Partial Substitution of Fishmeal with Mopane Worm Meal in Dusky Kob Fingerling (Argyrosomus japonicus) Diets: Feed Utilization, Digestive Enzyme Activity, Blood Parameters, and Growth Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Mopane Worms
2.3. Experimental Diets
2.4. Analyses of Experimental Diets and Mopane Worm Meal
2.5. Feeding Trial
2.6. Calculations
2.7. Haematology and Serum Biochemical Analyses
2.8. Enzyme Activity
2.9. Statistical Analysis
3. Results
3.1. Dietary Composition
3.2. Feed Utilization and Growth Performance
3.3. Haematology and Serum Biochemistry
3.4. Digestive Enzymes
4. Discussion
4.1. Feed Utilization, Growth Performance, and Enzyme Activity
4.2. Blood Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, J.S.; Liu, S.S.; Ji, H.; Yu, H.B. Effect of replacing dietary fish meal with black soldier fly larvae meal on growth and fatty acid composition of Jian carp (Cyprinus carpio var. Jian). Aquac. Nutr. 2017, 24, 424–433. [Google Scholar] [CrossRef]
- Belghit, I.; Liland, N.S.; Gjesdal, P.; Biancarosa, I.; Menchetti, E.; Li, Y.X.; Waagbo, R.; Krogdahl, Å.; Lock, E.J. Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture 2019, 503, 609–619. [Google Scholar] [CrossRef]
- Madibana, M.J.; Mwanza, M.; Lewis, B.R.; Toefy, R.; Fouche, C.H.; Mlambo, V. Black soldier fly larvae meal as a fishmeal substitute in juvenile dusky bob Diets: Effect on feed utilization, growth performance, and blood parameters. Sustainability 2020, 12, 9460. [Google Scholar] [CrossRef]
- Rapatsa, M.M.; Moyo, N.A.G. Evaluation of Imbrasia belina meal as a fishmeal substitute in Oreochromis mossambicus diets: Growth performance, histological analysis and enzyme activity. Aquac. Rep. 2017, 5, 18–26. [Google Scholar] [CrossRef]
- Rapatsa, M.M.; Moyo, N.A.G. Enzyme activity and histological analysis of Clarias gariepinus fed on Imbrasia belina meal used for partial replacement of fishmeal. Fish Physiol. Biochem. 2019, 45, 1309–1320. [Google Scholar] [CrossRef] [PubMed]
- Ditlhogo, M. The ecology of Imbrasia belina (Westwood) in north-Eastern Botswana. In Proceedings of the Multidisciplinary Symposium on Phane, Gaborone, Botswana, 18 June 1996; Gashe, B.A., Mpuchane, S.F., Eds.; Department of Biological Sciences: Gaborone, Botswana; Kalahari Conservation Society: Gaborone, Botswana, 1996. [Google Scholar]
- Moruakgomo, M.B.W. Commercial utilization of Botswana’s veld products—The economics of phane—The dimensions of phane trade. In Proceedings of the Multidisciplinary Symposium on Phane, Gaborone, Botswana, 18 June 1996; Gashe, B.A., Mpuchane, S.F., Eds.; Department of Biological Sciences: Gaborone, Botswana; Kalahari Conservation Society: Gaborone, Botswana, 1996. [Google Scholar]
