Gender Differences in Autonomic Stress Status and Body Fat Percentage Among Teachers
Abstract
1. Introduction
2. Results
2.1. Characteristics of Survey Respondents
2.1.1. Teachers’ Age
2.1.2. Average Level of Job Satisfaction
2.1.3. Self-Perception of Stress Levels
2.2. Adiposity Differences in Heart Rate Variability (HRV)
2.2.1. HRV in Men
2.2.2. HRV in Women
2.2.3. Sex-Stratified Integrated Analyses and Robustness After Covariate Adjustment
2.3. ANCOVA Results
2.4. Linear Regression Models
3. Discussion
3.1. Limitations and Future Research Directions
3.2. Practical Applications
4. Materials and Methods
4.1. Design, Setting, and Participants
4.2. Instruments
4.2.1. Heart Rate Variability (HRV)
4.2.2. Body Composition
4.2.3. Psychometric Measures (If Included in Methods)
4.3. Procedures
4.4. Statistical Procedures
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kautzky, A.; Heneis, K.; Stengg, K.; Fröhlich, S.; Kautzky-Willer, A. Biological and Psychological Stress Correlates Are Linked to Glucose Metabolism, Obesity, and Gender Roles in Women. Neuroendocrinology 2022, 112, 130–142. [Google Scholar] [CrossRef]
- Starr, L.R.; Dienes, K.; Li, Y.I.; Shaw, Z.A. Chronic stress exposure, diurnal cortisol slope, and implications for mood and fatigue: Moderation by multilocus HPA-Axis genetic variation. Psychoneuroendocrinology 2019, 100, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Incollingo Rodriguez, A.C.; Epel, E.S.; White, M.L.; Standen, E.C.; Seckl, J.R.; Tomiyama, A.J. Hypothalamic-pituitary-adrenal axis dysregulation and cortisol activity in obesity: A systematic review. Psychoneuroendocrinology 2015, 62, 301–318. [Google Scholar] [CrossRef] [PubMed]
- Jõgi, A.L.; Aulén, A.M.; Pakarinen, E.; Lerkkanen, M.K. Teachers’ daily physiological stress and positive affect in relation to their general occupational well-being. Br. J. Educ. Psychol. 2023, 93, 368–385. [Google Scholar] [CrossRef] [PubMed]
- Agyapong, B.; Obuobi-Donkor, G.; Burback, L.; Wei, Y. Stress, Burnout, Anxiety and Depression among Teachers: A Scoping Review. Int. J. Environ. Res. Public Health 2022, 19, 10706. [Google Scholar] [CrossRef]
- Igboanugo, S.; Mielke, J. The allostatic load model: A framework to understand the cumulative multi-system impact of work-related psychosocial stress exposure among firefighters. Health Psychol. Behav. Med. 2023, 11, 2255026. [Google Scholar] [CrossRef]
- McCrory, C.; McLoughlin, S.; Layte, R.; NiCheallaigh, C.; O’Halloran, A.M.; Barros, H.; Berkman, L.F.; Bochud, M.; Crimmins, E.M.; Farrell, M.T.; et al. Towards a consensus definition of allostatic load: A multi-cohort, multi-system, multi-biomarker individual participant data (IPD) meta-analysis. Psychoneuroendocrinology 2023, 153, 106117. [Google Scholar] [CrossRef]
- Ortiz-Guzmán, J.E.; Mollà-Casanova, S.; Arias-Mutis, Ó.J.; Bizy, A.; Calvo, C.; Alberola, A.; Chorro, F.J.; Zarzoso, M. Differences in Long-Term Heart Rate Variability between Subjects with and without Metabolic Syndrome: A Systematic Review and Meta-Analysis. J. Cardiovasc. Dev. Dis. 2023, 10, 203. [Google Scholar] [CrossRef]
