900 |
Sand | 1.000 | 0.750 | 0.882 | 0.937 |
Shrub | 0.960 | 0.960 | 1.000 | 0.823 |
Name | Date Near Sugarloaf Island | Hourly Wind Speed (m s−1) Max (Avg.) | Duration of Tropical Winds > 17.4 m s−1 | Avg Hourly Wind Direction | Max Hourly Water Level > MHHW (m) | Duration of Water Level > MHHW | Avg Magnitude of Water Level > MHHW (m) |
---|---|---|---|---|---|---|---|
Total Study Period | 24.1 (3.7) | 22 h | 169° | 1.12 | 3 h d−1* | 0.14 | |
Arthur (H2) | 4 July 2014 | 20.3 (6.5) | 2 h | 237° | 0.42 | 4 h | 0.17 |
Winter Storm | 7 February 2016 | 17.5 (9.9) | 1 h | 254° | 0.49 | 6 h | 0.28 |
Matthew (H1) | 9 October 2016 | 20.0 (10.5) | 3 h | 283° | 0.64 | 11 h | 0.28 |
Florence (H2) | 14 September 2018 | 24.1 (18.3) | 13 h | 106° | 1.12 | 23 h | 0.50 |
Dorian (H2) | 6 September 2019 | 19.6 (10.6) | 3 h | 227° | 0.41 | 10 h | 0.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirianni, H.; Sirianni, M.J.; Mallinson, D.J.; Lindquist, N.L.; Valdes-Weaver, L.M.; Moody, M.; Henry, B.; Colli, C.; Rubino, B.; Peñalver, M.M.; et al. Quantifying Recent Storm-Induced Change on a Small Fetch-Limited Barrier Island along North Carolina’s Crystal Coast Using Aerial Imagery and LiDAR. Coasts 2022, 2, 302-322. https://doi.org/10.3390/coasts2040015
Sirianni H, Sirianni MJ, Mallinson DJ, Lindquist NL, Valdes-Weaver LM, Moody M, Henry B, Colli C, Rubino B, Peñalver MM, et al. Quantifying Recent Storm-Induced Change on a Small Fetch-Limited Barrier Island along North Carolina’s Crystal Coast Using Aerial Imagery and LiDAR. Coasts. 2022; 2(4):302-322. https://doi.org/10.3390/coasts2040015
Chicago/Turabian StyleSirianni, Hannah, Matthew J. Sirianni, David J. Mallinson, Niels L. Lindquist, Lexia M. Valdes-Weaver, Michael Moody, Brian Henry, Christopher Colli, Brian Rubino, Manuel Merello Peñalver, and et al. 2022. "Quantifying Recent Storm-Induced Change on a Small Fetch-Limited Barrier Island along North Carolina’s Crystal Coast Using Aerial Imagery and LiDAR" Coasts 2, no. 4: 302-322. https://doi.org/10.3390/coasts2040015
APA StyleSirianni, H., Sirianni, M. J., Mallinson, D. J., Lindquist, N. L., Valdes-Weaver, L. M., Moody, M., Henry, B., Colli, C., Rubino, B., Peñalver, M. M., & Henne, C. (2022). Quantifying Recent Storm-Induced Change on a Small Fetch-Limited Barrier Island along North Carolina’s Crystal Coast Using Aerial Imagery and LiDAR. Coasts, 2(4), 302-322. https://doi.org/10.3390/coasts2040015