- Madibela, O.R.; Mokwena, K.K.; Nsoso, S.J.; Thema, T.F. Chemical composition of Mopane worm sampled at three sites in Botswana and subjected to different processing. Trop. Anim. Health Prod. 2009, 41, 935–942. [Google Scholar] [CrossRef]
- Moreki, J.C.; Tiroesele, B.; Chiripasi, S.C. Prospects of utilizing insects as alternative sources of protein in poultry diets in Botswana: A review. J. Anim. Sci. Adv. 2012, 2, 649–658. [Google Scholar]
- Manyeula, F.; Tsopito, C.; Kamau, J.; Mogotsi, K.K.; Nsoso, S.J.; Moreki, J.C. Effect of Imbrasia belina (westwood), Tylosema esculentum (Burchell) Schreiber and Vigna subterranean (L) Verde as protein sources of growth and laying performance of Tswana hens raised under intensive production system. Sci. J. Anim. Sci. 2013, 2, 1–8. [Google Scholar]
- Sanchez-Muros, M.J.; Barroso, F.G.; Manzano-Agugliaro, F. Insect meal as renewable source of food for animal feeding: A review. J. Clean. Prod. 2014, 65, 16–27. [Google Scholar] [CrossRef]
- Siame, A.B.; Mpuchane, S.F.; Gashe, B.A.; Allotey, J.; Teferra, G. Nutritional quality of Mophane worms, Imbrasia belina (Westwood), and the microorganisms associated with the worms. In Proceedings of the Multidisciplinary Symposium on Phane, Gaborone, Botswana, 18 June 1996; Gashe, B.A., Mpuchane, S.F., Eds.; Department of Biological Sciences: Gaborone, Botswana; Kalahari Conservation Society: Gaborone, Botswana, 1996. [Google Scholar]
- AOAC. Official Methods of Analysis of Chemists, 17th ed.; Revision 2; Official methods 920.39, 934.01, 942.05, 945.16 and 990.03; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Einarsson, S.; Josefsson, B.; Lagerkvist, S. Determination of amino acids with 9-fluorenylmethyl chloroformate and reversed-phase high-performance liquid chromatography. J. Chromatogr. 1983, 282, 609–618. [Google Scholar] [CrossRef]
- Zhang, M.; Haga, A.; Sekiguchi, H.; Hirano, S. Structure of insect chitin isolated from beetle larva cuticle and silkworm (Bombyx mori) pupa exuvia. Int. J. Biol. Macromol. 2000, 27, 99–105. [Google Scholar] [CrossRef]
- Majtan, J.; Bilikova, K.; Markovic, O.; Grof, J.; Kogan, G.; Simuth, J. Isolation and characterization of chitin from bumblebee (Bombus terrestris). Int. J. Biol. Macromol. 2007, 40, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Mdhluvu, R.M.; Mlambo, V.; Madibana, M.J.; Mwanza, M.; O’Brien, G. Crocodile meat meal as a fishmeal substitute in juvenile dusky kob (Argyrosomus japonicus) diets: Feed utilization, growth performance, blood parameters, and tissue nutrient composition. Aquac. Rep. 2021, 21, 21100779. [Google Scholar] [CrossRef]
- Madibana, M.J.; Mlambo, V. Growth performance and hemobiochemical parameters in South African dusky kob (Argyrosomus japonicus, Sciaenidae) offered brewer’s yeast (Saccharomyces cerevisiae) as a feed additive. J. World Aquac. Soc. 2019, 50, 815–826. [Google Scholar] [CrossRef]