- Kim, H.G.; Cheon, E.J.; Bai, D.S.; Lee, Y.H.; Koo, B.H. Stress and Heart Rate Variability: A Meta-Analysis and Review of the Literature. Psychiatry Investig. 2018, 15, 235–245. [Google Scholar] [CrossRef]
- Chen, L.Y.; Zmora, R.; Duval, S.; Chow, L.S.; Lloyd-Jones, D.M.; Schreiner, P.J. Cardiorespiratory Fitness, Adiposity, and Heart Rate Variability: The Coronary Artery Risk Development in Young Adults Study. Med. Sci. Sports Exerc. 2019, 51, 509–514. [Google Scholar] [CrossRef]
- Žunkovič, B.; Kejžar, N.; Bajrović, F.F. Standard Heart Rate Variability Parameters-Their Within-Session Stability, Reliability, and Sample Size Required to Detect the Minimal Clinically Important Effect. J. Clin. Med. 2023, 12, 3118. [Google Scholar] [CrossRef] [PubMed]
- Köchli, S.; Schutte, A.E.; Kruger, R. Adiposity and physical activity are related to heart rate variability: The African-PREDICT study. Eur. J. Clin. Investig. 2020, 50, e13330. [Google Scholar] [CrossRef] [PubMed]
- Rastović, M.; Srdić-Galić, B.; Barak, O.; Stokić, E. Association between anthropometric measures of regional fat mass and heart rate variability in obese women. Nutr. Diet. 2017, 74, 51–60. [Google Scholar] [CrossRef] [PubMed]
- De Maria, B.; Parati, M.; Dalla Vecchia, L.A.; La Rovere, M.T. Day and night heart rate variability using 24-h ECG recordings: A systematic review with meta-analysis using a gender lens. Clin. Auton. Res. 2023, 33, 821–841. [Google Scholar] [CrossRef]
- Nalepa, I.F.; Nielsen, V.; Wolf, T.E.; Touma, C.; Grupe, M.; Asuni, A.A.; Ratner, C. Sex differences in the murine HPA axis after acute and repeated restraint stress. Stress 2025, 28, 2447079. [Google Scholar] [CrossRef]
- Kühne, F.; Wettstein, A.; Jenni, G.; Schneider, I.; grosse Holtforth, M.; La Marca, R. Teacher stress in social interactions in the light of polyvagal theory. An ambulatory assessment approach to teachers’ heart rate and heart rate variability. Front. Neurosci. 2024, 18, 1499229. [Google Scholar] [CrossRef]
- Wettstein, A.; Kühne, F.; Tschacher, W.; La Marca, R. Ambulatory Assessment of Psychological and Physiological Stress on Workdays and Free Days Among Teachers. A Preliminary Study. Front. Neurosci. 2020, 14, 112. [Google Scholar] [CrossRef]
- Calderón-García, A.; Álvarez-Gallardo, E.; Belinchón-deMiguel, P.; Clemente-Suárez, V.J. Gender differences in autonomic and psychological stress responses among educators: A heart rate variability and psychological assessment study. Front. Psychol. 2024, 15, 1422709. [Google Scholar] [CrossRef]
- Kim, H.J.; Park, Y.; Lee, J. The Validity of Heart Rate Variability (HRV) in Educational Research and a Synthesis of Recommendations. Educ. Psychol. Rev. 2024, 36, 42. [Google Scholar] [CrossRef]
- Agyapong, B.; Brett-MacLean, P.; Burback, L.; Agyapong, V.I.O.; Wei, Y. Interventions to Reduce Stress and Burnout among Teachers: A Scoping Review. Int. J. Environ. Res. Public Health 2023, 20, 5625. [Google Scholar] [CrossRef]
- Creagh, S.; Thompson, G.; Mockler, N.; Stacey, M.; Hogan, A. Workload, work intensification and time poverty for teachers and school leaders: A systematic research synthesis. Educ. Rev. 2025, 77, 661–680. [Google Scholar] [CrossRef]