- Wright, P.J.; Leathwood, P.D.; Plummer, D.T. Enzyme in rat urine: Alkaline phosphtase. Enzymologia 1972, 42, 317–327. [Google Scholar]
- Reitman, S.; Frankel, S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol. 1957, 28, 56–63. [Google Scholar] [CrossRef]
- Fawcett, J.K.; Scott, J.E. A rapid and precise method for the determination of urea. J. Clin. Pathol. 1960, 13, 156–159. [Google Scholar] [CrossRef] [Green Version]
- Bernfeld, P. Enzymes of starch degradation and synthesis. In Advances in Enzymology and Related Areas of Molecular Biology; Nord, F.F., Ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2006; Volume 12. [Google Scholar]
- Markweg, H.; Lang, M.S.; Wagner, F. Dodecanoic acid inhibition of lipase from Acinetobacter sp. OPA 55. Enzym. Microb. Technol. 1995, 17, 512–516. [Google Scholar] [CrossRef]
- Bezerra, R.S.; Lins, E.J.F.; Alencar, R.B.; Paiva, P.M.G.; Chaves, M.E.C.; Luana, C.B.B.; Carvalho, L.B., Jr. Alkaline proteinase from intestines of Nile tilapia (Oreochromis niloticus). Process Biochem. 2005, 40, 1829–1834. [Google Scholar] [CrossRef]
- Hood, M.A.; Meyers, S.P. The biology of aquatic chitinoclastic bacteria and their chitinolytic activities. La Mer. Bull. Soc. Fr. Jpn. Ocean. 1973, 11, 25–41. [Google Scholar]
- SAS. Users Guide; Statistical Analysis System Institute Inc.: Cary, NC, USA, 2010. [Google Scholar]
- Gopalakannan, A.; Arul, V. Immunomodulatory effects of dietary intake of chitin, chitosan and levamisole on the immune system of Cyprinus carpio and control of Aeromonas hydrophila infection in ponds. Aquaculture 2006, 255, 179–187. [Google Scholar] [CrossRef]
- Kroeckel, S.; Harjes, A.G.E.; Roth, I.; Katz, H.; Wuertz, S.; Susenbeth, A.; Schulz, C. When a turbot catches a fly: Evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetia illucens) as fishmeal substitute—Growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture 2012, 364, 345–352. [Google Scholar] [CrossRef]
- Nagel, F.; Von Dannwitz, A.; Tusche, K.; Kroeckel, S.; Van Bussel, C.G.J.; Schlachter, M.; Adem, H.; Tressel, R.-P.; Schulz, C. Nutritional evaluation of rapeseed protein isolate as fish meal substitute for juvenile turbot (Psetta maxima L.)—impact on growth performance, body composition, nutrient digestibility and blood physiology. Aquaculture 2012, 356, 357–364. [Google Scholar] [CrossRef]
- Danulat, E. The effects of various diets on chitinase and β-glucosidase activities and the condition of cod, Gadus morhua (L.). J. Fish Biol. 1986, 28, 191–197. [Google Scholar] [CrossRef]
- Kono, M.; Matsui, T.; Shimizu, C. Effect of chitin, chitosan, and cellulose as diet supplements on the growth of cultured fish. Nippon Suisan Gakkaishi 1987, 53, 125–129. [Google Scholar] [CrossRef] [Green Version]
- Sera, H.; Kimata, M. Bacterial flora in the digestive tracts of marine fish I. Bacterial flora of fish, red sea bream snapper and crimson sea bream, fed three kinds of diets. Bull. Jpn. Soc. Sci. Fish. 1972, 38, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Józefiak, A.; Nogales-Mérida, S.; Mikołajczak, Z.; Rawski, M.; Kierończyk, B.; Mazurkiewicz, J. The utilization of full-fat insect meal in rainbow trout (Oncorhynchus mykiss) nutrition: The effects on growth performance, intestinal microbiota and gastro-intestinal tract histomorphology. Ann. Anim. Sci. 2019, 19, 747–765. [Google Scholar] [CrossRef] [Green Version]
- Nogales-Merida, S.; Gobbi, P.; Jozefiak, D.; Mazurkiewicz, J.; Dudek, K.; Rawski, M.; Kieronczyk, B.; Jozefiak, A. Insect meals in fish nutrition. Rev. Aquac. 2019, 11, 1080–1103. [Google Scholar] [CrossRef]
- Lloyd, L.E.; McDonald, B.E.; Crampton, E.W. Fundamentals of Nutrition, 2nd ed.; W. H. Freeman and Company: San Francisco, CA, USA, 1978. [Google Scholar]
- NRC. Nutrient Requirements of Fish; National Academy Press: Washington, DC, USA, 1993. [Google Scholar]
- Francis, G.; Makkar, H.P.S.; Becker, K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 2001, 199, 197–227. [Google Scholar] [CrossRef]
- Krogdahl, Å.; Bakke-McKellep, A.M.; Baeverfjord, G. Effects of graded levels of standard soybean meal on intestinal structure, mucosal enzyme activities, and pancreatic response in Atlantic salmon (Salmo salar L.). Aquac. Nutr. 2003, 9, 361–371. [Google Scholar] [CrossRef]
- Olsen, R.; Suontama, J.; Langmyhr, E.; Mundheim, H.; Ringo, E.; Melle, E.; Malde, M.; Hmere, G. The replacement of fish meal with Antarctic krill, Euphausia superba in diets for Atlantic salmon, Salmo salar. Aquac. Nutr. 2006, 12, 280–290. [Google Scholar] [CrossRef] [Green Version]
- Shiau, S.Y.; Yu, Y.P. Dietary supplementation of chitin and chitosan depresses growth in tilapia, Orechromis niloticus×O. aureus. Aquaculture 1999, 179, 439–446. [Google Scholar] [CrossRef]
- Danulat, E. Role of bacteria with regard to chitin degradation in the digestive tract of the cod (Gadus morhua). Mar. Biol. 1986, 90, 335–343. [Google Scholar] [CrossRef]
- Danulat, E.; Kausch, H. Chitinase activity in the digestive tract of the cod Gadus morhua (L.). J. Fish Biol. 1984, 24, 125–133. [Google Scholar] [CrossRef]
- Fines, B.C.; Holt, G.J. Chitinase and apparent digestibility of chitin in the digestive tract of juvenile cobia Rachycentron canadum. Aquaculture 2010, 303, 34–39. [Google Scholar] [CrossRef]
- Belanger, J.M.; Son, J.H.; Laugero, K.D.; Moberg, G.P.; Dorochov, S.I.; Lankford, S.E.; Cech, J.J. Effects of short-term management stress and ACTH injections on plasma cortisol levels in cultured white sturgeon, Acipenser transmontanus. Aquaculture 2001, 203, 165–176. [Google Scholar] [CrossRef]