- Castilla-Gutiérrez, S.; Colihuil-Catrileo, R.; Bruneau-Chávez, J.; Lagos-Hernández, R. Carga laboral y efectos en la calidad de vida de docentes universitarios y de enseñanza media. Rev. Chakiñan Cienc. Soc. Humanid. 2021, 15, 166–179. [Google Scholar] [CrossRef]
- Koenig, J.; Thayer, J.F. Sex differences in healthy human heart rate variability: A meta-analysis. Neurosci. Biobehav. Rev. 2016, 64, 288–310. [Google Scholar] [CrossRef] [PubMed]
- Strüven, A.; Holzapfel, C.; Stremmel, C.; Brunner, S. Obesity, Nutrition and Heart Rate Variability. Int. J. Mol. Sci. 2021, 22, 4215. [Google Scholar] [CrossRef]
- McGee, A.B.; Scott, S.R.; Manczak, E.M.; Watamura, S.E. Associations between the Psychophysiological Impacts of Teacher Occupational Stress and Stress Biomarkers: A Systematic Review. Psychoneuroimmunol. J. 2023, 4, 16. [Google Scholar] [CrossRef]
- Dreer, B. On the outcomes of teacher wellbeing: A systematic review of research. Front. Psychol. 2023, 14, 1205179. [Google Scholar] [CrossRef]
- Kane, L.; Powell, D.; Martin, K.R.; Rees, C.; Curran, J.; Ball, D. Continuous heart rate variability monitoring, stress and recovery in doctors: A systematic review and meta-analysis. Occup. Med. 2025, 75, 630–639. [Google Scholar] [CrossRef]
- Yadav, R.L.; Yadav, P.K.; Yadav, L.K.; Agrawal, K.; Sah, S.K.; Islam, M.N. Association between obesity and heart rate variability indices: An intuition toward cardiac autonomic alteration—A risk of CVD. Diabetes Metab. Syndr. Obes. 2017, 10, 57–64. [Google Scholar] [CrossRef]
- Poliakova, N.; Després, J.-P.; Bergeron, J.; Alméras, N.; Tremblay, A.; Poirier, P. Influence of obesity indices, metabolic parameters and age on cardiac autonomic function in abdominally obese men. Metabolism 2012, 61, 1270–1279. [Google Scholar] [CrossRef]
- Thayer, J.F.; Lane, R.D. The role of vagal function in the risk for cardiovascular disease and mortality. Biol. Psychol. 2007, 74, 224–242. [Google Scholar] [CrossRef]
- Cvijetić, S.; Macan, J.; Boschiero, D.; Ilich, J.Z. Body fat and muscle in relation to heart rate variability in young-to-middle age men: A cross sectional study. Ann. Hum. Biol. 2023, 50, 108–116. [Google Scholar] [CrossRef]
- Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 2006, 444, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Rahman, F.; Pechnik, S.; Gross, D.; Sewell, L.; Goldstein, D.S. Low frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation. Clin. Auton. Res. 2011, 21, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Billman, G.E. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front. Physiol. 2013, 4, 26. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H. Does Paced Breathing Improve the Reproducibility of Heart Rate Variability Measurements? J. Physiol. Anthr. 2009, 28, 225–230. [Google Scholar] [CrossRef]
- Shah, N.M.; Kaltsakas, G. Respiratory complications of obesity: From early changes to respiratory failure. Breathe 2023, 19, 220263. [Google Scholar] [CrossRef]
- Chlif, M.; Keochkerian, D.; Choquet, D.; Vaidie, A.; Ahmaidi, S. Effects of obesity on breathing pattern, ventilatory neural drive and mechanics. Respir. Physiol. Neurobiol. 2009, 168, 198–202. [Google Scholar] [CrossRef]