- Patriche, T.; Patriche, N.; Bocioc, E.; Coada, M.T. Serum biochemical parameters of farmed carp (Cyprinus carpio). Aquac. Aquar. Conserv. Legis. 2011, 4, 137–140. [Google Scholar]
- Radu, D.; Oprea, L.; Bucur, C.; Costache, M.; Oprea, D. Characteristics of haematological parameters for carp culture and Koi (Cyprinus carpio Linneaus, 1758) reared in an intensive system. Bulletin UASVM. J. Anim. Sci. Biotechnol. 2009, 66, 1–2. [Google Scholar]
- Yildirim-Aksoy, M.; Eljack, R.; Schrimsher, C.; Beck, B.H. Use of dietary frass from black soldier fly larvae, Hermetia illucens, in hybrid tilapia (Nile × Mozambique, Oreocromis niloticus × O. mozambique) diets improves growth and resistance to bacterial diseases. Aquac. Rep. 2020, 17, 100373. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; Khalil, R.H.; Metwally, A.A.; Shakweer, M.S.; Khallaf, M.A.; Abdel-Latif, H.M.R. Effects black soldier fly (Hermetia illucens L. ) larvae meal on growth performance, organs-somatic indices, body composition, and hematological and biochemical variables of European sea bass, Dicentrarchus labrax. Aquaculture 2020, 522, 735136. [Google Scholar] [CrossRef]
- Dorcas, I.K.; Solomon, R.J. Calculation of liver function test in Clarias gariepinus collected from three commercial fish ponds. Nat. Sci. 2014, 12, 107–123. [Google Scholar]
Diets 1 | ||||||
---|---|---|---|---|---|---|
MPWM0 | MPWM3 | MPWM6 | MPWM9 | MPWM18 | MPWM | |
Ingredients (%) | ||||||
Mopane worm meal | 0.00 | 3.00 | 5.98 | 9.00 | 18.00 | |
Fishmeal 66 | 30.00 | 26.95 | 23.95 | 21.00 | 12.00 | |
Maize | 18.71 | 18.27 | 17.84 | 17.46 | 16.21 | |
Soya oilcake | 10.00 | 9.15 | 8.32 | 7.50 | 5.00 | |
Full fat soya 58 | 8.50 | 7.92 | 7.35 | 6.80 | 5.11 | |
Blood meal 90 | 6.00 | 5.74 | 5.49 | 5.25 | 4.50 | |
Wheat gluten | 10.91 | 11.71 | 12.52 | 13.38 | 15.85 | |
Pork meal 28 | 8.17 | 9.34 | 10.51 | 11.72 | 15.27 | |
Fish and poultry oil | 5.36 | 5.47 | 5.58 | 5.72 | 6.07 | |
Vit/Min Premix | 2.35 | 2.44 | 2.47 | 2.13 | 0.8 | |
Proximate composition (calculated values except for MPWM) | ||||||
Dry matter (%) | 86.80 | 90.50 | 87.80 | 88.40 | 86.50 | 87.84 |
Ash (% DM) | 0.62 | 1.34 | 0.48 | 0.39 | 0.79 | 12.16 |
Moisture (% DM) | 13.20 | 9.50 | 12.20 | 11.60 | 13.55 | 7.04 |
Crude protein (% DM) | 46.58 | 46.57 | 46.56 | 46.55 | 46.51 | 55.71 |
Crude fat (% DM) | 12.15 | 12.15 | 12.15 | 12.14 | 12.13 | 6.52 |
Digestible energy (MJ/kg DM) | 17.38 | 17.34 | 17.38 | 17.37 | 17.36 | - |
Metabolisable energy (MJ/kg DM) | 15.75 | 15.66 | 15.57 | 15.47 | 15.20 | - |
Chitin (% DM) | 0.50 | 0.50 | 0.70 | 1.3 | 1.9 | 13.52 |
Essential amino acids (g/100 g DM) | ||||||
Arginine | 3.54 | 4.62 | 4.75 | 5.02 | 5.21 | 6.32 |
Threonine | 1.66 | 2.27 | 2.12 | 2.33 | 2.38 | 2.37 |
Methionine | 0.71 | 1.33 | 1.22 | 1.42 | 1.35 | 0.68 |
Valine | 2.47 | 3.04 | 2.12 | 3.09 | 3.25 | 2.88 |
Phenylalanine | 1.93 | 2.17 | 2.22 | 2.19 | 2.30 | 2.17 |
Isoleucine | 1.98 | 2.90 | 3.02 | 2.98 | 3.05 | 2.06 |
Leucine | 3.42 | 4.03 | 4.11 | 4.05 | 4.03 | 3.03 |
Histidine | 1.34 | 2.24 | 2.33 | 2.44 | 1.11 | 2.69 |
Lysine | 2.92 | 5.40 | 5.55 | 5.58 | 5.91 | 3.41 |
Tryptophan | 5.40 | 5.99 | 6.11 | 6.12 | 6.10 | - |
Non-essential amino acids (g/100 g DM) | ||||||
Alanine | 2.45 | 2.63 | 2.77 | 2.88 | 2.99 | 2.53 |
Tyrosine | 1.22 | 2.17 | 2.22 | 2.11 | 1.98 | 2.17 |
Proline | 2.45 | 2.25 | 2.32 | 2.55 | 2.68 | 2.55 |
Serine | 1.85 | 2.12 | 2.13 | 2.23 | 2.24 | 2.49 |
Aspartic acid | 3.36 | 4.57 | 4.65 | 4.66 | 4.81 | 4.46 |
Glutamic acid | 6.17 | 7.65 | 7.52 | 7.72 | 7.91 | 6.16 |
Glycine | 2.68 | 2.98 | 2.88 | 3.21 | 4.18 | 2.65 |
Diets 1 | SEM 2 | Significance 3 | ||||||
---|---|---|---|---|---|---|---|---|
MPWM0 | MPWM3 | MPWM6 | MPWM9 | MPWM18 | Linear | Quadratic | ||
Week 1 | 2.72 | 3.50 | 3.77 | 3.81 | 3.79 | 0.63 | NS | NS |
Week 2 | 4.71 | 6.07 | 4.76 | 4.50 | 5.72 | 1.02 | NS | NS |
Week 3 | 3.71 | 5.52 | 5.96 | 5.68 | 5.31 | 1.20 | NS | NS |
Week 4 | 5.04 | 4.34 | 8.36 | 6.73 | 4.64 | 1.03 | NS | * |
Week 5 | 5.58 | 7.83 | 7.90 | 5.12 | 7.76 | 1.34 | NS | NS |
Week 6 | 5.11 | 8.61 | 6.93 | 5.66 | 5.93 | 1.60 | NS | NS |
Week 7 | 6.98 a,b | 5.49 a | 4.08 a | 9.87 a,b | 12.31 b | 1.34 | * | NS |
Overall gain | 33.85 | 41.36 | 41.76 | 40.37 | 45.48 | 2.79 | * | NS |
Diets 1 | SEM 2 | Significance 3 | ||||||
---|---|---|---|---|---|---|---|---|
MPWM0 | MPWM3 | MPWM6 | MPWM9 | MPWM18 | Linear | Quadratic | ||
Feed intake | 38.14 a | 43.10 a,b | 44.11 b | 41.92 a,b | 41.61 a,b | 0.70 | NS | * |
Protein intake | 17.73 a | 20.04 a,b | 20.50 b | 19.49 a,b | 19.35 a,b | 0.32 | NS | * |
SGR (% per day) | 2.36 | 2.58 | 2.60 | 2.60 | 2.86 | 0.06 | * | NS |
FCR | 1.13 | 1.06 | 1.06 | 1.06 | 0.91 | 0.03 | * | NS |
PER | 1.91 | 2.05 | 2.04 | 2.07 | 2.35 | 0.06 | * | NS |
Diets 1 | SEM 2 | Significance 3 | ||||||
---|---|---|---|---|---|---|---|---|
MPWM0 | MPWM3 | MPWM6 | MPWM9 | MPWM18 | Linear | Quadratic | ||
Haematocrit (%) | 31.62 | 32.10 | 36.62 | 33.50 | 34.12 | 0.92 | NS | NS |
Thrombocytes (mm3) | 5.23 | 3.13 | 4.13 | 2.85 | 5.05 | 0.52 | NS | NS |
Lymphocytes (%) | 88.50 | 89.25 | 94.00 | 80.25 | 83.50 | 1.68 | NS | NS |
Monocytes (%) | 2.75 a | 5.50 a,b | 2.00 a | 9.25 b | 6.25 a,b | 0.80 | NS | NS |
Neutrophils (%) | 0.00 | 0.00 | 0.50 | 1.50 | 0.25 | 0.22 | NS | NS |
Basophils (%) | 6.00 b | 3.00 a,b | 1.75 a | 4.24 a,b | 3.00 a,b | 0.45 | NS | NS |
Eosinophils (103 cells Μl−1) | 2.25 | 2.25 | 1.75 | 4.75 | 6.75 | 0.93 | NS | NS |
Diets 1 | SEM 2 | Significance 3 | ||||||
---|---|---|---|---|---|---|---|---|
MPWM0 | MPWM3 | MPWM6 | MPWM9 | MPWM18 | Linear | Quadratic | ||
Urea (mmol L−1) | 2.23 a,b | 1.85 a | 2.28 a,b | 2.97 b | 3.03 b | 0.14 | * | NS |