- Dzhioeva, O.N.; Rogozhkina, E.A.; Shvartz, V.A.; Shvartz, E.N.; Kiselev, A.R.; Drapkina, O.M. Indices of heart rate variability are not associated with obesity in patients 30-60 years of age without chronic noncommunicable diseases. Russ. Open Med. J. 2023, 12, e0408. [Google Scholar]
- Farah, B.Q.; do Prado, W.L.; dos Tenório, T.R.; dos Santos, S.R. Heart rate variability and its relationship with central and general obesity in obese normotensive adolescents. Einstein 2013, 11, 285–290. [Google Scholar] [CrossRef]
- Serdyukov, D.Y.; Gordienko, A.V.; Sokolov, D.A.; Dydyshko, V.T.; Zhirkov, I.I. Metabolically neutral obesity: Terminology, prevalence, and meaning. Russ. Open Med. J. 2022, 11, 309. [Google Scholar] [CrossRef]
- Preda, A.; Carbone, F.; Tirandi, A.; Montecucco, F.; Liberale, L. Obesity phenotypes and cardiovascular risk: From pathophysiology to clinical management. Rev. Endocr. Metab. Disord. 2023, 24, 901–919. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Huang, H.; Liu, Z.; Ruan, J.; Xu, C. Association of the android to gynoid fat ratio with nonalcoholic fatty liver disease: A cross-sectional study. Front. Nutr. 2023, 10, 1162079. [Google Scholar] [CrossRef] [PubMed]
- Gąsior, J.S.; Sacha, J.; Jeleń, P.J.; Zieliński, J.; Przybylski, J. Heart rate and respiratory rate influence on heart rate variability repeatability: Effects of the correction for the prevailing heart rate. Front. Physiol. 2016, 7, 210739. [Google Scholar] [CrossRef] [PubMed]
- Heathers, J.A.J. Everything Hertz: Methodological issues in short-term frequency-domain HRV. Front. Physiol. 2014, 5, 177. [Google Scholar] [CrossRef]
- Kimura, T.; Matsumoto, T.; Akiyoshi, M.; Owa, Y.; Miyasaka, N.; Aso, T.; Moritani, T. Body fat and blood lipids in postmenopausal women are related to resting autonomic nervous system activity. Eur. J. Appl. Physiol. 2006, 97, 542–547. [Google Scholar] [CrossRef]
- Qi, Z.; Ding, S. Obesity-associated sympathetic overactivity in children and adolescents: The role of catecholamine resistance in lipid metabolism. J. Pediatr. Endocrinol. Metab. 2016, 29, 113–125. [Google Scholar] [CrossRef]
- Vreijling, S.R.; Troudart, Y.; Brosschot, J.F. Reduced Heart Rate Variability in Patients With Medically Unexplained Physical Symptoms: A Meta-Analysis of HF-HRV and RMSSD. Psychosom. Med. 2021, 83, 2–15. [Google Scholar] [CrossRef]
- Chaudhuri, A.; Borade, N.G.; Tirumalai, J.; Saldanha, D.; Ghosh, B.; Srivastava, K. A study of autonomic functions and obesity in postmenopausal women. Ind. Psychiatry J. 2012, 21, 39. [Google Scholar] [CrossRef]
- Franz, R.; Maturana, M.A.; Magalhães, J.A.; Moraes, R.S.; Spritzer, P.M. Central adiposity and decreased heart rate variability in postmenopause: A cross-sectional study. Climacteric 2013, 16, 576–583. [Google Scholar] [CrossRef]
- Koenig, J.; Windham, B.G.; Ferrucci, L.; Sonntag, D.; Fischer, J.E.; Thayer, J.F.; Jarczok, M.N. Association Strength of Three Adiposity Measures with Autonomic Nervous System Function in Apparently Healthy Employees. J. Nutr. Health Aging 2015, 19, 879–882. [Google Scholar] [CrossRef]
- Thorp, A.A.; Schlaich, M.P. Relevance of Sympathetic Nervous System Activation in Obesity and Metabolic Syndrome. J. Diabetes Res. 2015, 2015, 341583. [Google Scholar] [CrossRef]
- Geurts, S.; Tilly, M.J.; Arshi, B.; Asselbergs, F.H. Heart rate variability and atrial fibrillation in the general population: A longitudinal and Mendelian randomization study. Clin. Res. Cardiol. 2023, 112, 747–758. [Google Scholar] [CrossRef]
- Palmer, A.K.; Jensen, M.D. Metabolic changes in aging humans: Current evidence and therapeutic strategies. J. Clin. Investig. 2022, 132, e158451. [Google Scholar] [CrossRef] [PubMed]
- Vega-Fernández, G.; Lera, L.; Leyton, B.; Cortés, P.; Lizana, P.A. Musculoskeletal Disorders Associated With Quality of Life and Body Composition in Urban and Rural Public School Teachers. Front. Public Health 2021, 9, 607318. [Google Scholar] [CrossRef] [PubMed]
- Alias, A.N.; Karuppiah, K.; How, V.; Perumal, V. Prevalence of musculoskeletal disorders (MSDS) among primary school female teachers in Terengganu, Malaysia. Int. J. Ind. Ergon. 2020, 77, 102957. [Google Scholar] [CrossRef]
- Carroll, A.; Forrest, K.; Sanders-O’Connor, E.; Flynn, L.; Bower, J.M.; Fynes-Clinton, S.; York, A.; Ziaei, M. Teacher stress and burnout in Australia: Examining the role of intrapersonal and environmental factors. Soc. Psychol. Educ. 2022, 25, 441–469. [Google Scholar] [CrossRef]
- Sisson, S.B.; Malek-Lasater, A.; Ford, T.G.; Horm, D.; Kwon, K.-A. Predictors of Overweight and Obesity in Early Care and Education Teachers during COVID-19. Int. J. Environ. Res. Public Health 2023, 20, 2763. [Google Scholar] [CrossRef]
- Sampasa-Kanyinga, H.; Chaput, J.P. Associations among self-perceived work and life stress, trouble sleeping, physical activity, and body weight among Canadian adults. Prev. Med. 2017, 96, 16–20. [Google Scholar] [CrossRef]
- Ortega-Montiel, J.; Posadas-Romero, C.; Ocampo-Arcos, W.; Medina-Urrutia, A.; Cardoso-Saldaña, G.; Jorge-Galarza, E.; Posadas-Sánchez, R. Self-perceived stress is associated with adiposity and atherosclerosis. The GEA Study. BMC Public Health 2015, 15, 780. [Google Scholar] [CrossRef]
- Rombouts, M.; Lensen, J.H.; Kraiss, J.T.; Duinhof, E.L.; Monshouwer, K.; Stoltz, S.E.M.J.; Scholte, R.H.J.; Speckens, A.E.M.; Kleinjan, M. What Makes Mindfulness-Based Stress Reduction Programs Effective Among Dutch Elementary School Teachers? The Mediating Role of Mindfulness Skills, Self-Compassion, Emotion Regulation, and Teacher Self-Efficacy. Mindfulness 2025, 16, 2699–2711. [Google Scholar] [CrossRef]
- Jackman, K.N.; Caldarella, P.; Warren, J.S. Efficacy of an Online Mindfulness Training to Improve Well-Being in Teachers: A Randomized Waitlist Controlled Trial. Mindfulness 2025, 16, 149–164. [Google Scholar] [CrossRef]
- Marchant, J.; Khazan, I.; Cressman, M.; Steffen, P. Comparing the Effects of Square, 4–7-8, and 6 Breaths-per-Minute Breathing Conditions on Heart Rate Variability, CO2 Levels, and Mood. Appl. Psychophysiol. Biofeedback 2025, 50, 261–276. [Google Scholar] [CrossRef]
- Moscardino, U. Classroom Climate, Cardiac Vagal Tone, and Inhibitory Control: Links to Focused Attention in First Graders. Mind Brain Educ. 2018, 12, 61–70. Available online: https://www.academia.edu/89010417/Classroom_Climate_Cardiac_Vagal_Tone_and_Inhibitory_Control_Links_to_Focused_Attention_in_First_Graders (accessed on 17 January 2026).