Creatinine (mmol L−1) | 9.00 | 9.00 | 22.00 | 9.00 | 9.00 | 1.79 | NS | NS |
Total Protein (mmol L−1) | 40.00 a | 40.75 a,b | 45.75 b | 42.50 a,b | 43.25 a,b | 0.69 | NS | NS |
Albumin (g L−1) | 14.00 a,b | 13.00 a | 12.25 b | 14.25 a,b | 14.50 b | 0.21 | NS | NS |
Globulin (g L−1) | 26.00 a | 27.75 a,b | 30.50 b | 28.28 a,b | 28.75 a,b | 0.50 | NS | NS |
Albumin:Globulin | 0.53 | 0.50 | 0.50 | 0.50 | 0.50 | 0.01 | NS | NS |
Alanine aminotransferase (U L−1) | 24.25 | 25.00 | 37.75 | 29.25 | 28.50 | 3.92 | NS | NS |
Aspartate aminotransferase (U L−1) | 82.50 | 87.50 | 114.00 | 102.00 | 92.75 | 12.91 | NS | NS |
Alkaline phosphatase (U L−1) | 30.50 | 29.00 | 35.50 | 35.00 | 38.00 | 1.62 | NS | NS |
Cholesterol (mmol L−1) | 1.77 | 1.79 | 1.94 | 1.80 | 1.97 | 0.06 | NS | NS |
Triglycerides (mmol L−1) | 2.92 | 2.32 | 3.47 | 2.45 | 4.86 | 0.31 | * | NS |
1 Diets | ||||||
---|---|---|---|---|---|---|
Enzymes | MPWM0 | MPWM3 | MPWM6 | MPWM9 | MPWM18 | 2 Significance |
Amylase | 496.61 ± 153.46 | 1017.18 ± 195.09 | 513.63 ± 166.51 | 616.49 ± 149.70 | 475.61 ± 151.82 | NS |
Lipase | 11.16 ± 1.37 | 16.39 ± 1.56 | 14.39 ± 1.50 | 12.482 ± 1.47 | 12.11 ± 1.95 | NS |
Protease | 273.53 ± 15.51 | 285.01 ± 55.39 | 245.24 ± 10.44 | 266.50 ± 4.48 | 229.52 ± 14.81 | NS |
Chitinase | 0.02 ± 0.00 | 0.03 ± 0.00 | 0.03 ± 0.00 | 0.03 ± 0.00 | 0.03 ± 0.00 | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nyuliwe, T.C.; Mlambo, V.; Madibana, M.J.; Mwanza, M.; Wokadala, O.C. Partial Substitution of Fishmeal with Mopane Worm Meal in Dusky Kob Fingerling (Argyrosomus japonicus) Diets: Feed Utilization, Digestive Enzyme Activity, Blood Parameters, and Growth Performance. Aquac. J. 2022, 2, 59-71. https://doi.org/10.3390/aquacj2020006
Nyuliwe TC, Mlambo V, Madibana MJ, Mwanza M, Wokadala OC. Partial Substitution of Fishmeal with Mopane Worm Meal in Dusky Kob Fingerling (Argyrosomus japonicus) Diets: Feed Utilization, Digestive Enzyme Activity, Blood Parameters, and Growth Performance. Aquaculture Journal. 2022; 2(2):59-71. https://doi.org/10.3390/aquacj2020006
Chicago/Turabian StyleNyuliwe, Tshegofatso C., Victor Mlambo, Molatelo J. Madibana, Mulunda Mwanza, and Obiro C. Wokadala. 2022. "Partial Substitution of Fishmeal with Mopane Worm Meal in Dusky Kob Fingerling (Argyrosomus japonicus) Diets: Feed Utilization, Digestive Enzyme Activity, Blood Parameters, and Growth Performance" Aquaculture Journal 2, no. 2: 59-71. https://doi.org/10.3390/aquacj2020006
APA StyleNyuliwe, T. C., Mlambo, V., Madibana, M. J., Mwanza, M., & Wokadala, O. C. (2022). Partial Substitution of Fishmeal with Mopane Worm Meal in Dusky Kob Fingerling (Argyrosomus japonicus) Diets: Feed Utilization, Digestive Enzyme Activity, Blood Parameters, and Growth Performance. Aquaculture Journal, 2(2), 59-71. https://doi.org/10.3390/aquacj2020006