- World Medical Association. World Medical Journal [Internet]; WMA: Ferney-Voltaire, France, 2025; Available online: https://www.wma.net/publications/world-medical-journal/ (accessed on 25 April 2025).
- Belinchon-deMiguel, P.; Clemente-Suárez, V.J. Psychophysiological, Body Composition, Biomechanical and Autonomic Modulation Analysis Procedures in an Ultraendurance Mountain Race. J. Med. Syst. 2018, 42, 32. [Google Scholar] [CrossRef]
- Belinchón-deMiguel, P.; Navarro-Jiménez, E.; Laborde-Cárdenas, C.C.; Clemente-Suárez, V.J. Evolutionary Echoes: A Four-Day Fasting and Low-Caloric Intake Study on Autonomic Modulation and Physiological Adaptations in Humans. Life 2024, 14, 456. [Google Scholar] [CrossRef]
- Malik, M.; Camm, A.J.; Bigger, J.T.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R.E.; et al. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 1996, 17, 354–381. [Google Scholar] [CrossRef]
- Ng, J.K.-C.; Lau, S.L.-F.; Chan, G.C.-K.; Tian, N.; Li, P.K.-T. Nutritional Assessments by Bioimpedance Technique in Dialysis Patients. Nutrients 2023, 16, 15. [Google Scholar] [CrossRef]
- Siri, W.E. Body composition from fluid spaces and density: Analysis of methods. In Techniques for Measuring Body Composition; Brozek, J., Henschel, A., Eds.; National Academy of Sciences—National Research Council: Washington, DC, USA, 1961; pp. 223–244. [Google Scholar]
| Variables | Group 1 (BF p < p50) | Group 2 (BF ≥ P50%BF) | p-Value | Effect Size | Effect Type | |
|---|---|---|---|---|---|---|
| 50.60% (128) | 49.40% (125) | |||||
| Gender | Male | 27.30% (35) | 27.20% (34) | χ2 = 0.001 p = 0.980 | 0.00 | V de Cramér |
| Female | 72.70% (93) | 72.80% (91) | 0.00 | |||
| Age (years) | Mean ± SD | 40.65 ± 8.93 | 43.46 ± 9.11 | t = 0.006 p = 0.007 * | 0.31 | d de Cohen |
| Age group | <p50 (43 years) | 58.60% (75) | 43.20% (54) | χ2 = 5.997 p = 0.014 * | 0.15 | V de Cramér |
| ≥P50 (43 years) | 41.40% (53) | 56.80% (71) | ||||
| Teaching level | Early Childhood and Primary Education | 42.20% (36) | 37.90% (33) | χ2 = 4.867 p = 0.432 | 0.07 | V de Cramér |
| Secondary Education/Baccalaureate/Vocational Training | 31.80% (27) | 39.00% (34) | ||||
| University Teaching | 25.90% (22) | 23.00% (20) | ||||
| Workplace | Concerted center | 54.80% (51) | 56.70% (51) | χ2 = 0.062 p = 0.803 | 0.01 | V de Cramér |
| Private center | 45.20% (42) | 43.30% (39) | ||||
| Knowledge area1 | Health science | 44.60% (29) | 41.80% (28) | χ2 = 8.732 p = 0.068 | 0.26 | V de Cramér |
| Science | 18.50% (12) | 22.40% (15) | ||||
| Engineering and architecture | 0% (0) | 7.50% (5) | ||||
| Social and Legal Sciences | 16.90% (11) | 6.00% (4) | ||||
| Arts and Humanities | 20.00% (13) | 22.40% (15) | ||||
| Teaching experience (years) | Mean ± SD | 10.75 ± 8.80 | 14.22 ± 10.03 | t = 2.586 p = 0.008 * | 0.37 | d de Cohen |
| Teaching satisfaction (0–10) | Mean ± SD | 8.06 ± 1.45 | 8.04 ± 1.25 | t = 0.861 p = 0.456 | 0.02 | d de Cohen |
| Teaching stress (0–10) | Mean ± SD | 6.83 ± 2.36 | 7.60 ± 1.82 | U = 3321.5 p = 0.034 * | 0.16 | r (biserial de rangos) |
| Variable | Group 1 (BF < p50) Media ± DE | Group 2 (BF ≥ p50) Media ± DE | p-Value | Tamaño Efecto | Tipo Efecto |
|---|---|---|---|---|---|
| MediaHR | 67.97 ± 11.78 | 73.14 ± 8.51 | U = 359.00 p = 0.045 * | 0.40 | r (biserial de rangos) |
| HRminimo | 57.68 ± 10.00 | 63.10 ± 6.84 | U = 316.50 p = 0.014 * | 0.47 | r (biserial de rangos) |
| HRmaximo | 84.52 ± 15.35 | 89.42 ± 13.71 | U = 415.50 p = 0.248 | 0.30 | r (biserial de rangos) |
| RMSSD | 47.25 ± 36.75 | 34.75 ± 14.49 | t = 4.797 p = 0.015 * | 0.53 | d de Cohen |
| pNN50 | 21.28 ± 17.96 | 12.31 ± 11.54 | t = 3.104 p = 0.016 * | 0.42 | d de Cohen |
| LF | 77.30 ± 11.09 | 75.95 ± 12.67 | U = 474.0 p = 0.678 | 0.20 | r (biserial de rangos) |
| HF | 22.63 ± 11.08 | 23.99 ± 12.65 | U = 475.5 p = 0.680 | 0.20 | r (biserial de rangos) |
| RatioLF.HF | 4.84 ± 3.48 | 4.72 ± 3.62 | U = 475.0 p = 0.705 | 0.20 | r (biserial de rangos) |
| SD1 | 33.46 ± 18.95 | 24.60 ± 10.15 | t = 4.794 p = 0.015 * | 0.53 | d de Cohen |
| SD2 | 73.11 ± 29.50 | 56.90 ± 19.60 | t = 3.531 p = 0.009 * | 0.45 | d de Cohen |
| Variable | Group 1 (BF < p50) Media ± DE | Group 2 (BF ≥ p50) Media ± DE | p-Value | Tamaño Efecto | Tipo Efecto |
|---|---|---|---|---|---|
| MediaHR | 78.97 ± 12.23 | 76.44 ± 11.33 | U = 3658.00 p = 0.217 | 0.13 | r (biserial de rangos) |
| HRminimo | 64.85 ± 11.36 | 63.98 ± 9.94 | U = 3899.00 p = 0.580 | 0.079 | r (biserial de rangos) |
| HRmaximo | 107.10 ± 32.01 | 100.83 ± 26.28 | U = 2649.00 p = 0.033 * | 0.37 | r (biserial de rangos) |
| RMSSD | 61.51 ± 53.44 | 56.21 ± 44.54 | t = 3.394 p = 0.264 | 0.27 | d de Cohen |
| pNN50 | 22.19 ± 20.80 | 19.40 ± 18.83 | t = 2.337 p = 0.202 | 0.22 | d de Cohen |
| LF | 68.37 ± 13.25 | 62.98 ± 14.94 | U = 3228.50 p = 0.014 * | 0.23 | r (biserial de rangos) |
| HF | 32.57 ± 14.60 | 36.90 ± 14.95 | U = 3233.00 p = 0.015 * | 0.23 | r (biserial de rangos) |
| RatioLF.HF | 3.13 ± 2.60 | 2.42 ± 2.33 | U = 3231.00 p = 0.015 * | 0.23 | r (biserial de rangos) |
| SD1 | 43.55 ± 37.85 | 39.72 ± 31.61 | t = 3.314 p = 0.470 | 0.26 | d de Cohen |
| SD2 | 79.89 ± 53.35 | 68.92 ± 45.41 | t = 2.2283 p = 0.149 | 0.22 | d de Cohen |
| Sexo | DV | n_analizado | F_grupo | df_error | p_grupo | eta_p2 |
|---|---|---|---|---|---|---|
| Hombres | MediaHR | 48 | 0.246 | 42 | 0.623 | 0.006 |
| Hombres | HRminimo | 48 | 0.799 | 42 | 0.377 | 0.019 |
| Hombres | HRmaximo | 48 | 0.003 | 42 | 0.960 | 0.000 |
| Hombres | RMSSD | 48 | 0.208 | 42 | 0.651 | 0.005 |
| Hombres | pNN50 | 48 | 0.013 | 42 | 0.908 | 0.001 |
| Hombres | LF | 48 | 0.968 | 42 | 0.331 | 0.022 |
| Hombres | HF | 48 | 0.957 | 42 | 0.334 | 0.022 |
| Hombres | LH/HF | 48 | 0.183 | 42 | 0.671 | 0.004 |
| Hombres | SD1 | 48 | 0.208 | 42 | 0.651 | 0.005 |
| Hombres | SD2 | 48 | 1.136 | 42 | 0.293 | 0.026 |
| Mujeres | MediaHR | 124 | 0.165 | 118 | 0.685 | 0.001 |
| Mujeres | HRminimo | 124 | 0.534 | 118 | 0.466 | 0.004 |
| Mujeres | HRmaximo | 124 | 4.762 | 118 | 0.031 | 0.039 |
| Mujeres | RMSSD | 124 | 0.548 | 118 | 0.461 | 0.005 |
| Mujeres | pNN50 | 124 | 1.075 | 118 | 0.302 | 0.009 |
| Mujeres | LF | 124 | 3.026 | 118 | 0.085 | 0.025 |
| Mujeres | HF | 124 | 2.963 | 118 | 0.088 | 0.024 |
| Mujeres | LH/HF | 124 | 5.528 | 118 | 0.020 | 0.045 |
| Mujeres | SD1 | 124 | 0.543 | 118 | 0.463 | 0.004 |
| Mujeres | SD2 | 124 | 1.717 | 118 | 0.193 | 0.014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Álvarez-Gallardo, E.; Calderón García, A.; Ramírez-Goercke, M.I.; Belinchón-deMiguel, P.; Clemente-Suárez, V.J. Gender Differences in Autonomic Stress Status and Body Fat Percentage Among Teachers. Physiologia 2026, 6, 10. https://doi.org/10.3390/physiologia6010010
Álvarez-Gallardo E, Calderón García A, Ramírez-Goercke MI, Belinchón-deMiguel P, Clemente-Suárez VJ. Gender Differences in Autonomic Stress Status and Body Fat Percentage Among Teachers. Physiologia. 2026; 6(1):10. https://doi.org/10.3390/physiologia6010010
Chicago/Turabian StyleÁlvarez-Gallardo, Estela, Andrea Calderón García, María Isabel Ramírez-Goercke, Pedro Belinchón-deMiguel, and Vicente Javier Clemente-Suárez. 2026. "Gender Differences in Autonomic Stress Status and Body Fat Percentage Among Teachers" Physiologia 6, no. 1: 10. https://doi.org/10.3390/physiologia6010010
APA StyleÁlvarez-Gallardo, E., Calderón García, A., Ramírez-Goercke, M. I., Belinchón-deMiguel, P., & Clemente-Suárez, V. J. (2026). Gender Differences in Autonomic Stress Status and Body Fat Percentage Among Teachers. Physiologia, 6(1), 10. https://doi.org/10.3390/physiologia6010010

